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Microwave	Coplanar	Waveguide	Resonators

• 2D analog of coaxial cable 

• Cavity defined by cutting center pin 

• Voltage antinode at “mirror”

Blais	et	al.,	PRA	69,	062320	(2014)

Modes of Transmission Lines Resonators

Fig. 2.6 Schematic illustration of a typical coplanar waveguide (CPW) resonator used in

circuit QED together with its discretized lumped-element equivalent circuit. The qubit lies

between the center pin and the adjacent ground plane and is located at an antinode of the
electric field, shown in this case for the full-wave resonance of the CPW. From Blais et

al.(2004).

Each segment of the line of length dx has inductance ! dx and the voltage drop along
it is −dx ∂x∂tΦ(x, t). The flux through this inductance is thus −dx ∂xΦ(x, t) and the
local value of the current is given by the constitutive equation

I(x, t) = −
1

!
∂xΦ(x, t). (2.121)

The Lagrangian for a system of length L (L is not to be confused with some discrete
inductance)

Lg ≡
∫ L

0
dxL(x, t) =

∫ L

0
dx

[
c

2
(∂tΦ)

2 −
1

2!
(∂xΦ)

2

]
, (2.122)

The Euler-Lagrange equation for this Lagrangian is simply the wave equation

v2p∂
2
xΦ− ∂2tΦ = 0. (2.123)

The momentum conjugate to Φ(x) is simply the charge density

q(x, t) ≡
δLg

δ∂tΦ
= c∂tΦ = cV (x, t) (2.124)

and so the Hamiltonian is given by

H =

∫ L

0
dx

{
1

2c
q2 +

1

2!
(∂xΦ)

2

}
. (2.125)
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CPW	La-ces

• Capacitive coupling of resonators 

• Tight-binding solid

HTB = !0

X

i

a
†
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†
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• Capacitive coupling of resonators 

• Tight-binding solid

• t < 0
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Combining	La-ces	and	Qubits

NATURE PHYSICS DOI: 10.1038/NPHYS1154 LETTERS
|0,1i)/

p
2, form an effective two-level system composed of both

transmon and cavity degrees of freedom. Within the effective
two-level subspace, the photon operators are mapped22 to Pauli
operators a! ⌃�/

p
2, a† ! ⌃+/

p
2, so that the microwave tone

acts as a drive on the effective two-level system, that is,

Heff =
~�
2

⌃z +
~⌦
2

⌃x , (3)

a scenario that Carmichael and co-workers12,22 have referred to
as ‘dressing of dressed states’. The Hamiltonian Heff refers to
the frame rotating at the drive frequency, � = !01 � g0 � !d is
the detuning between the drive and the vacuum Rabi peak and
⌦ =

p
2⇠ is the effective drive strength. With the notable exception

of the recent work by Schuster et al.14, previous investigations
were primarily concerned with effects on photon correlations and
fluorescence, as observed in photon-counting measurements12,15.
According to the operator mapping, photon counting can be
related to the measurement of h⌃z i, whereas detection of the
heterodyne amplitude A corresponds to |h⌃�i|. As a result,
heterodyne detection fundamentally differs from photon counting
and the vacuum Rabi supersplitting is a characteristic only of
heterodyne detection.

After restricting the master equation (1) to the two-level
subspace, the system evolution can be expressed in terms of simple
Bloch equations for the three components of the reduced density
matrix ⇢ = (1+x⌃x +y⌃y +z⌃z)/2,

ẋ = �x/T 0
2 �1y, ẏ = 1x�y/T 0

2 �⌦z,

ż = ⌦y� (z+1)/T 0
1.

(An intuitive approach ignoring dissipation and avoiding the Bloch
equations is discussed in Supplementary Information, Discussion.)
Here, T 0

1 and T 0
2 are the effective relaxation and dephasing times,

which are related to �1, �' and  via T 0
1
�1 = (�1 + )/2 and

T 0
2
�1 = (�1+2�' +)/4. The usual steady-state solution of the Bloch

equations for x and y gives the heterodyne amplitude

A=
V0T 0

2⌦
q
(�2T 0

2
2 +1)/2

�2T 0
2
2 +T 0

1T 0
2⌦

2 +1
. (4)

This expression correctly describes the crossover from the linear
response at small driving strength, ⌦ ⌧ (T 0

1T 0
2)�1/2, producing a

Lorentzian of width 2T 0
2
�1, to the doublet structure observed for

strong driving. Specifically, as the drive power is increased, the
response saturates and the peak broadens, until at ⌦ = (T 0

1T 0
2)�1/2

the peak undergoes supersplitting with peak–peak separation
2T 0

2
�1pT 0

1T 0
2⌦

2 �1. The fact that we use heterodyne detection is
indeed crucial for the supersplitting. It is easy to verify within the
two-level approximation that photon counting always results in
a Lorentzian. For photon counting, probing beyond the linear-
response regime merely results in power broadening; specifically,
the width of the Lorentzian is given by 2T 0

2
�1pT 0

1T 0
2⌦

2 +1
(see Supplementary Information, Fig. S4). That there is a
difference between photon counting and heterodyne detection is
a characteristic of a single qubit. For a many-qubit system, both
types of measurement would typically give the same result, and
this many-qubit nonlinear response would be rather different to
the single-qubit case, developing first as a frequency pulling and
eventually yielding hysteresis23.

In Fig. 2c–f, the analytical expression (4) is plotted for
comparison with the full numerical results and the experimental
data. We find good agreement for low to moderate drive
power, confirming that the supersplitting can be attributed
to driving the vacuum Rabi transition into saturation while

0.1

0.2

0.1

0.2

0.1

0.2

|6+〉
|6¬〉
|5+〉
|5¬〉
|4+〉
|4¬〉
|3+〉
|3¬〉
|2+〉
|2¬〉
|1+〉
|1¬〉

|0〉

2 6hg0√ ¬

2 5hg0√ ¬

2 4hg0√ ¬

2 3hg0√ ¬

2 2hg0√ ¬

2hg0
¬

En
er

gy
D

riv
e 

po
w

er
 (

dB
)

¬30

¬20

¬10

0

Tr
an

sm
itt

ed
 in

te
ns

ity
 A

2 
/A

2 1

2 dB

0 dB

¬5 dB

6.85 6.90 6.95
ωd/2π (GHz)

7.00

a

b

c

d

e

Figure 3 | Emergence of
p
n peaks under strong driving of the vacuum

Rabi transition. a, The extended Jaynes–Cummings energy spectrum. All
levels are shown to scale in the left part of the diagram: black lines
represent levels |n,±i ' (|n,0i±|n� 1,1i)/

p
2 with only small

contributions from higher (j > 1) transmon states; grey lines represent
levels with large contributions from higher transmon states. In the right
part of the diagram, the

p
n scaling of the splitting between the |n,±i states

is exaggerated for clarity, and the transitions observed in plots b–e are
indicated at the x-coordinate En±/nh of their n-photon transition frequency
from the ground state. b, Measured intensity (A2, heterodyne amplitude
squared) in colour scale as a function of drive frequency and power. The
multiphoton transitions shown in a are observed at their calculated
positions. c–e, Examples of cuts for constant power, at the values indicated
in b (results from the master equation (1) in black; experimental results in
red), demonstrating excellent agreement between theory and experiment,
which is reinforced in the enlarged insets. Good agreement is found over
the full range in drive power from �45 dB to +3 dB, for a single set of
parameters (also see Supplementary Information, Movie S1).

measuring the transmission with the heterodyne technique. For
higher drive power, a left–right asymmetry appears in the true
transmission spectrum, which is not reproduced by equation (4),
and which is partly due to the influence of levels beyond the
two-level approximation.

Higher levels of the extended Jaynes–Cummings Hamiltonian
become increasingly important when the drive power is raised fur-

NATURE PHYSICS | VOL 5 | FEBRUARY 2009 | www.nature.com/naturephysics 107
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Photon-mediated interactions
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Qubits	in	Photonic	Crystals	

• Effective swap interaction between qubits 
• All modes in parallel
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Qubits	in	Photonic	Crystals	

• Effective swap interaction between qubits 
• All modes in parallel

1D-Photonic	Crystal

as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
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indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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•ExponenKally	localized	bound	state
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realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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|0,1i)/

p
2, form an effective two-level system composed of both

transmon and cavity degrees of freedom. Within the effective
two-level subspace, the photon operators are mapped22 to Pauli
operators a! ⌃�/

p
2, a† ! ⌃+/

p
2, so that the microwave tone

acts as a drive on the effective two-level system, that is,

Heff =
~�
2

⌃z +
~⌦
2

⌃x , (3)

a scenario that Carmichael and co-workers12,22 have referred to
as ‘dressing of dressed states’. The Hamiltonian Heff refers to
the frame rotating at the drive frequency, � = !01 � g0 � !d is
the detuning between the drive and the vacuum Rabi peak and
⌦ =

p
2⇠ is the effective drive strength. With the notable exception

of the recent work by Schuster et al.14, previous investigations
were primarily concerned with effects on photon correlations and
fluorescence, as observed in photon-counting measurements12,15.
According to the operator mapping, photon counting can be
related to the measurement of h⌃z i, whereas detection of the
heterodyne amplitude A corresponds to |h⌃�i|. As a result,
heterodyne detection fundamentally differs from photon counting
and the vacuum Rabi supersplitting is a characteristic only of
heterodyne detection.

After restricting the master equation (1) to the two-level
subspace, the system evolution can be expressed in terms of simple
Bloch equations for the three components of the reduced density
matrix ⇢ = (1+x⌃x +y⌃y +z⌃z)/2,

ẋ = �x/T 0
2 �1y, ẏ = 1x�y/T 0

2 �⌦z,

ż = ⌦y� (z+1)/T 0
1.

(An intuitive approach ignoring dissipation and avoiding the Bloch
equations is discussed in Supplementary Information, Discussion.)
Here, T 0

1 and T 0
2 are the effective relaxation and dephasing times,

which are related to �1, �' and  via T 0
1
�1 = (�1 + )/2 and

T 0
2
�1 = (�1+2�' +)/4. The usual steady-state solution of the Bloch

equations for x and y gives the heterodyne amplitude

A=
V0T 0

2⌦
q
(�2T 0

2
2 +1)/2

�2T 0
2
2 +T 0

1T 0
2⌦

2 +1
. (4)

This expression correctly describes the crossover from the linear
response at small driving strength, ⌦ ⌧ (T 0

1T 0
2)�1/2, producing a

Lorentzian of width 2T 0
2
�1, to the doublet structure observed for

strong driving. Specifically, as the drive power is increased, the
response saturates and the peak broadens, until at ⌦ = (T 0

1T 0
2)�1/2

the peak undergoes supersplitting with peak–peak separation
2T 0

2
�1pT 0

1T 0
2⌦

2 �1. The fact that we use heterodyne detection is
indeed crucial for the supersplitting. It is easy to verify within the
two-level approximation that photon counting always results in
a Lorentzian. For photon counting, probing beyond the linear-
response regime merely results in power broadening; specifically,
the width of the Lorentzian is given by 2T 0

2
�1pT 0

1T 0
2⌦

2 +1
(see Supplementary Information, Fig. S4). That there is a
difference between photon counting and heterodyne detection is
a characteristic of a single qubit. For a many-qubit system, both
types of measurement would typically give the same result, and
this many-qubit nonlinear response would be rather different to
the single-qubit case, developing first as a frequency pulling and
eventually yielding hysteresis23.

In Fig. 2c–f, the analytical expression (4) is plotted for
comparison with the full numerical results and the experimental
data. We find good agreement for low to moderate drive
power, confirming that the supersplitting can be attributed
to driving the vacuum Rabi transition into saturation while
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Figure 3 | Emergence of
p
n peaks under strong driving of the vacuum

Rabi transition. a, The extended Jaynes–Cummings energy spectrum. All
levels are shown to scale in the left part of the diagram: black lines
represent levels |n,±i ' (|n,0i±|n� 1,1i)/

p
2 with only small

contributions from higher (j > 1) transmon states; grey lines represent
levels with large contributions from higher transmon states. In the right
part of the diagram, the

p
n scaling of the splitting between the |n,±i states

is exaggerated for clarity, and the transitions observed in plots b–e are
indicated at the x-coordinate En±/nh of their n-photon transition frequency
from the ground state. b, Measured intensity (A2, heterodyne amplitude
squared) in colour scale as a function of drive frequency and power. The
multiphoton transitions shown in a are observed at their calculated
positions. c–e, Examples of cuts for constant power, at the values indicated
in b (results from the master equation (1) in black; experimental results in
red), demonstrating excellent agreement between theory and experiment,
which is reinforced in the enlarged insets. Good agreement is found over
the full range in drive power from �45 dB to +3 dB, for a single set of
parameters (also see Supplementary Information, Movie S1).

measuring the transmission with the heterodyne technique. For
higher drive power, a left–right asymmetry appears in the true
transmission spectrum, which is not reproduced by equation (4),
and which is partly due to the influence of levels beyond the
two-level approximation.

Higher levels of the extended Jaynes–Cummings Hamiltonian
become increasingly important when the drive power is raised fur-
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Qubits	in	Photonic	Crystals	

• Effective swap interaction between qubits 
• All modes in parallel

1D-Photonic	Crystal

as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states

(b)

QQ

Q Q QQQ Q

(c)

(d)

Bound state frequency (GHz)

Li
ne

w
id

th
 (

M
H

z)

Experiment

(a)

Q
ub

it 
fr

eq
ue

nc
y 

(G
H

z)

Frequency (GHz)

Q
ub

it 
fr

eq
ue

nc
y 

(G
H

z)

Simulation

(e)

(f)

Experiment

Frequency (GHz)

Frequency (GHz)

S
21

 (
dB

)

Transfer matrix
Experiment

Simulation

-30

-10

-50
7.5 7.97.7 8.1

1

3

5

7

9

7.3 7.4 7.5 7.6 7.7

FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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|0,1i)/

p
2, form an effective two-level system composed of both

transmon and cavity degrees of freedom. Within the effective
two-level subspace, the photon operators are mapped22 to Pauli
operators a! ⌃�/

p
2, a† ! ⌃+/

p
2, so that the microwave tone

acts as a drive on the effective two-level system, that is,

Heff =
~�
2

⌃z +
~⌦
2

⌃x , (3)

a scenario that Carmichael and co-workers12,22 have referred to
as ‘dressing of dressed states’. The Hamiltonian Heff refers to
the frame rotating at the drive frequency, � = !01 � g0 � !d is
the detuning between the drive and the vacuum Rabi peak and
⌦ =

p
2⇠ is the effective drive strength. With the notable exception

of the recent work by Schuster et al.14, previous investigations
were primarily concerned with effects on photon correlations and
fluorescence, as observed in photon-counting measurements12,15.
According to the operator mapping, photon counting can be
related to the measurement of h⌃z i, whereas detection of the
heterodyne amplitude A corresponds to |h⌃�i|. As a result,
heterodyne detection fundamentally differs from photon counting
and the vacuum Rabi supersplitting is a characteristic only of
heterodyne detection.

After restricting the master equation (1) to the two-level
subspace, the system evolution can be expressed in terms of simple
Bloch equations for the three components of the reduced density
matrix ⇢ = (1+x⌃x +y⌃y +z⌃z)/2,

ẋ = �x/T 0
2 �1y, ẏ = 1x�y/T 0

2 �⌦z,

ż = ⌦y� (z+1)/T 0
1.

(An intuitive approach ignoring dissipation and avoiding the Bloch
equations is discussed in Supplementary Information, Discussion.)
Here, T 0

1 and T 0
2 are the effective relaxation and dephasing times,

which are related to �1, �' and  via T 0
1
�1 = (�1 + )/2 and

T 0
2
�1 = (�1+2�' +)/4. The usual steady-state solution of the Bloch

equations for x and y gives the heterodyne amplitude

A=
V0T 0

2⌦
q
(�2T 0

2
2 +1)/2

�2T 0
2
2 +T 0

1T 0
2⌦

2 +1
. (4)

This expression correctly describes the crossover from the linear
response at small driving strength, ⌦ ⌧ (T 0

1T 0
2)�1/2, producing a

Lorentzian of width 2T 0
2
�1, to the doublet structure observed for

strong driving. Specifically, as the drive power is increased, the
response saturates and the peak broadens, until at ⌦ = (T 0

1T 0
2)�1/2

the peak undergoes supersplitting with peak–peak separation
2T 0

2
�1pT 0

1T 0
2⌦

2 �1. The fact that we use heterodyne detection is
indeed crucial for the supersplitting. It is easy to verify within the
two-level approximation that photon counting always results in
a Lorentzian. For photon counting, probing beyond the linear-
response regime merely results in power broadening; specifically,
the width of the Lorentzian is given by 2T 0

2
�1pT 0

1T 0
2⌦

2 +1
(see Supplementary Information, Fig. S4). That there is a
difference between photon counting and heterodyne detection is
a characteristic of a single qubit. For a many-qubit system, both
types of measurement would typically give the same result, and
this many-qubit nonlinear response would be rather different to
the single-qubit case, developing first as a frequency pulling and
eventually yielding hysteresis23.

In Fig. 2c–f, the analytical expression (4) is plotted for
comparison with the full numerical results and the experimental
data. We find good agreement for low to moderate drive
power, confirming that the supersplitting can be attributed
to driving the vacuum Rabi transition into saturation while
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Figure 3 | Emergence of
p
n peaks under strong driving of the vacuum

Rabi transition. a, The extended Jaynes–Cummings energy spectrum. All
levels are shown to scale in the left part of the diagram: black lines
represent levels |n,±i ' (|n,0i±|n� 1,1i)/

p
2 with only small

contributions from higher (j > 1) transmon states; grey lines represent
levels with large contributions from higher transmon states. In the right
part of the diagram, the

p
n scaling of the splitting between the |n,±i states

is exaggerated for clarity, and the transitions observed in plots b–e are
indicated at the x-coordinate En±/nh of their n-photon transition frequency
from the ground state. b, Measured intensity (A2, heterodyne amplitude
squared) in colour scale as a function of drive frequency and power. The
multiphoton transitions shown in a are observed at their calculated
positions. c–e, Examples of cuts for constant power, at the values indicated
in b (results from the master equation (1) in black; experimental results in
red), demonstrating excellent agreement between theory and experiment,
which is reinforced in the enlarged insets. Good agreement is found over
the full range in drive power from �45 dB to +3 dB, for a single set of
parameters (also see Supplementary Information, Movie S1).

measuring the transmission with the heterodyne technique. For
higher drive power, a left–right asymmetry appears in the true
transmission spectrum, which is not reproduced by equation (4),
and which is partly due to the influence of levels beyond the
two-level approximation.

Higher levels of the extended Jaynes–Cummings Hamiltonian
become increasingly important when the drive power is raised fur-
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New	La-ces	for	Photon-Mediated	InteracKons

•Follows	hyperbolic	metric
• Hyperbolic	LaRce

2

FIG. 1. (a) Single-excitation single-qubit bound-state. Red
square denotes the position of the qubit. (b) Comparison
between discrete and continuous Green’s function. We see
that already the nearest neighbour photonic component is
well described by the continuum limit. (c-d) Density of the
photonic component of a two-spin bound state illustrating the
photon-mediated interactions between spins.

System.—We study photons on the hyperbolic lattice
G coupled to qubits, where photon dynamics is modelled
by a tight-binding Hamiltonian and qubits at positions i
corresponds to local spin-1/2 operators �+

i �
�
i = |1ih1|i.

The full Hamiltonian in rotating wave approximation is
given by

H = �
X

i2S
|1ih1|i + g

X

j2S

⇣
�
+
j aj + h.c.

⌘
+Hph, (1)

Hph = �t

X

<ij>2G
(a†iaj + h.c.) +

X

j2G
!ra

†
jaj (2)

with a
†
i the photon creation operator and g the coupling

between photons and qubits. The set S comprises the
qubit sites and G the hyperbolic lattice. For concreteness
we assume t > 0 in the following.

The coupling of a single qubit to the photonic bath
results in a dressing or renormalization of �. The single-
excitation bound state energy EB for a photon coupled
to a single qubit at position i is given by the solution of

EB = �+ g
2
Gii(EB), (3)

where Gij(!) = (! � Hph)
�1
ij is the photon Green func-

tion.4 Denote the lowest eigenvalue of Hph by E0 < 0,

4[Di↵erent sign of Gij as in previous paper.]

which defines the lower edge of the photon spectrum.
Equation (3) always permits a solution EB < �. In par-
ticular, for weak coupling, we find EB ⇡ � + g

2
Gii(�)

and the bound state wave-function consists mostly of the
spin component:[TODO: I think that G are in consistent
notation so we don’t need the ”-”]

| Bi ⇡ |", 0i+ g

X

j2G
Gij(�)a†j |#, 0i . (4)

This corresponds to a qubit coupled to a structured bath.
In the low-energy regime, we can describe the photonic

part of the system using the continuum limit, where the
hyperbolic lattice is mapped to the Poincaré disk with
radius L  1 and curvature radius R = 1

2 . The condition
for the bound state in the continuum is given by Eq. (3)
with the continuum approximation of the photon Green
function G(z, z0, !̄) given by

Gij(!) ⇡ �G(zi, zj , !̄), (5)

where !̄ = M(!+3), and M = 4
3h2 is e↵ective band mass

of the photons PB: “!k = E0 + k2/M and gk = g
q

⇡
28 K(z)

with  K(z) the eigenfunctions of the Laplacian”. For large lat-
tices we have L ! 1 and the photon spectrum becomes
continuous and reads 1

M (1 + k
2). The bound state con-

dition becomes

EB = �+ g
2 ⇡

28

ˆ
k⇤

d2k

(2⇡)2
tanh(⇡k/2)

EB + 3� 1
M (1 + k2)

.

The tanh-term in the measure is due to the negative
curvature of space. Importantly, the continuum de-
scription requires the introduction of a short-distance
cuto↵ ⇤ / h

�1, because G(z, z0, !̄) is not defined for
z = z

0. This is a well-known property of bound states
for parabolic bands in two dimensions. The value of ⇤
can be fixed through the renormalization condition C :=
G11(�3t) = G(z1, z1, 0), yielding ⇤ ' e

56C/M ' 3h�1.
For ⇤ �

p
M , Eq. (3) becomes

EB �� ' g
2 ⇡

28

M

4⇡
ln
⇣ |EB � E0|M

⇤2

⌘
. (6)

The bound state wavefunction is

| Bi /
⇣
�
+
1 �
ˆ

d2z

(1� |z|2)2u(z)a
†(z)

⌘
|#, 0i (7)

with u(z) = Mg̃G(z, zi, !̄B). In Fig. 1(b) we show the
amplitude of the photonic component |u(z)|2 [TODO:
right?] of the bound state wave function in Eq. (4)
using both the discrete and continuum expressions, which
agree very well.
Note that, even though boundary e↵ects make the con-

tinuum limit of the DOS nuanced, the bound states for
spins away from the edge are localized in the bulk and
therefore the results are no influenced by the edge e↵ects.

Bienias,	AJK	et	al.	Phys.	Rev.	Lej.	128,	
013601	(2022)
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FIG. 1. (a) Single-excitation single-qubit bound-state. Red
square denotes the position of the qubit. (b) Comparison
between discrete and continuous Green’s function. We see
that already the nearest neighbour photonic component is
well described by the continuum limit. (c-d) Density of the
photonic component of a two-spin bound state illustrating the
photon-mediated interactions between spins.

System.—We study photons on the hyperbolic lattice
G coupled to qubits, where photon dynamics is modelled
by a tight-binding Hamiltonian and qubits at positions i
corresponds to local spin-1/2 operators �+

i �
�
i = |1ih1|i.

The full Hamiltonian in rotating wave approximation is
given by

H = �
X

i2S
|1ih1|i + g

X

j2S
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+
j aj + h.c.

⌘
+Hph, (1)

Hph = �t
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(a†iaj + h.c.) +

X

j2G
!ra

†
jaj (2)

with a
†
i the photon creation operator and g the coupling

between photons and qubits. The set S comprises the
qubit sites and G the hyperbolic lattice. For concreteness
we assume t > 0 in the following.

The coupling of a single qubit to the photonic bath
results in a dressing or renormalization of �. The single-
excitation bound state energy EB for a photon coupled
to a single qubit at position i is given by the solution of

EB = �+ g
2
Gii(EB), (3)

where Gij(!) = (! � Hph)
�1
ij is the photon Green func-

tion.4 Denote the lowest eigenvalue of Hph by E0 < 0,

4[Di↵erent sign of Gij as in previous paper.]

which defines the lower edge of the photon spectrum.
Equation (3) always permits a solution EB < �. In par-
ticular, for weak coupling, we find EB ⇡ � + g

2
Gii(�)

and the bound state wave-function consists mostly of the
spin component:[TODO: I think that G are in consistent
notation so we don’t need the ”-”]

| Bi ⇡ |", 0i+ g

X

j2G
Gij(�)a†j |#, 0i . (4)

This corresponds to a qubit coupled to a structured bath.
In the low-energy regime, we can describe the photonic

part of the system using the continuum limit, where the
hyperbolic lattice is mapped to the Poincaré disk with
radius L  1 and curvature radius R = 1

2 . The condition
for the bound state in the continuum is given by Eq. (3)
with the continuum approximation of the photon Green
function G(z, z0, !̄) given by

Gij(!) ⇡ �G(zi, zj , !̄), (5)

where !̄ = M(!+3), and M = 4
3h2 is e↵ective band mass

of the photons PB: “!k = E0 + k2/M and gk = g
q

⇡
28 K(z)

with  K(z) the eigenfunctions of the Laplacian”. For large lat-
tices we have L ! 1 and the photon spectrum becomes
continuous and reads 1

M (1 + k
2). The bound state con-

dition becomes

EB = �+ g
2 ⇡

28

ˆ
k⇤

d2k

(2⇡)2
tanh(⇡k/2)

EB + 3� 1
M (1 + k2)

.

The tanh-term in the measure is due to the negative
curvature of space. Importantly, the continuum de-
scription requires the introduction of a short-distance
cuto↵ ⇤ / h

�1, because G(z, z0, !̄) is not defined for
z = z

0. This is a well-known property of bound states
for parabolic bands in two dimensions. The value of ⇤
can be fixed through the renormalization condition C :=
G11(�3t) = G(z1, z1, 0), yielding ⇤ ' e

56C/M ' 3h�1.
For ⇤ �

p
M , Eq. (3) becomes
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The bound state wavefunction is
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with u(z) = Mg̃G(z, zi, !̄B). In Fig. 1(b) we show the
amplitude of the photonic component |u(z)|2 [TODO:
right?] of the bound state wave function in Eq. (4)
using both the discrete and continuum expressions, which
agree very well.
Note that, even though boundary e↵ects make the con-

tinuum limit of the DOS nuanced, the bound states for
spins away from the edge are localized in the bulk and
therefore the results are no influenced by the edge e↵ects.
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between discrete and continuous Green’s function. We see
that already the nearest neighbour photonic component is
well described by the continuum limit. (c-d) Density of the
photonic component of a two-spin bound state illustrating the
photon-mediated interactions between spins.
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qubit sites and G the hyperbolic lattice. For concreteness
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Line-Graph	Subsystem	Codes

Chapman	et	al.	Quantum	4,	278	(2020)	
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Figure 2. The terms of the checkerboard-lattice code. a and b The two inequivalent Hamiltonian terms of a fiducial bosonization
H0 of the line graph of the square lattice. The line graph is shown in light blue, with brown circles to indicate the vertices. Note
that there is no vertex in the middle of the square plaquettes where the horizontal and vertical edges cross. The constituent
single-qubit Pauli operators of each term are indicated in color-coded and labeled circles in the center of the each edge. For
ease of view, we indicate the identity by the absence of a label, and for the two edges that cross, we have displaced the drawn
symbols to make it clear which edge they belong to. c and d The two inequivalent terms of a second fiducial bosonization H1
obtained by flipping all single-qubit Paulis. All terms in H0 commute with all terms in H1. e-h four additional stabilizer terms
per unit cell. Combining both Hamiltonians and the four stabilizers gives a frustration graph which consists of two independent
copies of the line graph of the square lattice and produces two exact logical qubits, shown in Fig. 3.

commuting set. However, there are many others which
are not supported on closed cycles, and many of these do
not commute with one another.

The combination of the the honeycomb and fiducial
bosonizations gives a way to produce a spin model which
realizes any frustration graph, whether it is a line graph
and whether it is free-fermionizable or not, regardless
of whether the frustration graph is translation invariant.
Since these two methods guarantee that there exists at
least one spin model which realizes a given frustration
graph, throughout much of this paper we will examine
frustration graphs without considering any specifics of
the corresponding spin model.

The examples given in the next two sections are an
exception. Here will will consider the anticommuting
free-fermion Hamiltonian terms and additional stabilizers
explicitly in order to show that exactly solvable spin
models with a constant number of exact logical qubits
and two-dimensional frustration graphs do exist. These
example models will also illustrate some of the general
phenomenology and pitfalls of these types of models, as
well as these two bosonization methods in particular.

B. The Checkerboard-Lattice Code: Intertwined
Free-Fermion Models

The first model we present is based on a fiducial
bosonization of the line graph of the square lattice com-
bined with an additional set of stabilizers. The line graph
of the square lattice is a checkerboard lattice in which ev-
ery other plaquette has diagonal (next-nearest-neighbor)
edges, shown in the background of all the subfigures
of Fig. 2. Since this is a 6-regular graph, all fiducial
bosonization terms are weight 6. There are two inequiva-
lent Hamiltonian terms, one for the horizontal edges of
the square lattice, and one for the vertical ones. The
simplest possible orientation and realization of the Hamil-
tonian terms is shown in Fig. 2a and b. Note that the
horizontal and vertical edges of the line graph connect
equivalent sites in neighboring unit cells, so it is not possi-
ble to chose the Hamiltonian terms to consist of only one
type of single-qubit Pauli operator. By construction, the
fiducial Hamiltonian operators in Fig. 2a and b and all of
their translates have a frustration graph which is the line
graph of the square lattice, and the resulting Hamiltonian
can be solved exactly by computing a free-fermion model
on the square lattice.

Because all sites in this line graph have even degree,
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not commute with one another.
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realizes any frustration graph, whether it is a line graph
and whether it is free-fermionizable or not, regardless
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Since these two methods guarantee that there exists at
least one spin model which realizes a given frustration
graph, throughout much of this paper we will examine
frustration graphs without considering any specifics of
the corresponding spin model.

The examples given in the next two sections are an
exception. Here will will consider the anticommuting
free-fermion Hamiltonian terms and additional stabilizers
explicitly in order to show that exactly solvable spin
models with a constant number of exact logical qubits
and two-dimensional frustration graphs do exist. These
example models will also illustrate some of the general
phenomenology and pitfalls of these types of models, as
well as these two bosonization methods in particular.

B. The Checkerboard-Lattice Code: Intertwined
Free-Fermion Models

The first model we present is based on a fiducial
bosonization of the line graph of the square lattice com-
bined with an additional set of stabilizers. The line graph
of the square lattice is a checkerboard lattice in which ev-
ery other plaquette has diagonal (next-nearest-neighbor)
edges, shown in the background of all the subfigures
of Fig. 2. Since this is a 6-regular graph, all fiducial
bosonization terms are weight 6. There are two inequiva-
lent Hamiltonian terms, one for the horizontal edges of
the square lattice, and one for the vertical ones. The
simplest possible orientation and realization of the Hamil-
tonian terms is shown in Fig. 2a and b. Note that the
horizontal and vertical edges of the line graph connect
equivalent sites in neighboring unit cells, so it is not possi-
ble to chose the Hamiltonian terms to consist of only one
type of single-qubit Pauli operator. By construction, the
fiducial Hamiltonian operators in Fig. 2a and b and all of
their translates have a frustration graph which is the line
graph of the square lattice, and the resulting Hamiltonian
can be solved exactly by computing a free-fermion model
on the square lattice.

Because all sites in this line graph have even degree,
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commuting set. However, there are many others which
are not supported on closed cycles, and many of these do
not commute with one another.

The combination of the the honeycomb and fiducial
bosonizations gives a way to produce a spin model which
realizes any frustration graph, whether it is a line graph
and whether it is free-fermionizable or not, regardless
of whether the frustration graph is translation invariant.
Since these two methods guarantee that there exists at
least one spin model which realizes a given frustration
graph, throughout much of this paper we will examine
frustration graphs without considering any specifics of
the corresponding spin model.

The examples given in the next two sections are an
exception. Here will will consider the anticommuting
free-fermion Hamiltonian terms and additional stabilizers
explicitly in order to show that exactly solvable spin
models with a constant number of exact logical qubits
and two-dimensional frustration graphs do exist. These
example models will also illustrate some of the general
phenomenology and pitfalls of these types of models, as
well as these two bosonization methods in particular.

B. The Checkerboard-Lattice Code: Intertwined
Free-Fermion Models

The first model we present is based on a fiducial
bosonization of the line graph of the square lattice com-
bined with an additional set of stabilizers. The line graph
of the square lattice is a checkerboard lattice in which ev-
ery other plaquette has diagonal (next-nearest-neighbor)
edges, shown in the background of all the subfigures
of Fig. 2. Since this is a 6-regular graph, all fiducial
bosonization terms are weight 6. There are two inequiva-
lent Hamiltonian terms, one for the horizontal edges of
the square lattice, and one for the vertical ones. The
simplest possible orientation and realization of the Hamil-
tonian terms is shown in Fig. 2a and b. Note that the
horizontal and vertical edges of the line graph connect
equivalent sites in neighboring unit cells, so it is not possi-
ble to chose the Hamiltonian terms to consist of only one
type of single-qubit Pauli operator. By construction, the
fiducial Hamiltonian operators in Fig. 2a and b and all of
their translates have a frustration graph which is the line
graph of the square lattice, and the resulting Hamiltonian
can be solved exactly by computing a free-fermion model
on the square lattice.
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that there is no vertex in the middle of the square plaquettes where the horizontal and vertical edges cross. The constituent
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ease of view, we indicate the identity by the absence of a label, and for the two edges that cross, we have displaced the drawn
symbols to make it clear which edge they belong to. c and d The two inequivalent terms of a second fiducial bosonization H1
obtained by flipping all single-qubit Paulis. All terms in H0 commute with all terms in H1. e-h four additional stabilizer terms
per unit cell. Combining both Hamiltonians and the four stabilizers gives a frustration graph which consists of two independent
copies of the line graph of the square lattice and produces two exact logical qubits, shown in Fig. 3.

commuting set. However, there are many others which
are not supported on closed cycles, and many of these do
not commute with one another.

The combination of the the honeycomb and fiducial
bosonizations gives a way to produce a spin model which
realizes any frustration graph, whether it is a line graph
and whether it is free-fermionizable or not, regardless
of whether the frustration graph is translation invariant.
Since these two methods guarantee that there exists at
least one spin model which realizes a given frustration
graph, throughout much of this paper we will examine
frustration graphs without considering any specifics of
the corresponding spin model.

The examples given in the next two sections are an
exception. Here will will consider the anticommuting
free-fermion Hamiltonian terms and additional stabilizers
explicitly in order to show that exactly solvable spin
models with a constant number of exact logical qubits
and two-dimensional frustration graphs do exist. These
example models will also illustrate some of the general
phenomenology and pitfalls of these types of models, as
well as these two bosonization methods in particular.
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bined with an additional set of stabilizers. The line graph
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bosonization terms are weight 6. There are two inequiva-
lent Hamiltonian terms, one for the horizontal edges of
the square lattice, and one for the vertical ones. The
simplest possible orientation and realization of the Hamil-
tonian terms is shown in Fig. 2a and b. Note that the
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equivalent sites in neighboring unit cells, so it is not possi-
ble to chose the Hamiltonian terms to consist of only one
type of single-qubit Pauli operator. By construction, the
fiducial Hamiltonian operators in Fig. 2a and b and all of
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obtained by flipping all single-qubit Paulis. All terms in H0 commute with all terms in H1. e-h four additional stabilizer terms
per unit cell. Combining both Hamiltonians and the four stabilizers gives a frustration graph which consists of two independent
copies of the line graph of the square lattice and produces two exact logical qubits, shown in Fig. 3.
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The combination of the the honeycomb and fiducial
bosonizations gives a way to produce a spin model which
realizes any frustration graph, whether it is a line graph
and whether it is free-fermionizable or not, regardless
of whether the frustration graph is translation invariant.
Since these two methods guarantee that there exists at
least one spin model which realizes a given frustration
graph, throughout much of this paper we will examine
frustration graphs without considering any specifics of
the corresponding spin model.
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exception. Here will will consider the anticommuting
free-fermion Hamiltonian terms and additional stabilizers
explicitly in order to show that exactly solvable spin
models with a constant number of exact logical qubits
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realizes any frustration graph, whether it is a line graph
and whether it is free-fermionizable or not, regardless
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Since these two methods guarantee that there exists at
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type of single-qubit Pauli operator. By construction, the
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edges, shown in the background of all the subfigures
of Fig. 2. Since this is a 6-regular graph, all fiducial
bosonization terms are weight 6. There are two inequiva-
lent Hamiltonian terms, one for the horizontal edges of
the square lattice, and one for the vertical ones. The
simplest possible orientation and realization of the Hamil-
tonian terms is shown in Fig. 2a and b. Note that the
horizontal and vertical edges of the line graph connect
equivalent sites in neighboring unit cells, so it is not possi-
ble to chose the Hamiltonian terms to consist of only one
type of single-qubit Pauli operator. By construction, the
fiducial Hamiltonian operators in Fig. 2a and b and all of
their translates have a frustration graph which is the line
graph of the square lattice, and the resulting Hamiltonian
can be solved exactly by computing a free-fermion model
on the square lattice.

Because all sites in this line graph have even degree,
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copies of the line graph of the square lattice and produces two exact logical qubits, shown in Fig. 3.

commuting set. However, there are many others which
are not supported on closed cycles, and many of these do
not commute with one another.

The combination of the the honeycomb and fiducial
bosonizations gives a way to produce a spin model which
realizes any frustration graph, whether it is a line graph
and whether it is free-fermionizable or not, regardless
of whether the frustration graph is translation invariant.
Since these two methods guarantee that there exists at
least one spin model which realizes a given frustration
graph, throughout much of this paper we will examine
frustration graphs without considering any specifics of
the corresponding spin model.

The examples given in the next two sections are an
exception. Here will will consider the anticommuting
free-fermion Hamiltonian terms and additional stabilizers
explicitly in order to show that exactly solvable spin
models with a constant number of exact logical qubits
and two-dimensional frustration graphs do exist. These
example models will also illustrate some of the general
phenomenology and pitfalls of these types of models, as
well as these two bosonization methods in particular.

B. The Checkerboard-Lattice Code: Intertwined
Free-Fermion Models

The first model we present is based on a fiducial
bosonization of the line graph of the square lattice com-
bined with an additional set of stabilizers. The line graph
of the square lattice is a checkerboard lattice in which ev-
ery other plaquette has diagonal (next-nearest-neighbor)
edges, shown in the background of all the subfigures
of Fig. 2. Since this is a 6-regular graph, all fiducial
bosonization terms are weight 6. There are two inequiva-
lent Hamiltonian terms, one for the horizontal edges of
the square lattice, and one for the vertical ones. The
simplest possible orientation and realization of the Hamil-
tonian terms is shown in Fig. 2a and b. Note that the
horizontal and vertical edges of the line graph connect
equivalent sites in neighboring unit cells, so it is not possi-
ble to chose the Hamiltonian terms to consist of only one
type of single-qubit Pauli operator. By construction, the
fiducial Hamiltonian operators in Fig. 2a and b and all of
their translates have a frustration graph which is the line
graph of the square lattice, and the resulting Hamiltonian
can be solved exactly by computing a free-fermion model
on the square lattice.

Because all sites in this line graph have even degree,

6

Figure 2. The terms of the checkerboard-lattice code. a and b The two inequivalent Hamiltonian terms of a fiducial bosonization
H0 of the line graph of the square lattice. The line graph is shown in light blue, with brown circles to indicate the vertices. Note
that there is no vertex in the middle of the square plaquettes where the horizontal and vertical edges cross. The constituent
single-qubit Pauli operators of each term are indicated in color-coded and labeled circles in the center of the each edge. For
ease of view, we indicate the identity by the absence of a label, and for the two edges that cross, we have displaced the drawn
symbols to make it clear which edge they belong to. c and d The two inequivalent terms of a second fiducial bosonization H1
obtained by flipping all single-qubit Paulis. All terms in H0 commute with all terms in H1. e-h four additional stabilizer terms
per unit cell. Combining both Hamiltonians and the four stabilizers gives a frustration graph which consists of two independent
copies of the line graph of the square lattice and produces two exact logical qubits, shown in Fig. 3.

commuting set. However, there are many others which
are not supported on closed cycles, and many of these do
not commute with one another.

The combination of the the honeycomb and fiducial
bosonizations gives a way to produce a spin model which
realizes any frustration graph, whether it is a line graph
and whether it is free-fermionizable or not, regardless
of whether the frustration graph is translation invariant.
Since these two methods guarantee that there exists at
least one spin model which realizes a given frustration
graph, throughout much of this paper we will examine
frustration graphs without considering any specifics of
the corresponding spin model.

The examples given in the next two sections are an
exception. Here will will consider the anticommuting
free-fermion Hamiltonian terms and additional stabilizers
explicitly in order to show that exactly solvable spin
models with a constant number of exact logical qubits
and two-dimensional frustration graphs do exist. These
example models will also illustrate some of the general
phenomenology and pitfalls of these types of models, as
well as these two bosonization methods in particular.

B. The Checkerboard-Lattice Code: Intertwined
Free-Fermion Models

The first model we present is based on a fiducial
bosonization of the line graph of the square lattice com-
bined with an additional set of stabilizers. The line graph
of the square lattice is a checkerboard lattice in which ev-
ery other plaquette has diagonal (next-nearest-neighbor)
edges, shown in the background of all the subfigures
of Fig. 2. Since this is a 6-regular graph, all fiducial
bosonization terms are weight 6. There are two inequiva-
lent Hamiltonian terms, one for the horizontal edges of
the square lattice, and one for the vertical ones. The
simplest possible orientation and realization of the Hamil-
tonian terms is shown in Fig. 2a and b. Note that the
horizontal and vertical edges of the line graph connect
equivalent sites in neighboring unit cells, so it is not possi-
ble to chose the Hamiltonian terms to consist of only one
type of single-qubit Pauli operator. By construction, the
fiducial Hamiltonian operators in Fig. 2a and b and all of
their translates have a frustration graph which is the line
graph of the square lattice, and the resulting Hamiltonian
can be solved exactly by computing a free-fermion model
on the square lattice.

Because all sites in this line graph have even degree,

6

Figure 2. The terms of the checkerboard-lattice code. a and b The two inequivalent Hamiltonian terms of a fiducial bosonization
H0 of the line graph of the square lattice. The line graph is shown in light blue, with brown circles to indicate the vertices. Note
that there is no vertex in the middle of the square plaquettes where the horizontal and vertical edges cross. The constituent
single-qubit Pauli operators of each term are indicated in color-coded and labeled circles in the center of the each edge. For
ease of view, we indicate the identity by the absence of a label, and for the two edges that cross, we have displaced the drawn
symbols to make it clear which edge they belong to. c and d The two inequivalent terms of a second fiducial bosonization H1
obtained by flipping all single-qubit Paulis. All terms in H0 commute with all terms in H1. e-h four additional stabilizer terms
per unit cell. Combining both Hamiltonians and the four stabilizers gives a frustration graph which consists of two independent
copies of the line graph of the square lattice and produces two exact logical qubits, shown in Fig. 3.

commuting set. However, there are many others which
are not supported on closed cycles, and many of these do
not commute with one another.

The combination of the the honeycomb and fiducial
bosonizations gives a way to produce a spin model which
realizes any frustration graph, whether it is a line graph
and whether it is free-fermionizable or not, regardless
of whether the frustration graph is translation invariant.
Since these two methods guarantee that there exists at
least one spin model which realizes a given frustration
graph, throughout much of this paper we will examine
frustration graphs without considering any specifics of
the corresponding spin model.

The examples given in the next two sections are an
exception. Here will will consider the anticommuting
free-fermion Hamiltonian terms and additional stabilizers
explicitly in order to show that exactly solvable spin
models with a constant number of exact logical qubits
and two-dimensional frustration graphs do exist. These
example models will also illustrate some of the general
phenomenology and pitfalls of these types of models, as
well as these two bosonization methods in particular.

B. The Checkerboard-Lattice Code: Intertwined
Free-Fermion Models

The first model we present is based on a fiducial
bosonization of the line graph of the square lattice com-
bined with an additional set of stabilizers. The line graph
of the square lattice is a checkerboard lattice in which ev-
ery other plaquette has diagonal (next-nearest-neighbor)
edges, shown in the background of all the subfigures
of Fig. 2. Since this is a 6-regular graph, all fiducial
bosonization terms are weight 6. There are two inequiva-
lent Hamiltonian terms, one for the horizontal edges of
the square lattice, and one for the vertical ones. The
simplest possible orientation and realization of the Hamil-
tonian terms is shown in Fig. 2a and b. Note that the
horizontal and vertical edges of the line graph connect
equivalent sites in neighboring unit cells, so it is not possi-
ble to chose the Hamiltonian terms to consist of only one
type of single-qubit Pauli operator. By construction, the
fiducial Hamiltonian operators in Fig. 2a and b and all of
their translates have a frustration graph which is the line
graph of the square lattice, and the resulting Hamiltonian
can be solved exactly by computing a free-fermion model
on the square lattice.

Because all sites in this line graph have even degree,

6

Figure 2. The terms of the checkerboard-lattice code. a and b The two inequivalent Hamiltonian terms of a fiducial bosonization
H0 of the line graph of the square lattice. The line graph is shown in light blue, with brown circles to indicate the vertices. Note
that there is no vertex in the middle of the square plaquettes where the horizontal and vertical edges cross. The constituent
single-qubit Pauli operators of each term are indicated in color-coded and labeled circles in the center of the each edge. For
ease of view, we indicate the identity by the absence of a label, and for the two edges that cross, we have displaced the drawn
symbols to make it clear which edge they belong to. c and d The two inequivalent terms of a second fiducial bosonization H1
obtained by flipping all single-qubit Paulis. All terms in H0 commute with all terms in H1. e-h four additional stabilizer terms
per unit cell. Combining both Hamiltonians and the four stabilizers gives a frustration graph which consists of two independent
copies of the line graph of the square lattice and produces two exact logical qubits, shown in Fig. 3.

commuting set. However, there are many others which
are not supported on closed cycles, and many of these do
not commute with one another.

The combination of the the honeycomb and fiducial
bosonizations gives a way to produce a spin model which
realizes any frustration graph, whether it is a line graph
and whether it is free-fermionizable or not, regardless
of whether the frustration graph is translation invariant.
Since these two methods guarantee that there exists at
least one spin model which realizes a given frustration
graph, throughout much of this paper we will examine
frustration graphs without considering any specifics of
the corresponding spin model.

The examples given in the next two sections are an
exception. Here will will consider the anticommuting
free-fermion Hamiltonian terms and additional stabilizers
explicitly in order to show that exactly solvable spin
models with a constant number of exact logical qubits
and two-dimensional frustration graphs do exist. These
example models will also illustrate some of the general
phenomenology and pitfalls of these types of models, as
well as these two bosonization methods in particular.

B. The Checkerboard-Lattice Code: Intertwined
Free-Fermion Models

The first model we present is based on a fiducial
bosonization of the line graph of the square lattice com-
bined with an additional set of stabilizers. The line graph
of the square lattice is a checkerboard lattice in which ev-
ery other plaquette has diagonal (next-nearest-neighbor)
edges, shown in the background of all the subfigures
of Fig. 2. Since this is a 6-regular graph, all fiducial
bosonization terms are weight 6. There are two inequiva-
lent Hamiltonian terms, one for the horizontal edges of
the square lattice, and one for the vertical ones. The
simplest possible orientation and realization of the Hamil-
tonian terms is shown in Fig. 2a and b. Note that the
horizontal and vertical edges of the line graph connect
equivalent sites in neighboring unit cells, so it is not possi-
ble to chose the Hamiltonian terms to consist of only one
type of single-qubit Pauli operator. By construction, the
fiducial Hamiltonian operators in Fig. 2a and b and all of
their translates have a frustration graph which is the line
graph of the square lattice, and the resulting Hamiltonian
can be solved exactly by computing a free-fermion model
on the square lattice.

Because all sites in this line graph have even degree,

6

Figure 2. The terms of the checkerboard-lattice code. a and b The two inequivalent Hamiltonian terms of a fiducial bosonization
H0 of the line graph of the square lattice. The line graph is shown in light blue, with brown circles to indicate the vertices. Note
that there is no vertex in the middle of the square plaquettes where the horizontal and vertical edges cross. The constituent
single-qubit Pauli operators of each term are indicated in color-coded and labeled circles in the center of the each edge. For
ease of view, we indicate the identity by the absence of a label, and for the two edges that cross, we have displaced the drawn
symbols to make it clear which edge they belong to. c and d The two inequivalent terms of a second fiducial bosonization H1
obtained by flipping all single-qubit Paulis. All terms in H0 commute with all terms in H1. e-h four additional stabilizer terms
per unit cell. Combining both Hamiltonians and the four stabilizers gives a frustration graph which consists of two independent
copies of the line graph of the square lattice and produces two exact logical qubits, shown in Fig. 3.

commuting set. However, there are many others which
are not supported on closed cycles, and many of these do
not commute with one another.

The combination of the the honeycomb and fiducial
bosonizations gives a way to produce a spin model which
realizes any frustration graph, whether it is a line graph
and whether it is free-fermionizable or not, regardless
of whether the frustration graph is translation invariant.
Since these two methods guarantee that there exists at
least one spin model which realizes a given frustration
graph, throughout much of this paper we will examine
frustration graphs without considering any specifics of
the corresponding spin model.

The examples given in the next two sections are an
exception. Here will will consider the anticommuting
free-fermion Hamiltonian terms and additional stabilizers
explicitly in order to show that exactly solvable spin
models with a constant number of exact logical qubits
and two-dimensional frustration graphs do exist. These
example models will also illustrate some of the general
phenomenology and pitfalls of these types of models, as
well as these two bosonization methods in particular.

B. The Checkerboard-Lattice Code: Intertwined
Free-Fermion Models

The first model we present is based on a fiducial
bosonization of the line graph of the square lattice com-
bined with an additional set of stabilizers. The line graph
of the square lattice is a checkerboard lattice in which ev-
ery other plaquette has diagonal (next-nearest-neighbor)
edges, shown in the background of all the subfigures
of Fig. 2. Since this is a 6-regular graph, all fiducial
bosonization terms are weight 6. There are two inequiva-
lent Hamiltonian terms, one for the horizontal edges of
the square lattice, and one for the vertical ones. The
simplest possible orientation and realization of the Hamil-
tonian terms is shown in Fig. 2a and b. Note that the
horizontal and vertical edges of the line graph connect
equivalent sites in neighboring unit cells, so it is not possi-
ble to chose the Hamiltonian terms to consist of only one
type of single-qubit Pauli operator. By construction, the
fiducial Hamiltonian operators in Fig. 2a and b and all of
their translates have a frustration graph which is the line
graph of the square lattice, and the resulting Hamiltonian
can be solved exactly by computing a free-fermion model
on the square lattice.

Because all sites in this line graph have even degree,

6

Figure 2. The terms of the checkerboard-lattice code. a and b The two inequivalent Hamiltonian terms of a fiducial bosonization
H0 of the line graph of the square lattice. The line graph is shown in light blue, with brown circles to indicate the vertices. Note
that there is no vertex in the middle of the square plaquettes where the horizontal and vertical edges cross. The constituent
single-qubit Pauli operators of each term are indicated in color-coded and labeled circles in the center of the each edge. For
ease of view, we indicate the identity by the absence of a label, and for the two edges that cross, we have displaced the drawn
symbols to make it clear which edge they belong to. c and d The two inequivalent terms of a second fiducial bosonization H1
obtained by flipping all single-qubit Paulis. All terms in H0 commute with all terms in H1. e-h four additional stabilizer terms
per unit cell. Combining both Hamiltonians and the four stabilizers gives a frustration graph which consists of two independent
copies of the line graph of the square lattice and produces two exact logical qubits, shown in Fig. 3.

commuting set. However, there are many others which
are not supported on closed cycles, and many of these do
not commute with one another.

The combination of the the honeycomb and fiducial
bosonizations gives a way to produce a spin model which
realizes any frustration graph, whether it is a line graph
and whether it is free-fermionizable or not, regardless
of whether the frustration graph is translation invariant.
Since these two methods guarantee that there exists at
least one spin model which realizes a given frustration
graph, throughout much of this paper we will examine
frustration graphs without considering any specifics of
the corresponding spin model.

The examples given in the next two sections are an
exception. Here will will consider the anticommuting
free-fermion Hamiltonian terms and additional stabilizers
explicitly in order to show that exactly solvable spin
models with a constant number of exact logical qubits
and two-dimensional frustration graphs do exist. These
example models will also illustrate some of the general
phenomenology and pitfalls of these types of models, as
well as these two bosonization methods in particular.

B. The Checkerboard-Lattice Code: Intertwined
Free-Fermion Models

The first model we present is based on a fiducial
bosonization of the line graph of the square lattice com-
bined with an additional set of stabilizers. The line graph
of the square lattice is a checkerboard lattice in which ev-
ery other plaquette has diagonal (next-nearest-neighbor)
edges, shown in the background of all the subfigures
of Fig. 2. Since this is a 6-regular graph, all fiducial
bosonization terms are weight 6. There are two inequiva-
lent Hamiltonian terms, one for the horizontal edges of
the square lattice, and one for the vertical ones. The
simplest possible orientation and realization of the Hamil-
tonian terms is shown in Fig. 2a and b. Note that the
horizontal and vertical edges of the line graph connect
equivalent sites in neighboring unit cells, so it is not possi-
ble to chose the Hamiltonian terms to consist of only one
type of single-qubit Pauli operator. By construction, the
fiducial Hamiltonian operators in Fig. 2a and b and all of
their translates have a frustration graph which is the line
graph of the square lattice, and the resulting Hamiltonian
can be solved exactly by computing a free-fermion model
on the square lattice.

Because all sites in this line graph have even degree,

Hamiltonian	Terms/Gauge	Generators 7

Figure 3. Logical degrees of freedom of the checkerboard-
lattice code. a and b String-like logical X and logical Z

operators that form an exact logical qubit which commutes
with all the Hamiltonian and stabilizer terms shown in Fig. 2.
c and d A second string-like logical pair which commutes with
the first. On a torus with even dimensions, these are the only
independent operators that commute with all the Hamiltonian
and stabilizer terms.

reversing the choice of orientation on all edges gives rise
to a second fiducial bosonization, shown in Fig. 2c and
d, such that all terms the new fiducial Hamiltonian H1
commute with all terms in the original Hamiltonian H0.
As a result, the total Hamiltonian to Ht = H0 + H1 has
a frustration graph which consists of two disconnected
copies of the line graph of the square lattice, and is still
free-fermion solvable. In addition to the two free-fermion
Hamiltonians, we will also include 4 stabilizers per unit
cell, shown in Fig. 2e-h, which consist of products of
Y around closed cycles. In addition to these stabilizers
and their linear combinations, there is another operator
per unit cell that commutes with all of the Hamiltonian
terms which is given by the product of Hamiltonian terms
(either a and b or c and d, but not mixed combinations)
around a plaquette of the underlying square lattice. The
two loop operators formed this way are equivalent up
to products of the Y stabilizers and generated by the
Hamiltonian terms, so they are not independent.

Under L ◊ L periodic boundary conditions with L
even, there are precisely four linearly independent op-
erators that commute with all the stabilizers and both
free-fermion Hamiltonians. They form two exact logical
qubit pairs shown in Fig. 3. One half of each logical pair
is an incontractable loop of the Y stabilizers and consists
of Y along the vertical or horizontal edges. We will refer
to these operators as the Y strings. The other halves of

each logical pair, which we call the XZ strings, are more
complicated operators related to the free-fermion Hamil-
tonian terms. These operators, shown in Fig. 3b and d,
break the discrete translation symmetry of the underlying
lattice and repeat only every two unit cells. The XZ
string which is translated by one unit cell still commutes
with all of the Hamiltonian and stabilizer terms, but will
anticommute with the string operator running around the
torus the other way.

The two XZ strings in each direction can be considered
to be a factorization of a product of Hamiltonian terms
along the same line. For example, the product of the
XZ string shown in Fig. 3b with its translated partner
and the Y string in Fig. 3c is equal to the product of the
Hamiltonian term in Fig. 2d along the same line. Thus,
the logical degrees of freedom arise because homologically
non-trivial products of Hamiltonian terms can be broken
up into string operators which still commute with all
Hamiltonian and stabilizer terms individually. Unlike,
e.g. string operators in the Kitaev honeycomb model,
these fractions of incontractable products of Hamiltonian
terms are linearly independent of the Hamiltonian terms.

Another way to view the free-fermion Hamiltonian
terms of this model is by analogy to the Bacon-Shor
code [30, 38, 39], and the one-dimensional XY chain.
The Hamiltonian terms can be thought of as the products
of two terms: XXXX or ZZZZ on the edges at 45¶ and
XZ on the vertical or horizontal edges. The quad X or
quad Z operators resemble vertex stabilizers of the toric
code [40]. However, the alternation between X and Z at
every other vertex of the line graph produces anticommut-
ing terms whose frustration graph is the square lattice,
the same as that of the two-dimensional Bacon-Shor code.
Additionally, the second fiducial bosonization contains all
of the vertex terms of the opposite type, so combining
the two includes XXXX and ZZZZ at every site of the
line graph.

A subsystem code made from the toric-code-like opera-
tors alone would be a variation on the two-dimensional
Bacon-Shor code, but since the square lattice is not a line
graph, it would not be free-fermion solvable by the meth-
ods discussed in this work 1. The necessary missing edges
are introduced by the XZ operators on the vertical and
horizontal edges. Taken by themselves, these operators
give rise to models and frustration graphs which are equiv-
alent to disconnected copies of the one-dimensional XY
chain running around the torus in both directions. The
one-dimensional chains have the same frustration graph
as the 1-d Kitaev wire, with the important distinctions
that they are periodic. For us, the logical operators have
no analog in terms of fermion operators.

Since the fiducial Hamiltonian terms are products of

1 While there are alternative methods available to find an exact
free-fermion solution (see e.g. [41]), the Bacon-Shor code is not
amenable to these, as its frustration graph contains claws and
even holes.
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FIG. 1. (Color online) (a) Device picture of 12 capacitively
coupled resonators. The overlaid orange dashed lines have been
drawn between the coupled resonators and illustrate how the photonic
lattice sites form a single Kagomé star. Transmission was measured
between the ports labeled “Input” and “Output”. (b) and (c) Images of
symmetric three-way capacitors with low hopping rate (t/2π = 0.8
MHz) with 10- and 40−µm-wide center pins. (d) Capacitor with
high hopping rate (t/2π = 31 MHz) and 40-µm-wide center pin. (e)
Image of outer coupling capacitor (κ/2π = 0.05 MHz) for 40-µm
center pin. (f) Cross section of coplanar waveguide resonator with
center pin width a, on a dielectric substrate εr .

frequencies, and results in 12 distinct frequencies. We study
the effects of disorder by numerically diagonalizing the Hamil-
tonian for random {δi} drawn from a Gaussian distribution
with a standard deviation σ . The resulting histogram for
the number of eigenmodes N (ω)dω in a given frequency
interval [ω,ω + dω] is shown in Fig. 2 for varying amounts
of disorder σ . When σ " t , disorder is negligible and the
normal-mode frequencies are all close to those of the ideal
lattice. As σ increases and becomes larger than t , the peaks
in the distribution associated with individual normal-mode

FIG. 2. (Color online) The normal-mode histogram in the pres-
ence of disorder. Normal mode frequencies are calculated from Eq. (1)
using a set of {δi} drawn from a Gaussian distribution with standard
deviation σ . For each value of σ , this procedure is repeated 107

times. Histograms are generated from 107 disorder realizations (for
each value of σ ), and are normalized to the maximum number of
counts for clarity. For σ # t , the histogram is dominated by disorder
and forms a single Gaussian. For σ " t , the histogram shows sharp
peaks corresponding to the ideal normal-mode frequencies.

frequencies broaden and ultimately merge. Once merging
occurs, the observed mode frequencies and corresponding
modes can no longer be easily identified with the idealized
modes. In the limit of σ # t , the normal-mode histogram
approaches a single Gaussian of width σ from which the
overall disorder of individual resonator frequencies can be
extracted. For this reason, devices with a small hopping rate t
are ideal for discerning the effects of disorder.

We have fabricated and measured 25 arrays of 12 cavities
to quantify disorder and assess the feasibility of quantum
simulation in CQED lattices. By design, each coplanar
waveguide resonator had a frequency of ωr/2π ≈ 7 GHz,
and an impedance Z0 = 50 '. The devices were fabricated
using photolithography on 200 nm of Nb sputtered onto a
500−µm-thick sapphire substrate. Each device was mounted
using high-performance silver paste and then wire bonded to
a copper circuit board. Wire bonds were also used to connect
all ground planes. At the outer edges of the array, each cavity
is capacitively coupled to a transmission line, resulting in a
photon escape rate κ = 4Z2

0C
2
outω

3
r to the continuum. This

allows us to measure transmission through opposite ports
(Fig. 1) of the array using a vector network analyzer. The
unused ports were connected to 50 ' terminators, although
no significant difference was observed when the ports were
left open. Each device was cooled to a base temperature of
20 mK inside a dilution refrigerator—a necessary requirement
for future quantum simulations with small numbers of polari-
tons [7–11,23].

The set of our 25 devices, summarized in Table I, includes
samples with two distinct hopping rates of t/2π = 0.8 MHz
and t/2π = 31 MHz. These nominal values were obtained
from Eq. (2) by using values for the coupling capacitances
determined using a finite-element calculation. While the high-t
devices allow us to access t # σ and are most useful for
quantum simulation, the low-t devices are the better choice
for characterizing disorder.

We extract normal-mode frequencies from the peak posi-
tions in the measured transmission spectra [Figs. 3(a)–3(c)]
in order to determine the disorder. To account for small
systematic shifts in devices made in separate fabrication
batches, all frequencies were expressed relative to the mean
peak frequency of each spectrum. For low-t devices, not all
12 peaks are always visible. Such “missing” peaks can be due

TABLE I. Results extracted from 25 measured devices. Devices
were characterized with two different photon hopping rates t and
three different center pin widths a. The random disorder σ was
extracted from peak positions of the transmission spectrum for each
device. The disorder decreases for increasing a. The ratio σ/t is a
metric of how the normal-mode frequencies are affected by disorder.
For the 40 µm devices, σ is reduced to less that two parts in 104 of
ωr/2π . All uncertainties are computed from standard deviation of
individual measurements.

t/2π (MHz) a (µm) σ/2π (MHz) σ/t No. measured

0.8 10 9.1 ± 2.8 11.5 13
0.8 20 3.9 ± 1.2 4.9 4
0.8 40 1.4 ± 0.8 1.7 4
31 40 1.3 ± 0.3 0.04 4
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FIG. 3. (Color online) Transmission spectra for measured de-
vices. The first column shows spectra for devices with (a) t/2π =
0.8 MHz, a = 40 µm, (b) t/2π = 0.8 MHz, a = 20 µm, and (c) and
t/2π = 0.8 MHz, a = 10 µm. The width of the spectrum decreases
for increasing resonator width, demonstrating a decrease in σ . The
second column (d),(e) shows transmission spectra for two nominally
identical devices with t/2π = 31 MHz and a = 40 µm. Each scan
contains 12 well-defined peaks that are consistent between the
two devices. Peak positions are similar to those expected, when a
systematic edge effect due to the difference between inner and outer
capacitors is accounted for. The inset shows the lowest-energy mode
that is localized on the inner six resonators in the absence of disorder.

to normal-mode degeneracies (occurring in the ideal case), as
well as normal modes with small or vanishing amplitude in
either of the resonators coupled to the input or output port.

For low-t devices, analyzing the peak positions provides a
systematic method for extracting σ from a transmission mea-
surement. Specifically, the disorder strength can be extracted
from the peak positions using

σ 2 =
〈

1
n

n∑

i=1

δ2
i

〉

=
〈

1
n

n∑

i=1

(
$dis

i − $̄dis
i

)2

〉

− 1
n

n∑

i=1

($i − $̄i)2, (3)

where n = 12 is the number of resonators in each sample, and
$i and $dis

i denote the 12 normal-mode frequencies in the
absence and presence of disorder, respectively. $̄i and $̄dis

i

are their means (for a single disorder realization), whereas
ensemble averages over disorder realization are denoted by
〈·〉. In the disorderless case, the “variance” of the normal-mode
frequencies of the Kagomé star is 3t2.

Applying this method to samples with a standard 10 µm
width of the transmission line center pin, we find that the
disorder σ/2π = (9.1 ± 2.8) MHz is larger than expected
from resonator length variations due to finite resolution in
optical lithography. To investigate the origin of this disorder,
we fabricate devices with different widths a of the center pin,
while maintaining a constant Z0 throughout, and find that there
is a systematic dependence of disorder on a.

The magnitude of disorder decreases with increasing center
pin width (Fig. 4). This dependence of disorder on the device
geometry can be attributed to random variations in the width
of the center pin that arise during microfabrication. These

12 

10 

8 

6 

4 

2 

0 

10 20 30 40 50 

R
an

do
m

 D
is

or
de

r 
(M

H
z)

 

Center pin width (µm) 

FIG. 4. (Color online) Random disorder versus center pin width
for all devices. Disorder extracted from low-t devices is plotted in
black with upward pointing triangles, while disorder extracted from
high-t devices is plotted in green with downward pointing triangle.
The curve shows the difference in frequency for two resonators, one
with center pin width equal to the value on the horizontal axis and
the other with center pin width 600 nm smaller and dielectric gap
1200 nm larger. Error bars are computed from the standard deviation
of individual measurements.

variations in width result in variations in the kinetic inductance
Lk , which in turn affects the resonator frequency through the
relation

ωr = 1
2
√

(Lm + Lk)Ctot
, (4)

where Lm is the intrinsic magnetic inductance and Ctot is
the total capacitance. In normal metals, Lk is suppressed by
electron scattering but in superconductors the dc electrical
resistance is vanishing and Lk is no longer suppressed.
Although Lk is more relevant in superconductors, it is still
two orders of magnitude smaller than Lm, for the device
geometry considered here. For a single resonator, Lk typically
results in only a small shift in ωr [24,25]. For arrays of
coupled resonators, however, these small shifts can introduce
significant disorder if the kinetic inductance contributions vary
across the array.

For the small length scales used here, the sensitivity of the
kinetic inductance to variations in a decreases rapidly as the
width a is increased [26,27].

In our devices, we observe variations in the center pin width
of up to ∼600 nm and twice that for the dielectric gap, when
examining them with a scanning electron microscope. The
random disorder expected due to kinetic inductance variations
can be estimated by comparing ωr for cavities of equal
length but with widths differing by the observed 600 nm; see
Fig. 4. The random disorder observed here is consistent with
variations in device geometry and can be reduced to less than
two parts in 104 by making resonators with 40-µm-wide center
pins.

Using this strategy to reproducibly obtain devices with
small disorder, we next turn to the high-t devices. Trans-
mission spectra for all four of these devices revealed very
similar normal-mode frequencies, confirming that disorder
was small. Two representative transmission spectra are shown
in Figs. 3(d) and 3(e). For all high-t devices, the lowest-energy
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FIG. 1. (Color online) (a) Device picture of 12 capacitively
coupled resonators. The overlaid orange dashed lines have been
drawn between the coupled resonators and illustrate how the photonic
lattice sites form a single Kagomé star. Transmission was measured
between the ports labeled “Input” and “Output”. (b) and (c) Images of
symmetric three-way capacitors with low hopping rate (t/2π = 0.8
MHz) with 10- and 40−µm-wide center pins. (d) Capacitor with
high hopping rate (t/2π = 31 MHz) and 40-µm-wide center pin. (e)
Image of outer coupling capacitor (κ/2π = 0.05 MHz) for 40-µm
center pin. (f) Cross section of coplanar waveguide resonator with
center pin width a, on a dielectric substrate εr .

frequencies, and results in 12 distinct frequencies. We study
the effects of disorder by numerically diagonalizing the Hamil-
tonian for random {δi} drawn from a Gaussian distribution
with a standard deviation σ . The resulting histogram for
the number of eigenmodes N (ω)dω in a given frequency
interval [ω,ω + dω] is shown in Fig. 2 for varying amounts
of disorder σ . When σ " t , disorder is negligible and the
normal-mode frequencies are all close to those of the ideal
lattice. As σ increases and becomes larger than t , the peaks
in the distribution associated with individual normal-mode

FIG. 2. (Color online) The normal-mode histogram in the pres-
ence of disorder. Normal mode frequencies are calculated from Eq. (1)
using a set of {δi} drawn from a Gaussian distribution with standard
deviation σ . For each value of σ , this procedure is repeated 107

times. Histograms are generated from 107 disorder realizations (for
each value of σ ), and are normalized to the maximum number of
counts for clarity. For σ # t , the histogram is dominated by disorder
and forms a single Gaussian. For σ " t , the histogram shows sharp
peaks corresponding to the ideal normal-mode frequencies.

frequencies broaden and ultimately merge. Once merging
occurs, the observed mode frequencies and corresponding
modes can no longer be easily identified with the idealized
modes. In the limit of σ # t , the normal-mode histogram
approaches a single Gaussian of width σ from which the
overall disorder of individual resonator frequencies can be
extracted. For this reason, devices with a small hopping rate t
are ideal for discerning the effects of disorder.

We have fabricated and measured 25 arrays of 12 cavities
to quantify disorder and assess the feasibility of quantum
simulation in CQED lattices. By design, each coplanar
waveguide resonator had a frequency of ωr/2π ≈ 7 GHz,
and an impedance Z0 = 50 '. The devices were fabricated
using photolithography on 200 nm of Nb sputtered onto a
500−µm-thick sapphire substrate. Each device was mounted
using high-performance silver paste and then wire bonded to
a copper circuit board. Wire bonds were also used to connect
all ground planes. At the outer edges of the array, each cavity
is capacitively coupled to a transmission line, resulting in a
photon escape rate κ = 4Z2

0C
2
outω

3
r to the continuum. This

allows us to measure transmission through opposite ports
(Fig. 1) of the array using a vector network analyzer. The
unused ports were connected to 50 ' terminators, although
no significant difference was observed when the ports were
left open. Each device was cooled to a base temperature of
20 mK inside a dilution refrigerator—a necessary requirement
for future quantum simulations with small numbers of polari-
tons [7–11,23].

The set of our 25 devices, summarized in Table I, includes
samples with two distinct hopping rates of t/2π = 0.8 MHz
and t/2π = 31 MHz. These nominal values were obtained
from Eq. (2) by using values for the coupling capacitances
determined using a finite-element calculation. While the high-t
devices allow us to access t # σ and are most useful for
quantum simulation, the low-t devices are the better choice
for characterizing disorder.

We extract normal-mode frequencies from the peak posi-
tions in the measured transmission spectra [Figs. 3(a)–3(c)]
in order to determine the disorder. To account for small
systematic shifts in devices made in separate fabrication
batches, all frequencies were expressed relative to the mean
peak frequency of each spectrum. For low-t devices, not all
12 peaks are always visible. Such “missing” peaks can be due

TABLE I. Results extracted from 25 measured devices. Devices
were characterized with two different photon hopping rates t and
three different center pin widths a. The random disorder σ was
extracted from peak positions of the transmission spectrum for each
device. The disorder decreases for increasing a. The ratio σ/t is a
metric of how the normal-mode frequencies are affected by disorder.
For the 40 µm devices, σ is reduced to less that two parts in 104 of
ωr/2π . All uncertainties are computed from standard deviation of
individual measurements.

t/2π (MHz) a (µm) σ/2π (MHz) σ/t No. measured

0.8 10 9.1 ± 2.8 11.5 13
0.8 20 3.9 ± 1.2 4.9 4
0.8 40 1.4 ± 0.8 1.7 4
31 40 1.3 ± 0.3 0.04 4
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FIG. 3. (Color online) Transmission spectra for measured de-
vices. The first column shows spectra for devices with (a) t/2π =
0.8 MHz, a = 40 µm, (b) t/2π = 0.8 MHz, a = 20 µm, and (c) and
t/2π = 0.8 MHz, a = 10 µm. The width of the spectrum decreases
for increasing resonator width, demonstrating a decrease in σ . The
second column (d),(e) shows transmission spectra for two nominally
identical devices with t/2π = 31 MHz and a = 40 µm. Each scan
contains 12 well-defined peaks that are consistent between the
two devices. Peak positions are similar to those expected, when a
systematic edge effect due to the difference between inner and outer
capacitors is accounted for. The inset shows the lowest-energy mode
that is localized on the inner six resonators in the absence of disorder.

to normal-mode degeneracies (occurring in the ideal case), as
well as normal modes with small or vanishing amplitude in
either of the resonators coupled to the input or output port.

For low-t devices, analyzing the peak positions provides a
systematic method for extracting σ from a transmission mea-
surement. Specifically, the disorder strength can be extracted
from the peak positions using

σ 2 =
〈

1
n

n∑

i=1

δ2
i

〉

=
〈

1
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i=1

(
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〉
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($i − $̄i)2, (3)

where n = 12 is the number of resonators in each sample, and
$i and $dis

i denote the 12 normal-mode frequencies in the
absence and presence of disorder, respectively. $̄i and $̄dis

i

are their means (for a single disorder realization), whereas
ensemble averages over disorder realization are denoted by
〈·〉. In the disorderless case, the “variance” of the normal-mode
frequencies of the Kagomé star is 3t2.

Applying this method to samples with a standard 10 µm
width of the transmission line center pin, we find that the
disorder σ/2π = (9.1 ± 2.8) MHz is larger than expected
from resonator length variations due to finite resolution in
optical lithography. To investigate the origin of this disorder,
we fabricate devices with different widths a of the center pin,
while maintaining a constant Z0 throughout, and find that there
is a systematic dependence of disorder on a.

The magnitude of disorder decreases with increasing center
pin width (Fig. 4). This dependence of disorder on the device
geometry can be attributed to random variations in the width
of the center pin that arise during microfabrication. These
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FIG. 4. (Color online) Random disorder versus center pin width
for all devices. Disorder extracted from low-t devices is plotted in
black with upward pointing triangles, while disorder extracted from
high-t devices is plotted in green with downward pointing triangle.
The curve shows the difference in frequency for two resonators, one
with center pin width equal to the value on the horizontal axis and
the other with center pin width 600 nm smaller and dielectric gap
1200 nm larger. Error bars are computed from the standard deviation
of individual measurements.

variations in width result in variations in the kinetic inductance
Lk , which in turn affects the resonator frequency through the
relation

ωr = 1
2
√

(Lm + Lk)Ctot
, (4)

where Lm is the intrinsic magnetic inductance and Ctot is
the total capacitance. In normal metals, Lk is suppressed by
electron scattering but in superconductors the dc electrical
resistance is vanishing and Lk is no longer suppressed.
Although Lk is more relevant in superconductors, it is still
two orders of magnitude smaller than Lm, for the device
geometry considered here. For a single resonator, Lk typically
results in only a small shift in ωr [24,25]. For arrays of
coupled resonators, however, these small shifts can introduce
significant disorder if the kinetic inductance contributions vary
across the array.

For the small length scales used here, the sensitivity of the
kinetic inductance to variations in a decreases rapidly as the
width a is increased [26,27].

In our devices, we observe variations in the center pin width
of up to ∼600 nm and twice that for the dielectric gap, when
examining them with a scanning electron microscope. The
random disorder expected due to kinetic inductance variations
can be estimated by comparing ωr for cavities of equal
length but with widths differing by the observed 600 nm; see
Fig. 4. The random disorder observed here is consistent with
variations in device geometry and can be reduced to less than
two parts in 104 by making resonators with 40-µm-wide center
pins.

Using this strategy to reproducibly obtain devices with
small disorder, we next turn to the high-t devices. Trans-
mission spectra for all four of these devices revealed very
similar normal-mode frequencies, confirming that disorder
was small. Two representative transmission spectra are shown
in Figs. 3(d) and 3(e). For all high-t devices, the lowest-energy
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Figure 5.2: Left: Frequency vs length for the eight resonators of a disorder test chip.
These frequencies are fit to the two-parameter equation 3.9, shown as a black curve.
The extracted value of ✏eff is shown. The residuals of this fit shown below do not show
any trend, indicating a good fit, and the size of the residuals describe the disorder of
our fabrication process. Their standard deviation is 2.7 MHz, a disorder consistent
with the fabrication process in [9]. Right: the disorder test chip, the design being
measured in this section. Note that the shape of all eight resonators is the same,
di↵ering only by the length of the tail.

obtain an uncertainty on each resonator frequency would be to perform a fit on the

resonance and use a fit parameter uncertainty. This would yield very small error bars,

less than 1 MHz. That would accurately describe the uncertainty in the frequency

of a single realization of a resonator, but we are interested in the uncertainty of the

frequency of all the resonators fabricated with this same geometry. The fabrication

process introduces an error in the frequency much larger than the uncertainty in the

fit.

5.3 Parallel Straight Test

We now measure the parallel straight distance test chip, which aims to detect the same

e↵ect seen in section 4.3. Those simulations predict that the e↵ect of changing the
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FIG. 1. (Color online) (a) Device picture of 12 capacitively
coupled resonators. The overlaid orange dashed lines have been
drawn between the coupled resonators and illustrate how the photonic
lattice sites form a single Kagomé star. Transmission was measured
between the ports labeled “Input” and “Output”. (b) and (c) Images of
symmetric three-way capacitors with low hopping rate (t/2π = 0.8
MHz) with 10- and 40−µm-wide center pins. (d) Capacitor with
high hopping rate (t/2π = 31 MHz) and 40-µm-wide center pin. (e)
Image of outer coupling capacitor (κ/2π = 0.05 MHz) for 40-µm
center pin. (f) Cross section of coplanar waveguide resonator with
center pin width a, on a dielectric substrate εr .

frequencies, and results in 12 distinct frequencies. We study
the effects of disorder by numerically diagonalizing the Hamil-
tonian for random {δi} drawn from a Gaussian distribution
with a standard deviation σ . The resulting histogram for
the number of eigenmodes N (ω)dω in a given frequency
interval [ω,ω + dω] is shown in Fig. 2 for varying amounts
of disorder σ . When σ " t , disorder is negligible and the
normal-mode frequencies are all close to those of the ideal
lattice. As σ increases and becomes larger than t , the peaks
in the distribution associated with individual normal-mode

FIG. 2. (Color online) The normal-mode histogram in the pres-
ence of disorder. Normal mode frequencies are calculated from Eq. (1)
using a set of {δi} drawn from a Gaussian distribution with standard
deviation σ . For each value of σ , this procedure is repeated 107

times. Histograms are generated from 107 disorder realizations (for
each value of σ ), and are normalized to the maximum number of
counts for clarity. For σ # t , the histogram is dominated by disorder
and forms a single Gaussian. For σ " t , the histogram shows sharp
peaks corresponding to the ideal normal-mode frequencies.

frequencies broaden and ultimately merge. Once merging
occurs, the observed mode frequencies and corresponding
modes can no longer be easily identified with the idealized
modes. In the limit of σ # t , the normal-mode histogram
approaches a single Gaussian of width σ from which the
overall disorder of individual resonator frequencies can be
extracted. For this reason, devices with a small hopping rate t
are ideal for discerning the effects of disorder.

We have fabricated and measured 25 arrays of 12 cavities
to quantify disorder and assess the feasibility of quantum
simulation in CQED lattices. By design, each coplanar
waveguide resonator had a frequency of ωr/2π ≈ 7 GHz,
and an impedance Z0 = 50 '. The devices were fabricated
using photolithography on 200 nm of Nb sputtered onto a
500−µm-thick sapphire substrate. Each device was mounted
using high-performance silver paste and then wire bonded to
a copper circuit board. Wire bonds were also used to connect
all ground planes. At the outer edges of the array, each cavity
is capacitively coupled to a transmission line, resulting in a
photon escape rate κ = 4Z2

0C
2
outω

3
r to the continuum. This

allows us to measure transmission through opposite ports
(Fig. 1) of the array using a vector network analyzer. The
unused ports were connected to 50 ' terminators, although
no significant difference was observed when the ports were
left open. Each device was cooled to a base temperature of
20 mK inside a dilution refrigerator—a necessary requirement
for future quantum simulations with small numbers of polari-
tons [7–11,23].

The set of our 25 devices, summarized in Table I, includes
samples with two distinct hopping rates of t/2π = 0.8 MHz
and t/2π = 31 MHz. These nominal values were obtained
from Eq. (2) by using values for the coupling capacitances
determined using a finite-element calculation. While the high-t
devices allow us to access t # σ and are most useful for
quantum simulation, the low-t devices are the better choice
for characterizing disorder.

We extract normal-mode frequencies from the peak posi-
tions in the measured transmission spectra [Figs. 3(a)–3(c)]
in order to determine the disorder. To account for small
systematic shifts in devices made in separate fabrication
batches, all frequencies were expressed relative to the mean
peak frequency of each spectrum. For low-t devices, not all
12 peaks are always visible. Such “missing” peaks can be due

TABLE I. Results extracted from 25 measured devices. Devices
were characterized with two different photon hopping rates t and
three different center pin widths a. The random disorder σ was
extracted from peak positions of the transmission spectrum for each
device. The disorder decreases for increasing a. The ratio σ/t is a
metric of how the normal-mode frequencies are affected by disorder.
For the 40 µm devices, σ is reduced to less that two parts in 104 of
ωr/2π . All uncertainties are computed from standard deviation of
individual measurements.

t/2π (MHz) a (µm) σ/2π (MHz) σ/t No. measured

0.8 10 9.1 ± 2.8 11.5 13
0.8 20 3.9 ± 1.2 4.9 4
0.8 40 1.4 ± 0.8 1.7 4
31 40 1.3 ± 0.3 0.04 4
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FIG. 3. (Color online) Transmission spectra for measured de-
vices. The first column shows spectra for devices with (a) t/2π =
0.8 MHz, a = 40 µm, (b) t/2π = 0.8 MHz, a = 20 µm, and (c) and
t/2π = 0.8 MHz, a = 10 µm. The width of the spectrum decreases
for increasing resonator width, demonstrating a decrease in σ . The
second column (d),(e) shows transmission spectra for two nominally
identical devices with t/2π = 31 MHz and a = 40 µm. Each scan
contains 12 well-defined peaks that are consistent between the
two devices. Peak positions are similar to those expected, when a
systematic edge effect due to the difference between inner and outer
capacitors is accounted for. The inset shows the lowest-energy mode
that is localized on the inner six resonators in the absence of disorder.

to normal-mode degeneracies (occurring in the ideal case), as
well as normal modes with small or vanishing amplitude in
either of the resonators coupled to the input or output port.

For low-t devices, analyzing the peak positions provides a
systematic method for extracting σ from a transmission mea-
surement. Specifically, the disorder strength can be extracted
from the peak positions using

σ 2 =
〈

1
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where n = 12 is the number of resonators in each sample, and
$i and $dis

i denote the 12 normal-mode frequencies in the
absence and presence of disorder, respectively. $̄i and $̄dis

i

are their means (for a single disorder realization), whereas
ensemble averages over disorder realization are denoted by
〈·〉. In the disorderless case, the “variance” of the normal-mode
frequencies of the Kagomé star is 3t2.

Applying this method to samples with a standard 10 µm
width of the transmission line center pin, we find that the
disorder σ/2π = (9.1 ± 2.8) MHz is larger than expected
from resonator length variations due to finite resolution in
optical lithography. To investigate the origin of this disorder,
we fabricate devices with different widths a of the center pin,
while maintaining a constant Z0 throughout, and find that there
is a systematic dependence of disorder on a.

The magnitude of disorder decreases with increasing center
pin width (Fig. 4). This dependence of disorder on the device
geometry can be attributed to random variations in the width
of the center pin that arise during microfabrication. These
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FIG. 4. (Color online) Random disorder versus center pin width
for all devices. Disorder extracted from low-t devices is plotted in
black with upward pointing triangles, while disorder extracted from
high-t devices is plotted in green with downward pointing triangle.
The curve shows the difference in frequency for two resonators, one
with center pin width equal to the value on the horizontal axis and
the other with center pin width 600 nm smaller and dielectric gap
1200 nm larger. Error bars are computed from the standard deviation
of individual measurements.

variations in width result in variations in the kinetic inductance
Lk , which in turn affects the resonator frequency through the
relation

ωr = 1
2
√

(Lm + Lk)Ctot
, (4)

where Lm is the intrinsic magnetic inductance and Ctot is
the total capacitance. In normal metals, Lk is suppressed by
electron scattering but in superconductors the dc electrical
resistance is vanishing and Lk is no longer suppressed.
Although Lk is more relevant in superconductors, it is still
two orders of magnitude smaller than Lm, for the device
geometry considered here. For a single resonator, Lk typically
results in only a small shift in ωr [24,25]. For arrays of
coupled resonators, however, these small shifts can introduce
significant disorder if the kinetic inductance contributions vary
across the array.

For the small length scales used here, the sensitivity of the
kinetic inductance to variations in a decreases rapidly as the
width a is increased [26,27].

In our devices, we observe variations in the center pin width
of up to ∼600 nm and twice that for the dielectric gap, when
examining them with a scanning electron microscope. The
random disorder expected due to kinetic inductance variations
can be estimated by comparing ωr for cavities of equal
length but with widths differing by the observed 600 nm; see
Fig. 4. The random disorder observed here is consistent with
variations in device geometry and can be reduced to less than
two parts in 104 by making resonators with 40-µm-wide center
pins.

Using this strategy to reproducibly obtain devices with
small disorder, we next turn to the high-t devices. Trans-
mission spectra for all four of these devices revealed very
similar normal-mode frequencies, confirming that disorder
was small. Two representative transmission spectra are shown
in Figs. 3(d) and 3(e). For all high-t devices, the lowest-energy
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Figure 5.2: Left: Frequency vs length for the eight resonators of a disorder test chip.
These frequencies are fit to the two-parameter equation 3.9, shown as a black curve.
The extracted value of ✏eff is shown. The residuals of this fit shown below do not show
any trend, indicating a good fit, and the size of the residuals describe the disorder of
our fabrication process. Their standard deviation is 2.7 MHz, a disorder consistent
with the fabrication process in [9]. Right: the disorder test chip, the design being
measured in this section. Note that the shape of all eight resonators is the same,
di↵ering only by the length of the tail.

obtain an uncertainty on each resonator frequency would be to perform a fit on the

resonance and use a fit parameter uncertainty. This would yield very small error bars,

less than 1 MHz. That would accurately describe the uncertainty in the frequency

of a single realization of a resonator, but we are interested in the uncertainty of the

frequency of all the resonators fabricated with this same geometry. The fabrication

process introduces an error in the frequency much larger than the uncertainty in the

fit.

5.3 Parallel Straight Test

We now measure the parallel straight distance test chip, which aims to detect the same

e↵ect seen in section 4.3. Those simulations predict that the e↵ect of changing the
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Figure 5.1: Left: a wide scan of eight hanger resonators. The resonators have linearly
spaced nominal lengths, resulting in a larger frequency di↵erence between the higher-
frequency resonators. Right: a close-up of a single resonance, taken to precisely
determine the frequency of this resonance. Note that the depth of the resonance
appears greater on the close-up, this is from sparse frequency sampling on the wide
scan missing the lowest point. The 8 dips here correspond to the eight resonators
seen in figure 5.2.

5.2 Disorder Test

The control chip is called the disorder test chip, because it will tell us about the

disorder in our fabrication process. These resonator geometries di↵er only in the

length of their “tails,” whose lengths are spaced evenly between 3.7mm and 4.75mm

in increments of 150µm. Since there are no changes to the shape of each resonator

other than length we expect equation 3.9 to describe their frequencies well, and we

will compare the frequencies of the resonators from other chips to this fit.

The disorder seen here is the result of small variations in the fabrication process

across a single chip, resulting in unpredictable frequency shifts. The authors of ref-

erence [9] reported a disorder of 2 parts in 104 for their fabrication process, which

corresponds to shifts of 1.5 MHz on a 7.5GHz resonator. Our disorder of 2.7MHz is

less than a factor of two greater.

For the remaining experimental data we will take the frequency of lowest trans-

mission to be the resonant frequency, and use the value of 2.7MHz from the disorder

test chip as the uncertainty in the frequency of all the resonators. Another way to
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FIG. 1. (Color online) (a) Device picture of 12 capacitively
coupled resonators. The overlaid orange dashed lines have been
drawn between the coupled resonators and illustrate how the photonic
lattice sites form a single Kagomé star. Transmission was measured
between the ports labeled “Input” and “Output”. (b) and (c) Images of
symmetric three-way capacitors with low hopping rate (t/2π = 0.8
MHz) with 10- and 40−µm-wide center pins. (d) Capacitor with
high hopping rate (t/2π = 31 MHz) and 40-µm-wide center pin. (e)
Image of outer coupling capacitor (κ/2π = 0.05 MHz) for 40-µm
center pin. (f) Cross section of coplanar waveguide resonator with
center pin width a, on a dielectric substrate εr .

frequencies, and results in 12 distinct frequencies. We study
the effects of disorder by numerically diagonalizing the Hamil-
tonian for random {δi} drawn from a Gaussian distribution
with a standard deviation σ . The resulting histogram for
the number of eigenmodes N (ω)dω in a given frequency
interval [ω,ω + dω] is shown in Fig. 2 for varying amounts
of disorder σ . When σ " t , disorder is negligible and the
normal-mode frequencies are all close to those of the ideal
lattice. As σ increases and becomes larger than t , the peaks
in the distribution associated with individual normal-mode

FIG. 2. (Color online) The normal-mode histogram in the pres-
ence of disorder. Normal mode frequencies are calculated from Eq. (1)
using a set of {δi} drawn from a Gaussian distribution with standard
deviation σ . For each value of σ , this procedure is repeated 107

times. Histograms are generated from 107 disorder realizations (for
each value of σ ), and are normalized to the maximum number of
counts for clarity. For σ # t , the histogram is dominated by disorder
and forms a single Gaussian. For σ " t , the histogram shows sharp
peaks corresponding to the ideal normal-mode frequencies.

frequencies broaden and ultimately merge. Once merging
occurs, the observed mode frequencies and corresponding
modes can no longer be easily identified with the idealized
modes. In the limit of σ # t , the normal-mode histogram
approaches a single Gaussian of width σ from which the
overall disorder of individual resonator frequencies can be
extracted. For this reason, devices with a small hopping rate t
are ideal for discerning the effects of disorder.

We have fabricated and measured 25 arrays of 12 cavities
to quantify disorder and assess the feasibility of quantum
simulation in CQED lattices. By design, each coplanar
waveguide resonator had a frequency of ωr/2π ≈ 7 GHz,
and an impedance Z0 = 50 '. The devices were fabricated
using photolithography on 200 nm of Nb sputtered onto a
500−µm-thick sapphire substrate. Each device was mounted
using high-performance silver paste and then wire bonded to
a copper circuit board. Wire bonds were also used to connect
all ground planes. At the outer edges of the array, each cavity
is capacitively coupled to a transmission line, resulting in a
photon escape rate κ = 4Z2

0C
2
outω

3
r to the continuum. This

allows us to measure transmission through opposite ports
(Fig. 1) of the array using a vector network analyzer. The
unused ports were connected to 50 ' terminators, although
no significant difference was observed when the ports were
left open. Each device was cooled to a base temperature of
20 mK inside a dilution refrigerator—a necessary requirement
for future quantum simulations with small numbers of polari-
tons [7–11,23].

The set of our 25 devices, summarized in Table I, includes
samples with two distinct hopping rates of t/2π = 0.8 MHz
and t/2π = 31 MHz. These nominal values were obtained
from Eq. (2) by using values for the coupling capacitances
determined using a finite-element calculation. While the high-t
devices allow us to access t # σ and are most useful for
quantum simulation, the low-t devices are the better choice
for characterizing disorder.

We extract normal-mode frequencies from the peak posi-
tions in the measured transmission spectra [Figs. 3(a)–3(c)]
in order to determine the disorder. To account for small
systematic shifts in devices made in separate fabrication
batches, all frequencies were expressed relative to the mean
peak frequency of each spectrum. For low-t devices, not all
12 peaks are always visible. Such “missing” peaks can be due

TABLE I. Results extracted from 25 measured devices. Devices
were characterized with two different photon hopping rates t and
three different center pin widths a. The random disorder σ was
extracted from peak positions of the transmission spectrum for each
device. The disorder decreases for increasing a. The ratio σ/t is a
metric of how the normal-mode frequencies are affected by disorder.
For the 40 µm devices, σ is reduced to less that two parts in 104 of
ωr/2π . All uncertainties are computed from standard deviation of
individual measurements.

t/2π (MHz) a (µm) σ/2π (MHz) σ/t No. measured

0.8 10 9.1 ± 2.8 11.5 13
0.8 20 3.9 ± 1.2 4.9 4
0.8 40 1.4 ± 0.8 1.7 4
31 40 1.3 ± 0.3 0.04 4
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FIG. 3. (Color online) Transmission spectra for measured de-
vices. The first column shows spectra for devices with (a) t/2π =
0.8 MHz, a = 40 µm, (b) t/2π = 0.8 MHz, a = 20 µm, and (c) and
t/2π = 0.8 MHz, a = 10 µm. The width of the spectrum decreases
for increasing resonator width, demonstrating a decrease in σ . The
second column (d),(e) shows transmission spectra for two nominally
identical devices with t/2π = 31 MHz and a = 40 µm. Each scan
contains 12 well-defined peaks that are consistent between the
two devices. Peak positions are similar to those expected, when a
systematic edge effect due to the difference between inner and outer
capacitors is accounted for. The inset shows the lowest-energy mode
that is localized on the inner six resonators in the absence of disorder.

to normal-mode degeneracies (occurring in the ideal case), as
well as normal modes with small or vanishing amplitude in
either of the resonators coupled to the input or output port.

For low-t devices, analyzing the peak positions provides a
systematic method for extracting σ from a transmission mea-
surement. Specifically, the disorder strength can be extracted
from the peak positions using

σ 2 =
〈

1
n

n∑

i=1

δ2
i

〉

=
〈

1
n

n∑

i=1

(
$dis

i − $̄dis
i

)2

〉

− 1
n

n∑

i=1

($i − $̄i)2, (3)

where n = 12 is the number of resonators in each sample, and
$i and $dis

i denote the 12 normal-mode frequencies in the
absence and presence of disorder, respectively. $̄i and $̄dis

i

are their means (for a single disorder realization), whereas
ensemble averages over disorder realization are denoted by
〈·〉. In the disorderless case, the “variance” of the normal-mode
frequencies of the Kagomé star is 3t2.

Applying this method to samples with a standard 10 µm
width of the transmission line center pin, we find that the
disorder σ/2π = (9.1 ± 2.8) MHz is larger than expected
from resonator length variations due to finite resolution in
optical lithography. To investigate the origin of this disorder,
we fabricate devices with different widths a of the center pin,
while maintaining a constant Z0 throughout, and find that there
is a systematic dependence of disorder on a.

The magnitude of disorder decreases with increasing center
pin width (Fig. 4). This dependence of disorder on the device
geometry can be attributed to random variations in the width
of the center pin that arise during microfabrication. These
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FIG. 4. (Color online) Random disorder versus center pin width
for all devices. Disorder extracted from low-t devices is plotted in
black with upward pointing triangles, while disorder extracted from
high-t devices is plotted in green with downward pointing triangle.
The curve shows the difference in frequency for two resonators, one
with center pin width equal to the value on the horizontal axis and
the other with center pin width 600 nm smaller and dielectric gap
1200 nm larger. Error bars are computed from the standard deviation
of individual measurements.

variations in width result in variations in the kinetic inductance
Lk , which in turn affects the resonator frequency through the
relation

ωr = 1
2
√

(Lm + Lk)Ctot
, (4)

where Lm is the intrinsic magnetic inductance and Ctot is
the total capacitance. In normal metals, Lk is suppressed by
electron scattering but in superconductors the dc electrical
resistance is vanishing and Lk is no longer suppressed.
Although Lk is more relevant in superconductors, it is still
two orders of magnitude smaller than Lm, for the device
geometry considered here. For a single resonator, Lk typically
results in only a small shift in ωr [24,25]. For arrays of
coupled resonators, however, these small shifts can introduce
significant disorder if the kinetic inductance contributions vary
across the array.

For the small length scales used here, the sensitivity of the
kinetic inductance to variations in a decreases rapidly as the
width a is increased [26,27].

In our devices, we observe variations in the center pin width
of up to ∼600 nm and twice that for the dielectric gap, when
examining them with a scanning electron microscope. The
random disorder expected due to kinetic inductance variations
can be estimated by comparing ωr for cavities of equal
length but with widths differing by the observed 600 nm; see
Fig. 4. The random disorder observed here is consistent with
variations in device geometry and can be reduced to less than
two parts in 104 by making resonators with 40-µm-wide center
pins.

Using this strategy to reproducibly obtain devices with
small disorder, we next turn to the high-t devices. Trans-
mission spectra for all four of these devices revealed very
similar normal-mode frequencies, confirming that disorder
was small. Two representative transmission spectra are shown
in Figs. 3(d) and 3(e). For all high-t devices, the lowest-energy
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Figure 5.2: Left: Frequency vs length for the eight resonators of a disorder test chip.
These frequencies are fit to the two-parameter equation 3.9, shown as a black curve.
The extracted value of ✏eff is shown. The residuals of this fit shown below do not show
any trend, indicating a good fit, and the size of the residuals describe the disorder of
our fabrication process. Their standard deviation is 2.7 MHz, a disorder consistent
with the fabrication process in [9]. Right: the disorder test chip, the design being
measured in this section. Note that the shape of all eight resonators is the same,
di↵ering only by the length of the tail.

obtain an uncertainty on each resonator frequency would be to perform a fit on the

resonance and use a fit parameter uncertainty. This would yield very small error bars,

less than 1 MHz. That would accurately describe the uncertainty in the frequency

of a single realization of a resonator, but we are interested in the uncertainty of the

frequency of all the resonators fabricated with this same geometry. The fabrication

process introduces an error in the frequency much larger than the uncertainty in the

fit.

5.3 Parallel Straight Test

We now measure the parallel straight distance test chip, which aims to detect the same

e↵ect seen in section 4.3. Those simulations predict that the e↵ect of changing the
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Figure 5.1: Left: a wide scan of eight hanger resonators. The resonators have linearly
spaced nominal lengths, resulting in a larger frequency di↵erence between the higher-
frequency resonators. Right: a close-up of a single resonance, taken to precisely
determine the frequency of this resonance. Note that the depth of the resonance
appears greater on the close-up, this is from sparse frequency sampling on the wide
scan missing the lowest point. The 8 dips here correspond to the eight resonators
seen in figure 5.2.

5.2 Disorder Test

The control chip is called the disorder test chip, because it will tell us about the

disorder in our fabrication process. These resonator geometries di↵er only in the

length of their “tails,” whose lengths are spaced evenly between 3.7mm and 4.75mm

in increments of 150µm. Since there are no changes to the shape of each resonator

other than length we expect equation 3.9 to describe their frequencies well, and we

will compare the frequencies of the resonators from other chips to this fit.

The disorder seen here is the result of small variations in the fabrication process

across a single chip, resulting in unpredictable frequency shifts. The authors of ref-

erence [9] reported a disorder of 2 parts in 104 for their fabrication process, which

corresponds to shifts of 1.5 MHz on a 7.5GHz resonator. Our disorder of 2.7MHz is

less than a factor of two greater.

For the remaining experimental data we will take the frequency of lowest trans-

mission to be the resonant frequency, and use the value of 2.7MHz from the disorder

test chip as the uncertainty in the frequency of all the resonators. Another way to
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FIG. 1. (Color online) (a) Device picture of 12 capacitively
coupled resonators. The overlaid orange dashed lines have been
drawn between the coupled resonators and illustrate how the photonic
lattice sites form a single Kagomé star. Transmission was measured
between the ports labeled “Input” and “Output”. (b) and (c) Images of
symmetric three-way capacitors with low hopping rate (t/2π = 0.8
MHz) with 10- and 40−µm-wide center pins. (d) Capacitor with
high hopping rate (t/2π = 31 MHz) and 40-µm-wide center pin. (e)
Image of outer coupling capacitor (κ/2π = 0.05 MHz) for 40-µm
center pin. (f) Cross section of coplanar waveguide resonator with
center pin width a, on a dielectric substrate εr .

frequencies, and results in 12 distinct frequencies. We study
the effects of disorder by numerically diagonalizing the Hamil-
tonian for random {δi} drawn from a Gaussian distribution
with a standard deviation σ . The resulting histogram for
the number of eigenmodes N (ω)dω in a given frequency
interval [ω,ω + dω] is shown in Fig. 2 for varying amounts
of disorder σ . When σ " t , disorder is negligible and the
normal-mode frequencies are all close to those of the ideal
lattice. As σ increases and becomes larger than t , the peaks
in the distribution associated with individual normal-mode

FIG. 2. (Color online) The normal-mode histogram in the pres-
ence of disorder. Normal mode frequencies are calculated from Eq. (1)
using a set of {δi} drawn from a Gaussian distribution with standard
deviation σ . For each value of σ , this procedure is repeated 107

times. Histograms are generated from 107 disorder realizations (for
each value of σ ), and are normalized to the maximum number of
counts for clarity. For σ # t , the histogram is dominated by disorder
and forms a single Gaussian. For σ " t , the histogram shows sharp
peaks corresponding to the ideal normal-mode frequencies.

frequencies broaden and ultimately merge. Once merging
occurs, the observed mode frequencies and corresponding
modes can no longer be easily identified with the idealized
modes. In the limit of σ # t , the normal-mode histogram
approaches a single Gaussian of width σ from which the
overall disorder of individual resonator frequencies can be
extracted. For this reason, devices with a small hopping rate t
are ideal for discerning the effects of disorder.

We have fabricated and measured 25 arrays of 12 cavities
to quantify disorder and assess the feasibility of quantum
simulation in CQED lattices. By design, each coplanar
waveguide resonator had a frequency of ωr/2π ≈ 7 GHz,
and an impedance Z0 = 50 '. The devices were fabricated
using photolithography on 200 nm of Nb sputtered onto a
500−µm-thick sapphire substrate. Each device was mounted
using high-performance silver paste and then wire bonded to
a copper circuit board. Wire bonds were also used to connect
all ground planes. At the outer edges of the array, each cavity
is capacitively coupled to a transmission line, resulting in a
photon escape rate κ = 4Z2

0C
2
outω

3
r to the continuum. This

allows us to measure transmission through opposite ports
(Fig. 1) of the array using a vector network analyzer. The
unused ports were connected to 50 ' terminators, although
no significant difference was observed when the ports were
left open. Each device was cooled to a base temperature of
20 mK inside a dilution refrigerator—a necessary requirement
for future quantum simulations with small numbers of polari-
tons [7–11,23].

The set of our 25 devices, summarized in Table I, includes
samples with two distinct hopping rates of t/2π = 0.8 MHz
and t/2π = 31 MHz. These nominal values were obtained
from Eq. (2) by using values for the coupling capacitances
determined using a finite-element calculation. While the high-t
devices allow us to access t # σ and are most useful for
quantum simulation, the low-t devices are the better choice
for characterizing disorder.

We extract normal-mode frequencies from the peak posi-
tions in the measured transmission spectra [Figs. 3(a)–3(c)]
in order to determine the disorder. To account for small
systematic shifts in devices made in separate fabrication
batches, all frequencies were expressed relative to the mean
peak frequency of each spectrum. For low-t devices, not all
12 peaks are always visible. Such “missing” peaks can be due

TABLE I. Results extracted from 25 measured devices. Devices
were characterized with two different photon hopping rates t and
three different center pin widths a. The random disorder σ was
extracted from peak positions of the transmission spectrum for each
device. The disorder decreases for increasing a. The ratio σ/t is a
metric of how the normal-mode frequencies are affected by disorder.
For the 40 µm devices, σ is reduced to less that two parts in 104 of
ωr/2π . All uncertainties are computed from standard deviation of
individual measurements.

t/2π (MHz) a (µm) σ/2π (MHz) σ/t No. measured

0.8 10 9.1 ± 2.8 11.5 13
0.8 20 3.9 ± 1.2 4.9 4
0.8 40 1.4 ± 0.8 1.7 4
31 40 1.3 ± 0.3 0.04 4
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FIG. 3. (Color online) Transmission spectra for measured de-
vices. The first column shows spectra for devices with (a) t/2π =
0.8 MHz, a = 40 µm, (b) t/2π = 0.8 MHz, a = 20 µm, and (c) and
t/2π = 0.8 MHz, a = 10 µm. The width of the spectrum decreases
for increasing resonator width, demonstrating a decrease in σ . The
second column (d),(e) shows transmission spectra for two nominally
identical devices with t/2π = 31 MHz and a = 40 µm. Each scan
contains 12 well-defined peaks that are consistent between the
two devices. Peak positions are similar to those expected, when a
systematic edge effect due to the difference between inner and outer
capacitors is accounted for. The inset shows the lowest-energy mode
that is localized on the inner six resonators in the absence of disorder.

to normal-mode degeneracies (occurring in the ideal case), as
well as normal modes with small or vanishing amplitude in
either of the resonators coupled to the input or output port.

For low-t devices, analyzing the peak positions provides a
systematic method for extracting σ from a transmission mea-
surement. Specifically, the disorder strength can be extracted
from the peak positions using

σ 2 =
〈

1
n
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where n = 12 is the number of resonators in each sample, and
$i and $dis

i denote the 12 normal-mode frequencies in the
absence and presence of disorder, respectively. $̄i and $̄dis

i

are their means (for a single disorder realization), whereas
ensemble averages over disorder realization are denoted by
〈·〉. In the disorderless case, the “variance” of the normal-mode
frequencies of the Kagomé star is 3t2.

Applying this method to samples with a standard 10 µm
width of the transmission line center pin, we find that the
disorder σ/2π = (9.1 ± 2.8) MHz is larger than expected
from resonator length variations due to finite resolution in
optical lithography. To investigate the origin of this disorder,
we fabricate devices with different widths a of the center pin,
while maintaining a constant Z0 throughout, and find that there
is a systematic dependence of disorder on a.

The magnitude of disorder decreases with increasing center
pin width (Fig. 4). This dependence of disorder on the device
geometry can be attributed to random variations in the width
of the center pin that arise during microfabrication. These
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FIG. 4. (Color online) Random disorder versus center pin width
for all devices. Disorder extracted from low-t devices is plotted in
black with upward pointing triangles, while disorder extracted from
high-t devices is plotted in green with downward pointing triangle.
The curve shows the difference in frequency for two resonators, one
with center pin width equal to the value on the horizontal axis and
the other with center pin width 600 nm smaller and dielectric gap
1200 nm larger. Error bars are computed from the standard deviation
of individual measurements.

variations in width result in variations in the kinetic inductance
Lk , which in turn affects the resonator frequency through the
relation

ωr = 1
2
√

(Lm + Lk)Ctot
, (4)

where Lm is the intrinsic magnetic inductance and Ctot is
the total capacitance. In normal metals, Lk is suppressed by
electron scattering but in superconductors the dc electrical
resistance is vanishing and Lk is no longer suppressed.
Although Lk is more relevant in superconductors, it is still
two orders of magnitude smaller than Lm, for the device
geometry considered here. For a single resonator, Lk typically
results in only a small shift in ωr [24,25]. For arrays of
coupled resonators, however, these small shifts can introduce
significant disorder if the kinetic inductance contributions vary
across the array.

For the small length scales used here, the sensitivity of the
kinetic inductance to variations in a decreases rapidly as the
width a is increased [26,27].

In our devices, we observe variations in the center pin width
of up to ∼600 nm and twice that for the dielectric gap, when
examining them with a scanning electron microscope. The
random disorder expected due to kinetic inductance variations
can be estimated by comparing ωr for cavities of equal
length but with widths differing by the observed 600 nm; see
Fig. 4. The random disorder observed here is consistent with
variations in device geometry and can be reduced to less than
two parts in 104 by making resonators with 40-µm-wide center
pins.

Using this strategy to reproducibly obtain devices with
small disorder, we next turn to the high-t devices. Trans-
mission spectra for all four of these devices revealed very
similar normal-mode frequencies, confirming that disorder
was small. Two representative transmission spectra are shown
in Figs. 3(d) and 3(e). For all high-t devices, the lowest-energy
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Figure 5.2: Left: Frequency vs length for the eight resonators of a disorder test chip.
These frequencies are fit to the two-parameter equation 3.9, shown as a black curve.
The extracted value of ✏eff is shown. The residuals of this fit shown below do not show
any trend, indicating a good fit, and the size of the residuals describe the disorder of
our fabrication process. Their standard deviation is 2.7 MHz, a disorder consistent
with the fabrication process in [9]. Right: the disorder test chip, the design being
measured in this section. Note that the shape of all eight resonators is the same,
di↵ering only by the length of the tail.

obtain an uncertainty on each resonator frequency would be to perform a fit on the

resonance and use a fit parameter uncertainty. This would yield very small error bars,

less than 1 MHz. That would accurately describe the uncertainty in the frequency

of a single realization of a resonator, but we are interested in the uncertainty of the

frequency of all the resonators fabricated with this same geometry. The fabrication

process introduces an error in the frequency much larger than the uncertainty in the

fit.

5.3 Parallel Straight Test

We now measure the parallel straight distance test chip, which aims to detect the same

e↵ect seen in section 4.3. Those simulations predict that the e↵ect of changing the
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Figure 5.1: Left: a wide scan of eight hanger resonators. The resonators have linearly
spaced nominal lengths, resulting in a larger frequency di↵erence between the higher-
frequency resonators. Right: a close-up of a single resonance, taken to precisely
determine the frequency of this resonance. Note that the depth of the resonance
appears greater on the close-up, this is from sparse frequency sampling on the wide
scan missing the lowest point. The 8 dips here correspond to the eight resonators
seen in figure 5.2.

5.2 Disorder Test

The control chip is called the disorder test chip, because it will tell us about the

disorder in our fabrication process. These resonator geometries di↵er only in the

length of their “tails,” whose lengths are spaced evenly between 3.7mm and 4.75mm

in increments of 150µm. Since there are no changes to the shape of each resonator

other than length we expect equation 3.9 to describe their frequencies well, and we

will compare the frequencies of the resonators from other chips to this fit.

The disorder seen here is the result of small variations in the fabrication process

across a single chip, resulting in unpredictable frequency shifts. The authors of ref-

erence [9] reported a disorder of 2 parts in 104 for their fabrication process, which

corresponds to shifts of 1.5 MHz on a 7.5GHz resonator. Our disorder of 2.7MHz is

less than a factor of two greater.

For the remaining experimental data we will take the frequency of lowest trans-

mission to be the resonant frequency, and use the value of 2.7MHz from the disorder

test chip as the uncertainty in the frequency of all the resonators. Another way to
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FIG. 1. (Color online) (a) Device picture of 12 capacitively
coupled resonators. The overlaid orange dashed lines have been
drawn between the coupled resonators and illustrate how the photonic
lattice sites form a single Kagomé star. Transmission was measured
between the ports labeled “Input” and “Output”. (b) and (c) Images of
symmetric three-way capacitors with low hopping rate (t/2π = 0.8
MHz) with 10- and 40−µm-wide center pins. (d) Capacitor with
high hopping rate (t/2π = 31 MHz) and 40-µm-wide center pin. (e)
Image of outer coupling capacitor (κ/2π = 0.05 MHz) for 40-µm
center pin. (f) Cross section of coplanar waveguide resonator with
center pin width a, on a dielectric substrate εr .

frequencies, and results in 12 distinct frequencies. We study
the effects of disorder by numerically diagonalizing the Hamil-
tonian for random {δi} drawn from a Gaussian distribution
with a standard deviation σ . The resulting histogram for
the number of eigenmodes N (ω)dω in a given frequency
interval [ω,ω + dω] is shown in Fig. 2 for varying amounts
of disorder σ . When σ " t , disorder is negligible and the
normal-mode frequencies are all close to those of the ideal
lattice. As σ increases and becomes larger than t , the peaks
in the distribution associated with individual normal-mode

FIG. 2. (Color online) The normal-mode histogram in the pres-
ence of disorder. Normal mode frequencies are calculated from Eq. (1)
using a set of {δi} drawn from a Gaussian distribution with standard
deviation σ . For each value of σ , this procedure is repeated 107

times. Histograms are generated from 107 disorder realizations (for
each value of σ ), and are normalized to the maximum number of
counts for clarity. For σ # t , the histogram is dominated by disorder
and forms a single Gaussian. For σ " t , the histogram shows sharp
peaks corresponding to the ideal normal-mode frequencies.

frequencies broaden and ultimately merge. Once merging
occurs, the observed mode frequencies and corresponding
modes can no longer be easily identified with the idealized
modes. In the limit of σ # t , the normal-mode histogram
approaches a single Gaussian of width σ from which the
overall disorder of individual resonator frequencies can be
extracted. For this reason, devices with a small hopping rate t
are ideal for discerning the effects of disorder.

We have fabricated and measured 25 arrays of 12 cavities
to quantify disorder and assess the feasibility of quantum
simulation in CQED lattices. By design, each coplanar
waveguide resonator had a frequency of ωr/2π ≈ 7 GHz,
and an impedance Z0 = 50 '. The devices were fabricated
using photolithography on 200 nm of Nb sputtered onto a
500−µm-thick sapphire substrate. Each device was mounted
using high-performance silver paste and then wire bonded to
a copper circuit board. Wire bonds were also used to connect
all ground planes. At the outer edges of the array, each cavity
is capacitively coupled to a transmission line, resulting in a
photon escape rate κ = 4Z2

0C
2
outω

3
r to the continuum. This

allows us to measure transmission through opposite ports
(Fig. 1) of the array using a vector network analyzer. The
unused ports were connected to 50 ' terminators, although
no significant difference was observed when the ports were
left open. Each device was cooled to a base temperature of
20 mK inside a dilution refrigerator—a necessary requirement
for future quantum simulations with small numbers of polari-
tons [7–11,23].

The set of our 25 devices, summarized in Table I, includes
samples with two distinct hopping rates of t/2π = 0.8 MHz
and t/2π = 31 MHz. These nominal values were obtained
from Eq. (2) by using values for the coupling capacitances
determined using a finite-element calculation. While the high-t
devices allow us to access t # σ and are most useful for
quantum simulation, the low-t devices are the better choice
for characterizing disorder.

We extract normal-mode frequencies from the peak posi-
tions in the measured transmission spectra [Figs. 3(a)–3(c)]
in order to determine the disorder. To account for small
systematic shifts in devices made in separate fabrication
batches, all frequencies were expressed relative to the mean
peak frequency of each spectrum. For low-t devices, not all
12 peaks are always visible. Such “missing” peaks can be due

TABLE I. Results extracted from 25 measured devices. Devices
were characterized with two different photon hopping rates t and
three different center pin widths a. The random disorder σ was
extracted from peak positions of the transmission spectrum for each
device. The disorder decreases for increasing a. The ratio σ/t is a
metric of how the normal-mode frequencies are affected by disorder.
For the 40 µm devices, σ is reduced to less that two parts in 104 of
ωr/2π . All uncertainties are computed from standard deviation of
individual measurements.

t/2π (MHz) a (µm) σ/2π (MHz) σ/t No. measured

0.8 10 9.1 ± 2.8 11.5 13
0.8 20 3.9 ± 1.2 4.9 4
0.8 40 1.4 ± 0.8 1.7 4
31 40 1.3 ± 0.3 0.04 4
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(a)
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FIG. 3. (Color online) Transmission spectra for measured de-
vices. The first column shows spectra for devices with (a) t/2π =
0.8 MHz, a = 40 µm, (b) t/2π = 0.8 MHz, a = 20 µm, and (c) and
t/2π = 0.8 MHz, a = 10 µm. The width of the spectrum decreases
for increasing resonator width, demonstrating a decrease in σ . The
second column (d),(e) shows transmission spectra for two nominally
identical devices with t/2π = 31 MHz and a = 40 µm. Each scan
contains 12 well-defined peaks that are consistent between the
two devices. Peak positions are similar to those expected, when a
systematic edge effect due to the difference between inner and outer
capacitors is accounted for. The inset shows the lowest-energy mode
that is localized on the inner six resonators in the absence of disorder.

to normal-mode degeneracies (occurring in the ideal case), as
well as normal modes with small or vanishing amplitude in
either of the resonators coupled to the input or output port.

For low-t devices, analyzing the peak positions provides a
systematic method for extracting σ from a transmission mea-
surement. Specifically, the disorder strength can be extracted
from the peak positions using

σ 2 =
〈

1
n

n∑

i=1

δ2
i

〉

=
〈

1
n

n∑

i=1

(
$dis

i − $̄dis
i

)2

〉

− 1
n

n∑

i=1

($i − $̄i)2, (3)

where n = 12 is the number of resonators in each sample, and
$i and $dis

i denote the 12 normal-mode frequencies in the
absence and presence of disorder, respectively. $̄i and $̄dis

i

are their means (for a single disorder realization), whereas
ensemble averages over disorder realization are denoted by
〈·〉. In the disorderless case, the “variance” of the normal-mode
frequencies of the Kagomé star is 3t2.

Applying this method to samples with a standard 10 µm
width of the transmission line center pin, we find that the
disorder σ/2π = (9.1 ± 2.8) MHz is larger than expected
from resonator length variations due to finite resolution in
optical lithography. To investigate the origin of this disorder,
we fabricate devices with different widths a of the center pin,
while maintaining a constant Z0 throughout, and find that there
is a systematic dependence of disorder on a.

The magnitude of disorder decreases with increasing center
pin width (Fig. 4). This dependence of disorder on the device
geometry can be attributed to random variations in the width
of the center pin that arise during microfabrication. These
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FIG. 4. (Color online) Random disorder versus center pin width
for all devices. Disorder extracted from low-t devices is plotted in
black with upward pointing triangles, while disorder extracted from
high-t devices is plotted in green with downward pointing triangle.
The curve shows the difference in frequency for two resonators, one
with center pin width equal to the value on the horizontal axis and
the other with center pin width 600 nm smaller and dielectric gap
1200 nm larger. Error bars are computed from the standard deviation
of individual measurements.

variations in width result in variations in the kinetic inductance
Lk , which in turn affects the resonator frequency through the
relation

ωr = 1
2
√

(Lm + Lk)Ctot
, (4)

where Lm is the intrinsic magnetic inductance and Ctot is
the total capacitance. In normal metals, Lk is suppressed by
electron scattering but in superconductors the dc electrical
resistance is vanishing and Lk is no longer suppressed.
Although Lk is more relevant in superconductors, it is still
two orders of magnitude smaller than Lm, for the device
geometry considered here. For a single resonator, Lk typically
results in only a small shift in ωr [24,25]. For arrays of
coupled resonators, however, these small shifts can introduce
significant disorder if the kinetic inductance contributions vary
across the array.

For the small length scales used here, the sensitivity of the
kinetic inductance to variations in a decreases rapidly as the
width a is increased [26,27].

In our devices, we observe variations in the center pin width
of up to ∼600 nm and twice that for the dielectric gap, when
examining them with a scanning electron microscope. The
random disorder expected due to kinetic inductance variations
can be estimated by comparing ωr for cavities of equal
length but with widths differing by the observed 600 nm; see
Fig. 4. The random disorder observed here is consistent with
variations in device geometry and can be reduced to less than
two parts in 104 by making resonators with 40-µm-wide center
pins.

Using this strategy to reproducibly obtain devices with
small disorder, we next turn to the high-t devices. Trans-
mission spectra for all four of these devices revealed very
similar normal-mode frequencies, confirming that disorder
was small. Two representative transmission spectra are shown
in Figs. 3(d) and 3(e). For all high-t devices, the lowest-energy
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Figure 5.2: Left: Frequency vs length for the eight resonators of a disorder test chip.
These frequencies are fit to the two-parameter equation 3.9, shown as a black curve.
The extracted value of ✏eff is shown. The residuals of this fit shown below do not show
any trend, indicating a good fit, and the size of the residuals describe the disorder of
our fabrication process. Their standard deviation is 2.7 MHz, a disorder consistent
with the fabrication process in [9]. Right: the disorder test chip, the design being
measured in this section. Note that the shape of all eight resonators is the same,
di↵ering only by the length of the tail.

obtain an uncertainty on each resonator frequency would be to perform a fit on the

resonance and use a fit parameter uncertainty. This would yield very small error bars,

less than 1 MHz. That would accurately describe the uncertainty in the frequency

of a single realization of a resonator, but we are interested in the uncertainty of the

frequency of all the resonators fabricated with this same geometry. The fabrication

process introduces an error in the frequency much larger than the uncertainty in the

fit.

5.3 Parallel Straight Test

We now measure the parallel straight distance test chip, which aims to detect the same

e↵ect seen in section 4.3. Those simulations predict that the e↵ect of changing the
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The extracted value of ✏eff is shown. The residuals of this fit shown below do not show
any trend, indicating a good fit, and the size of the residuals describe the disorder of
our fabrication process. Their standard deviation is 2.7 MHz, a disorder consistent
with the fabrication process in [9]. Right: the disorder test chip, the design being
measured in this section. Note that the shape of all eight resonators is the same,
di↵ering only by the length of the tail.

obtain an uncertainty on each resonator frequency would be to perform a fit on the

resonance and use a fit parameter uncertainty. This would yield very small error bars,

less than 1 MHz. That would accurately describe the uncertainty in the frequency

of a single realization of a resonator, but we are interested in the uncertainty of the

frequency of all the resonators fabricated with this same geometry. The fabrication

process introduces an error in the frequency much larger than the uncertainty in the

fit.

5.3 Parallel Straight Test

We now measure the parallel straight distance test chip, which aims to detect the same

e↵ect seen in section 4.3. Those simulations predict that the e↵ect of changing the
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Figure 5.1: Left: a wide scan of eight hanger resonators. The resonators have linearly
spaced nominal lengths, resulting in a larger frequency di↵erence between the higher-
frequency resonators. Right: a close-up of a single resonance, taken to precisely
determine the frequency of this resonance. Note that the depth of the resonance
appears greater on the close-up, this is from sparse frequency sampling on the wide
scan missing the lowest point. The 8 dips here correspond to the eight resonators
seen in figure 5.2.

5.2 Disorder Test

The control chip is called the disorder test chip, because it will tell us about the

disorder in our fabrication process. These resonator geometries di↵er only in the

length of their “tails,” whose lengths are spaced evenly between 3.7mm and 4.75mm

in increments of 150µm. Since there are no changes to the shape of each resonator

other than length we expect equation 3.9 to describe their frequencies well, and we

will compare the frequencies of the resonators from other chips to this fit.

The disorder seen here is the result of small variations in the fabrication process

across a single chip, resulting in unpredictable frequency shifts. The authors of ref-

erence [9] reported a disorder of 2 parts in 104 for their fabrication process, which

corresponds to shifts of 1.5 MHz on a 7.5GHz resonator. Our disorder of 2.7MHz is

less than a factor of two greater.

For the remaining experimental data we will take the frequency of lowest trans-

mission to be the resonant frequency, and use the value of 2.7MHz from the disorder

test chip as the uncertainty in the frequency of all the resonators. Another way to

Transmission
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Figure 4.3: Right: Simulation results for resonators of the same nominal length and
increasing number of bends. The e↵ect of bends in the resonator is to increase its
frequency by an amount proportional to the number of bends. Left: Geometries for 1
bend through 5 bends are shown, with substrate in blue and conductor in grey. Note
that the resonator geometries are simulated independently, they are shown together
here as a visual aid.

rather than the change in frequency. First, take the reciprocal of all the frequencies,

yielding the period of each resonator. We can now perform a linear fit on this data,

giving a slope and a y-intercept. The y-intercept tells us the period of the zero bend

resonator, which together with the nominal length of the resonator tells us the phase

velocity on the CPW using equation 3.6. This allows us to convert each period of

oscillation into an e↵ective length. Subtracting the nominal length from the e↵ective

length yields a plot which demonstrates that the e↵ective length of a bend is roughly

a fixed amount less than the nominal length. This finding can be used to improve the

accuracy of resonator design by changing the calculation of nominal length. Instead

of using the arc length of the middle of the center pin, a smaller value could be used.

The recommended value from this data is 0.987 times the arc length. For clarity we

will continue to use the same definition of nominal length throughout this thesis, and

this modification is problematic because as we will see in the next section this e↵ective

length depends both on the radius of the bend and the length of the resonator.

Numerical	Test	Geometries
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Figure 4.3: Right: Simulation results for resonators of the same nominal length and
increasing number of bends. The e↵ect of bends in the resonator is to increase its
frequency by an amount proportional to the number of bends. Left: Geometries for 1
bend through 5 bends are shown, with substrate in blue and conductor in grey. Note
that the resonator geometries are simulated independently, they are shown together
here as a visual aid.
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yielding the period of each resonator. We can now perform a linear fit on this data,

giving a slope and a y-intercept. The y-intercept tells us the period of the zero bend

resonator, which together with the nominal length of the resonator tells us the phase

velocity on the CPW using equation 3.6. This allows us to convert each period of

oscillation into an e↵ective length. Subtracting the nominal length from the e↵ective

length yields a plot which demonstrates that the e↵ective length of a bend is roughly

a fixed amount less than the nominal length. This finding can be used to improve the

accuracy of resonator design by changing the calculation of nominal length. Instead

of using the arc length of the middle of the center pin, a smaller value could be used.

The recommended value from this data is 0.987 times the arc length. For clarity we

will continue to use the same definition of nominal length throughout this thesis, and

this modification is problematic because as we will see in the next section this e↵ective

length depends both on the radius of the bend and the length of the resonator.

Numerical	Test	Geometries

CHAPTER 4. FINITE ELEMENT SIMULATIONS 23

Figure 4.5: Summary of data from 39 resonator geometries grouped by nominal length
and bend radius into 5 data sets. The e↵ective length of each resonator is calculated
from its frequency, and the nominal length is subtracted to give the change in e↵ective
length due to the bends. Top Left: Keeping the resonator length the same and
decreasing the radius of the bend increases the e↵ect it has on the resonator. Top
Right: fixing the bend radius and increasing the length of the resonator results in a
smaller frequency shift per bend.

4.6 Pitfalls of HFSS

As mentioned earlier, configuring HFSS to produce good results in a reasonable

amount of time is a real challenge. Now that we have shown several di↵erent ge-

ometries, we can discuss in more detail how the shape of the resonator impacts the

appropriate precision settings.

The settings provided earlier were tuned specifically for the staircase geometries.

Resonators such as the parallel straight test shapes require a finer mesh between

the straights, and as a result these geometries take significantly longer to simulate.

Those simulations took around an hour per run rather than 15 minutes. In the other
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amount of time is a real challenge. Now that we have shown several di↵erent ge-

ometries, we can discuss in more detail how the shape of the resonator impacts the

appropriate precision settings.

The settings provided earlier were tuned specifically for the staircase geometries.

Resonators such as the parallel straight test shapes require a finer mesh between

the straights, and as a result these geometries take significantly longer to simulate.
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Figure 4.5: Summary of data from 39 resonator geometries grouped by nominal length
and bend radius into 5 data sets. The e↵ective length of each resonator is calculated
from its frequency, and the nominal length is subtracted to give the change in e↵ective
length due to the bends. Top Left: Keeping the resonator length the same and
decreasing the radius of the bend increases the e↵ect it has on the resonator. Top
Right: fixing the bend radius and increasing the length of the resonator results in a
smaller frequency shift per bend.
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As mentioned earlier, configuring HFSS to produce good results in a reasonable

amount of time is a real challenge. Now that we have shown several di↵erent ge-

ometries, we can discuss in more detail how the shape of the resonator impacts the

appropriate precision settings.

The settings provided earlier were tuned specifically for the staircase geometries.

Resonators such as the parallel straight test shapes require a finer mesh between

the straights, and as a result these geometries take significantly longer to simulate.

Those simulations took around an hour per run rather than 15 minutes. In the other
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Transmon	Qubit

monicity, and the realization of strong coupling to the trans-
mission line resonator. In addition, the dispersive regime of
the coupled system is described by an ac Stark shift Hamil-
tonian in complete analogy to the regular CPB, allowing for
the transfer of control and readout protocols from the CPB to
the transmon system.

The effort to reduce the noise susceptibility in solid-state
qubits based on Josephson junctions has led to a variety of
different qubit types. Usually, these designs achieve a noise
suppression in one particular channel, oftentimes accompa-
nied by a tradeoff with respect to noise in other channels.
Flux qubits !10,11" operate at EJ /EC ratios similar to those of
the transmon, i.e., EJ /EC#102–103. Accordingly, flux qubits
reach an insensitivity to charge noise comparable to the
transmon. However, flux qubits will typically show a signifi-
cantly larger susceptibility to flux noise, especially when op-
erated away from the flux sweet spot. Phase qubits !12" trade
in a slight increase in critical-current noise sensitivity for a
drastic suppression of charge noise. Recent devices using
inductive coupling to establish a current bias !17" may also
face increased flux sensitivity.

Remarkably, the transmon achieves its exponential insen-
sitivity to 1/ f charge noise without incurring a penalty in the
form of increased sensitivity to either flux or critical-current
noise. This advantage can be illustrated by comparing the
transmon to the traditional CPB, as shown in Table I. As
discussed above, the transmon is in fact comparatively less
sensitive to flux and critical-current noise than the CPB. In
fact, even without any reduction in the canonical 1 / f noise
intensities, we predict that a transmon qubit operated at the
flux sweet spot should be limited only by the effects of re-
laxation. In conclusion, we are confident that the transmon
will belong to a new generation of superconducting qubits
with significantly improved coherence times and scalability.
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APPENDIX A: FULL NETWORK ANALYSIS

For completeness, we describe the modeling of the trans-
mon device starting from an analysis of the full capacitance
network !56". This network is depicted in Fig. 12$a%. It is
based on the capacitances between the various conducting
islands, see Fig. 12$b%. For a minimal model, we take into
account the two ground planes and center pin of the trans-
mission line resonator as well as the two islands connected
through the Josephson junctions. In the actual device, the dc

bias is supplied via an additional capacitance to the center
pin. For simplicity, we restrict our network to five islands in
Fig. 12, considering only the effective voltage V between
bottom ground plane and center pin.

By Thévenin’s theorem, any single-port linear network of
impedances and voltage sources can be substituted by an
equivalent circuit consisting of one voltage source V! and
one impedance. In our particular case it is useful to retain the
original gate voltage source Vg in the equivalent circuit. This
can be accomplished by allowing for one additional imped-
ance, as shown in Fig. 12$c%. The two effective capacitances
can be interpreted as an effective gate capacitance Cg and an
effective shunting capacitance CB. Together, they adjust for
the correct voltage seen from the Josephson-junction port via
the parameter !=Vab /Vg=Cg /C" and the total capacitance
C"=CB+Cg+CJ between the nodes a and b; see Fig. 12$c%.
$In the following, we absorb the junction capacitance into
CB.%

The parameters ! and C" are extracted from the full ca-
pacitance network as follows. Each conducting island, enu-
merated by i=1, . . . ,n, is associated with a certain charge Qi
and a potential #i $with respect to infinity%. These obey the
linear relation Qi=& jCij# j. For each island, we know either
its charge or its potential. Let us choose the island enumera-
tion such that for islands i$ i0, the charges Qi

* are known,
whereas for i% i0 the potentials #i

* are known. $Here, the
additional star signals that the quantity is known.% We thus
have the following system of linear equations:

Qi
* = &

j$i0

Cij# j + &
j%i0

Cij# j
* for i $ i0, $A1%

Qi = &
j$i0

Cij# j + &
j%i0

Cij# j
* for i % i0, $A2%

from which we can determine the unknown quantities
#1 , . . . ,#i0

,Qi0+1 , . . . ,Qn. With the solution, we can immedi-

FIG. 12. $Color online% $a% Full capacitance network for the
transmon device. $b% Simplified schematic of the transmon device
design $not to scale%. $c% Reduced network.
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monicity, and the realization of strong coupling to the trans-
mission line resonator. In addition, the dispersive regime of
the coupled system is described by an ac Stark shift Hamil-
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 Anharmonic oscillator

Ĥ = 4EC n̂
2 � EJ cos '̂

L̂z= !r!p" ·ez=−i" !
!# , so that the rotor’s Hamiltonian reads

Hrot =
L̂z

2

2ml2 − mgl cos # . !2.6"

Identifying the !integer-valued" number operator for Cooper
pairs with the angular momentum of the rotor, n̂↔ L̂z /", and
relating EJ↔mgl, EC↔ !"2 /8ml2", one finds that the rotor
Hamiltonian is identical to the transmon Hamiltonian with
ng=0.

To capture the case of a nonzero offset charge, we imag-
ine that the mass also carries an electrical charge q and
moves in a homogeneous magnetic field with strength B0 in z
direction. Representing the magnetic field by the vector po-
tential A=B0!−y ,x ,0" /2 !symmetric gauge" and noting that
the vector potential enters the Hamiltonian according to

p → p − qA ⇒ Lz → Lz + 1
2qB0l2, !2.7"

one finds that the offset charge ng can be identified with
qB0l2 /2". This establishes a one-to-one mapping between
the transmon system and the charged quantum rotor in a
constant magnetic field. We emphasize that for the transmon
!and CPB" the island charge is well defined so that n̂ has
discrete eigenvalues and # is a compact variable leading to
$!#"=$!#+2%". In the rotor picture, this corresponds to the

fact that the eigenvalues of the angular momentum L̂z are
discrete and that the “positions” # and #+2% are identical. It
is important to note that this mapping is different from the
tilted washboard model used within the context of resistively
shunted junctions, see, e.g., #27$, and must not be confused
with this case.

In the transmon regime, i.e., large EJ /EC, the dynamics of
the rotor is dominated by the strong gravitational field. Ac-
cordingly, small oscillation amplitudes around #=0 are fa-
vored; see Fig. 3. Perturbation theory for small angles imme-

diately leads to an anharmonic oscillator with quartic
perturbation !Duffing oscillator". !This method will be em-
ployed in Sec. II C to obtain the leading-order anharmonicity
corrections." However, the charge dispersion &m cannot be
captured in such a perturbative picture. Within the perturba-
tive approach !at any finite order" the # periodicity is lost
and the angular variable becomes noncompact, −' (#('.
Now, in the absence of the boundary condition $!#+2%"
=$!#" the vector potential can be eliminated by a gauge
transformation. In other words, the effect of the offset charge
ng only enters through the rare event of a full 2% rotation, in
which case the system picks up an Aharonov-Bohm-type
phase. This corresponds to “instanton” tunneling events
through the cosine potential barrier to adjacent wells, and
explains the WKB-type exponential decrease of the charge
dispersion. It is interesting to note that the nonvanishing
charge dispersion is truly a nonperturbative quantum effect,
which can be ascribed to the discreteness of charge or
equivalently to the peculiar role of the vector potential in
quantum mechanics leading to the Aharonov-Bohm effect.

The comparison between the exact result for the charge
dispersion and the asymptotic expansion is depicted in Fig.
4!a". The requirements on the largeness of EJ /EC are seen to
become stricter for increasing level index. For the transmon,
we will mainly focus on the lowest two levels, for which Eq.
!2.5" constitutes a very good approximation when EJ /EC
)20. Asymptotically, the differential charge dispersion
!E01/!ng is dominated by the contribution from the first ex-
cited level, so that from Eqs. !2.3" and !2.5" we have

FIG. 3. !Color online" !a" Rotor analogy for the transmon. The
transmon Hamiltonian can be understood as a charged quantum
rotor in a constant magnetic field %ng. For large EJ /EC, there is a
significant “gravitational” pull on the pendulum and the system
typically remains in the vicinity of #=0. Only tunneling events
between adjacent cosine wells !i.e., a full 2% rotor movement" will
acquire an Aharonov-Bohm-type phase due to ng. The tunneling
probability decreases exponentially with EJ /EC, explaining the ex-
ponential decrease of the charge dispersion. !b" Cosine potential
!black solid line" with corresponding eigenenergies and squared
moduli of the eigenfunctions.

FIG. 4. !Color online" Comparison of numerically exact and
asymptotic expressions for the charge dispersion and energy levels.
!a" Charge dispersion &&m& as a function of the ratio EJ /EC for the
lowest four levels. The solid curves depict the exact results using
Mathieu characteristic values, the dashed curves represent the
asymptotic expansion, Eq. !2.5". The right vertical scale gives the
charge dispersion in MHz for a transition frequency of 7 GHz. !b"
Energy level difference E0m=Em−E0 at ng=1/2 as a function of the
EJ /EC ratio. Solid curves show the exact results; dashed lines are
based on the asymptotic expression !2.11". The vertical scale on the
right-hand side gives the transition frequencies from the ground
state to level m in GHz, assuming a charging energy of EC /h
=0.35 GHz. All numerical data are obtained for ng=1/2.
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monicity, and the realization of strong coupling to the trans-
mission line resonator. In addition, the dispersive regime of
the coupled system is described by an ac Stark shift Hamil-
tonian in complete analogy to the regular CPB, allowing for
the transfer of control and readout protocols from the CPB to
the transmon system.

The effort to reduce the noise susceptibility in solid-state
qubits based on Josephson junctions has led to a variety of
different qubit types. Usually, these designs achieve a noise
suppression in one particular channel, oftentimes accompa-
nied by a tradeoff with respect to noise in other channels.
Flux qubits !10,11" operate at EJ /EC ratios similar to those of
the transmon, i.e., EJ /EC#102–103. Accordingly, flux qubits
reach an insensitivity to charge noise comparable to the
transmon. However, flux qubits will typically show a signifi-
cantly larger susceptibility to flux noise, especially when op-
erated away from the flux sweet spot. Phase qubits !12" trade
in a slight increase in critical-current noise sensitivity for a
drastic suppression of charge noise. Recent devices using
inductive coupling to establish a current bias !17" may also
face increased flux sensitivity.

Remarkably, the transmon achieves its exponential insen-
sitivity to 1/ f charge noise without incurring a penalty in the
form of increased sensitivity to either flux or critical-current
noise. This advantage can be illustrated by comparing the
transmon to the traditional CPB, as shown in Table I. As
discussed above, the transmon is in fact comparatively less
sensitive to flux and critical-current noise than the CPB. In
fact, even without any reduction in the canonical 1 / f noise
intensities, we predict that a transmon qubit operated at the
flux sweet spot should be limited only by the effects of re-
laxation. In conclusion, we are confident that the transmon
will belong to a new generation of superconducting qubits
with significantly improved coherence times and scalability.
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APPENDIX A: FULL NETWORK ANALYSIS

For completeness, we describe the modeling of the trans-
mon device starting from an analysis of the full capacitance
network !56". This network is depicted in Fig. 12$a%. It is
based on the capacitances between the various conducting
islands, see Fig. 12$b%. For a minimal model, we take into
account the two ground planes and center pin of the trans-
mission line resonator as well as the two islands connected
through the Josephson junctions. In the actual device, the dc

bias is supplied via an additional capacitance to the center
pin. For simplicity, we restrict our network to five islands in
Fig. 12, considering only the effective voltage V between
bottom ground plane and center pin.

By Thévenin’s theorem, any single-port linear network of
impedances and voltage sources can be substituted by an
equivalent circuit consisting of one voltage source V! and
one impedance. In our particular case it is useful to retain the
original gate voltage source Vg in the equivalent circuit. This
can be accomplished by allowing for one additional imped-
ance, as shown in Fig. 12$c%. The two effective capacitances
can be interpreted as an effective gate capacitance Cg and an
effective shunting capacitance CB. Together, they adjust for
the correct voltage seen from the Josephson-junction port via
the parameter !=Vab /Vg=Cg /C" and the total capacitance
C"=CB+Cg+CJ between the nodes a and b; see Fig. 12$c%.
$In the following, we absorb the junction capacitance into
CB.%

The parameters ! and C" are extracted from the full ca-
pacitance network as follows. Each conducting island, enu-
merated by i=1, . . . ,n, is associated with a certain charge Qi
and a potential #i $with respect to infinity%. These obey the
linear relation Qi=& jCij# j. For each island, we know either
its charge or its potential. Let us choose the island enumera-
tion such that for islands i$ i0, the charges Qi

* are known,
whereas for i% i0 the potentials #i

* are known. $Here, the
additional star signals that the quantity is known.% We thus
have the following system of linear equations:

Qi
* = &

j$i0

Cij# j + &
j%i0

Cij# j
* for i $ i0, $A1%

Qi = &
j$i0

Cij# j + &
j%i0

Cij# j
* for i % i0, $A2%

from which we can determine the unknown quantities
#1 , . . . ,#i0

,Qi0+1 , . . . ,Qn. With the solution, we can immedi-

FIG. 12. $Color online% $a% Full capacitance network for the
transmon device. $b% Simplified schematic of the transmon device
design $not to scale%. $c% Reduced network.

KOCH et al. PHYSICAL REVIEW A 76, 042319 $2007%

042319-16

 Anharmonic oscillator
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L̂z= !r!p" ·ez=−i" !
!# , so that the rotor’s Hamiltonian reads

Hrot =
L̂z

2

2ml2 − mgl cos # . !2.6"

Identifying the !integer-valued" number operator for Cooper
pairs with the angular momentum of the rotor, n̂↔ L̂z /", and
relating EJ↔mgl, EC↔ !"2 /8ml2", one finds that the rotor
Hamiltonian is identical to the transmon Hamiltonian with
ng=0.

To capture the case of a nonzero offset charge, we imag-
ine that the mass also carries an electrical charge q and
moves in a homogeneous magnetic field with strength B0 in z
direction. Representing the magnetic field by the vector po-
tential A=B0!−y ,x ,0" /2 !symmetric gauge" and noting that
the vector potential enters the Hamiltonian according to

p → p − qA ⇒ Lz → Lz + 1
2qB0l2, !2.7"

one finds that the offset charge ng can be identified with
qB0l2 /2". This establishes a one-to-one mapping between
the transmon system and the charged quantum rotor in a
constant magnetic field. We emphasize that for the transmon
!and CPB" the island charge is well defined so that n̂ has
discrete eigenvalues and # is a compact variable leading to
$!#"=$!#+2%". In the rotor picture, this corresponds to the

fact that the eigenvalues of the angular momentum L̂z are
discrete and that the “positions” # and #+2% are identical. It
is important to note that this mapping is different from the
tilted washboard model used within the context of resistively
shunted junctions, see, e.g., #27$, and must not be confused
with this case.

In the transmon regime, i.e., large EJ /EC, the dynamics of
the rotor is dominated by the strong gravitational field. Ac-
cordingly, small oscillation amplitudes around #=0 are fa-
vored; see Fig. 3. Perturbation theory for small angles imme-

diately leads to an anharmonic oscillator with quartic
perturbation !Duffing oscillator". !This method will be em-
ployed in Sec. II C to obtain the leading-order anharmonicity
corrections." However, the charge dispersion &m cannot be
captured in such a perturbative picture. Within the perturba-
tive approach !at any finite order" the # periodicity is lost
and the angular variable becomes noncompact, −' (#('.
Now, in the absence of the boundary condition $!#+2%"
=$!#" the vector potential can be eliminated by a gauge
transformation. In other words, the effect of the offset charge
ng only enters through the rare event of a full 2% rotation, in
which case the system picks up an Aharonov-Bohm-type
phase. This corresponds to “instanton” tunneling events
through the cosine potential barrier to adjacent wells, and
explains the WKB-type exponential decrease of the charge
dispersion. It is interesting to note that the nonvanishing
charge dispersion is truly a nonperturbative quantum effect,
which can be ascribed to the discreteness of charge or
equivalently to the peculiar role of the vector potential in
quantum mechanics leading to the Aharonov-Bohm effect.

The comparison between the exact result for the charge
dispersion and the asymptotic expansion is depicted in Fig.
4!a". The requirements on the largeness of EJ /EC are seen to
become stricter for increasing level index. For the transmon,
we will mainly focus on the lowest two levels, for which Eq.
!2.5" constitutes a very good approximation when EJ /EC
)20. Asymptotically, the differential charge dispersion
!E01/!ng is dominated by the contribution from the first ex-
cited level, so that from Eqs. !2.3" and !2.5" we have

FIG. 3. !Color online" !a" Rotor analogy for the transmon. The
transmon Hamiltonian can be understood as a charged quantum
rotor in a constant magnetic field %ng. For large EJ /EC, there is a
significant “gravitational” pull on the pendulum and the system
typically remains in the vicinity of #=0. Only tunneling events
between adjacent cosine wells !i.e., a full 2% rotor movement" will
acquire an Aharonov-Bohm-type phase due to ng. The tunneling
probability decreases exponentially with EJ /EC, explaining the ex-
ponential decrease of the charge dispersion. !b" Cosine potential
!black solid line" with corresponding eigenenergies and squared
moduli of the eigenfunctions.

FIG. 4. !Color online" Comparison of numerically exact and
asymptotic expressions for the charge dispersion and energy levels.
!a" Charge dispersion &&m& as a function of the ratio EJ /EC for the
lowest four levels. The solid curves depict the exact results using
Mathieu characteristic values, the dashed curves represent the
asymptotic expansion, Eq. !2.5". The right vertical scale gives the
charge dispersion in MHz for a transition frequency of 7 GHz. !b"
Energy level difference E0m=Em−E0 at ng=1/2 as a function of the
EJ /EC ratio. Solid curves show the exact results; dashed lines are
based on the asymptotic expression !2.11". The vertical scale on the
right-hand side gives the transition frequencies from the ground
state to level m in GHz, assuming a charging energy of EC /h
=0.35 GHz. All numerical data are obtained for ng=1/2.
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is the purely quantum limit, where the atom and cavity evolve via their 
coherent coupling in the absence of dissipation. This system simply obeys 
the Schrodinger equation with the Jaynes-Cummings Hamiltonian [48], 

Hjc = hcoh+h + hcoS+6 + hgo(h~ + + h+8). (25) 

Here we consider a two-level atom and co is the common resonance 
frequency of both atom and cavity. Diagonalizing this Hamiltonian gives 
rise to the well-known Jaynes-Cummings ladder of eigenstates for the 
coupled atom-cavity system, as illustrated in Fig. 18. The coupled 
eigenstates are characterized by the equal sharing of excitation between 
the atomic dipole and cavity field, so that the n-excitation bare states Ig, n} 
and le, n -  1) of energy nhco are replaced by 
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FIG. 18. Jaynes-Cummings ladder of eigenstates for the coupled atom-cavity system. Bare 
eigenstates of the atom and cavity field are shown on the left, labeled by atomic internal state 
and number of photons in the cavity mode, under the condition COc = coa = co. When the atomic 
dipole is coupled to the cavity field with single-photon Rabi frequency 2g0, the energy 
eigenstates form the ladder shown on the right. The Jaynes-Cummings ladder has pairs of 
strong- and weak-field-seeking states with each pair split by an energy that rises as the square 
root of the number of excitations. 
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monicity, and the realization of strong coupling to the trans-
mission line resonator. In addition, the dispersive regime of
the coupled system is described by an ac Stark shift Hamil-
tonian in complete analogy to the regular CPB, allowing for
the transfer of control and readout protocols from the CPB to
the transmon system.

The effort to reduce the noise susceptibility in solid-state
qubits based on Josephson junctions has led to a variety of
different qubit types. Usually, these designs achieve a noise
suppression in one particular channel, oftentimes accompa-
nied by a tradeoff with respect to noise in other channels.
Flux qubits !10,11" operate at EJ /EC ratios similar to those of
the transmon, i.e., EJ /EC#102–103. Accordingly, flux qubits
reach an insensitivity to charge noise comparable to the
transmon. However, flux qubits will typically show a signifi-
cantly larger susceptibility to flux noise, especially when op-
erated away from the flux sweet spot. Phase qubits !12" trade
in a slight increase in critical-current noise sensitivity for a
drastic suppression of charge noise. Recent devices using
inductive coupling to establish a current bias !17" may also
face increased flux sensitivity.

Remarkably, the transmon achieves its exponential insen-
sitivity to 1/ f charge noise without incurring a penalty in the
form of increased sensitivity to either flux or critical-current
noise. This advantage can be illustrated by comparing the
transmon to the traditional CPB, as shown in Table I. As
discussed above, the transmon is in fact comparatively less
sensitive to flux and critical-current noise than the CPB. In
fact, even without any reduction in the canonical 1 / f noise
intensities, we predict that a transmon qubit operated at the
flux sweet spot should be limited only by the effects of re-
laxation. In conclusion, we are confident that the transmon
will belong to a new generation of superconducting qubits
with significantly improved coherence times and scalability.
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APPENDIX A: FULL NETWORK ANALYSIS

For completeness, we describe the modeling of the trans-
mon device starting from an analysis of the full capacitance
network !56". This network is depicted in Fig. 12$a%. It is
based on the capacitances between the various conducting
islands, see Fig. 12$b%. For a minimal model, we take into
account the two ground planes and center pin of the trans-
mission line resonator as well as the two islands connected
through the Josephson junctions. In the actual device, the dc

bias is supplied via an additional capacitance to the center
pin. For simplicity, we restrict our network to five islands in
Fig. 12, considering only the effective voltage V between
bottom ground plane and center pin.

By Thévenin’s theorem, any single-port linear network of
impedances and voltage sources can be substituted by an
equivalent circuit consisting of one voltage source V! and
one impedance. In our particular case it is useful to retain the
original gate voltage source Vg in the equivalent circuit. This
can be accomplished by allowing for one additional imped-
ance, as shown in Fig. 12$c%. The two effective capacitances
can be interpreted as an effective gate capacitance Cg and an
effective shunting capacitance CB. Together, they adjust for
the correct voltage seen from the Josephson-junction port via
the parameter !=Vab /Vg=Cg /C" and the total capacitance
C"=CB+Cg+CJ between the nodes a and b; see Fig. 12$c%.
$In the following, we absorb the junction capacitance into
CB.%

The parameters ! and C" are extracted from the full ca-
pacitance network as follows. Each conducting island, enu-
merated by i=1, . . . ,n, is associated with a certain charge Qi
and a potential #i $with respect to infinity%. These obey the
linear relation Qi=& jCij# j. For each island, we know either
its charge or its potential. Let us choose the island enumera-
tion such that for islands i$ i0, the charges Qi

* are known,
whereas for i% i0 the potentials #i

* are known. $Here, the
additional star signals that the quantity is known.% We thus
have the following system of linear equations:

Qi
* = &

j$i0

Cij# j + &
j%i0

Cij# j
* for i $ i0, $A1%

Qi = &
j$i0

Cij# j + &
j%i0

Cij# j
* for i % i0, $A2%

from which we can determine the unknown quantities
#1 , . . . ,#i0

,Qi0+1 , . . . ,Qn. With the solution, we can immedi-

FIG. 12. $Color online% $a% Full capacitance network for the
transmon device. $b% Simplified schematic of the transmon device
design $not to scale%. $c% Reduced network.
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Ĥ = 4EC n̂
2 � EJ cos '̂

L̂z= !r!p" ·ez=−i" !
!# , so that the rotor’s Hamiltonian reads

Hrot =
L̂z

2

2ml2 − mgl cos # . !2.6"

Identifying the !integer-valued" number operator for Cooper
pairs with the angular momentum of the rotor, n̂↔ L̂z /", and
relating EJ↔mgl, EC↔ !"2 /8ml2", one finds that the rotor
Hamiltonian is identical to the transmon Hamiltonian with
ng=0.

To capture the case of a nonzero offset charge, we imag-
ine that the mass also carries an electrical charge q and
moves in a homogeneous magnetic field with strength B0 in z
direction. Representing the magnetic field by the vector po-
tential A=B0!−y ,x ,0" /2 !symmetric gauge" and noting that
the vector potential enters the Hamiltonian according to

p → p − qA ⇒ Lz → Lz + 1
2qB0l2, !2.7"

one finds that the offset charge ng can be identified with
qB0l2 /2". This establishes a one-to-one mapping between
the transmon system and the charged quantum rotor in a
constant magnetic field. We emphasize that for the transmon
!and CPB" the island charge is well defined so that n̂ has
discrete eigenvalues and # is a compact variable leading to
$!#"=$!#+2%". In the rotor picture, this corresponds to the

fact that the eigenvalues of the angular momentum L̂z are
discrete and that the “positions” # and #+2% are identical. It
is important to note that this mapping is different from the
tilted washboard model used within the context of resistively
shunted junctions, see, e.g., #27$, and must not be confused
with this case.

In the transmon regime, i.e., large EJ /EC, the dynamics of
the rotor is dominated by the strong gravitational field. Ac-
cordingly, small oscillation amplitudes around #=0 are fa-
vored; see Fig. 3. Perturbation theory for small angles imme-

diately leads to an anharmonic oscillator with quartic
perturbation !Duffing oscillator". !This method will be em-
ployed in Sec. II C to obtain the leading-order anharmonicity
corrections." However, the charge dispersion &m cannot be
captured in such a perturbative picture. Within the perturba-
tive approach !at any finite order" the # periodicity is lost
and the angular variable becomes noncompact, −' (#('.
Now, in the absence of the boundary condition $!#+2%"
=$!#" the vector potential can be eliminated by a gauge
transformation. In other words, the effect of the offset charge
ng only enters through the rare event of a full 2% rotation, in
which case the system picks up an Aharonov-Bohm-type
phase. This corresponds to “instanton” tunneling events
through the cosine potential barrier to adjacent wells, and
explains the WKB-type exponential decrease of the charge
dispersion. It is interesting to note that the nonvanishing
charge dispersion is truly a nonperturbative quantum effect,
which can be ascribed to the discreteness of charge or
equivalently to the peculiar role of the vector potential in
quantum mechanics leading to the Aharonov-Bohm effect.

The comparison between the exact result for the charge
dispersion and the asymptotic expansion is depicted in Fig.
4!a". The requirements on the largeness of EJ /EC are seen to
become stricter for increasing level index. For the transmon,
we will mainly focus on the lowest two levels, for which Eq.
!2.5" constitutes a very good approximation when EJ /EC
)20. Asymptotically, the differential charge dispersion
!E01/!ng is dominated by the contribution from the first ex-
cited level, so that from Eqs. !2.3" and !2.5" we have

FIG. 3. !Color online" !a" Rotor analogy for the transmon. The
transmon Hamiltonian can be understood as a charged quantum
rotor in a constant magnetic field %ng. For large EJ /EC, there is a
significant “gravitational” pull on the pendulum and the system
typically remains in the vicinity of #=0. Only tunneling events
between adjacent cosine wells !i.e., a full 2% rotor movement" will
acquire an Aharonov-Bohm-type phase due to ng. The tunneling
probability decreases exponentially with EJ /EC, explaining the ex-
ponential decrease of the charge dispersion. !b" Cosine potential
!black solid line" with corresponding eigenenergies and squared
moduli of the eigenfunctions.

FIG. 4. !Color online" Comparison of numerically exact and
asymptotic expressions for the charge dispersion and energy levels.
!a" Charge dispersion &&m& as a function of the ratio EJ /EC for the
lowest four levels. The solid curves depict the exact results using
Mathieu characteristic values, the dashed curves represent the
asymptotic expansion, Eq. !2.5". The right vertical scale gives the
charge dispersion in MHz for a transition frequency of 7 GHz. !b"
Energy level difference E0m=Em−E0 at ng=1/2 as a function of the
EJ /EC ratio. Solid curves show the exact results; dashed lines are
based on the asymptotic expression !2.11". The vertical scale on the
right-hand side gives the transition frequencies from the ground
state to level m in GHz, assuming a charging energy of EC /h
=0.35 GHz. All numerical data are obtained for ng=1/2.
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FIG. 8. Colour plots of selected numerical eigenstates of three shells of the heptagon-kagome lattice. States are
ordered from highest to lowest energy, and are plotted by placing a circle on each lattice site of the e↵ective lattice. The size of
the circle indicates the amplitude of the state on that site, and the colour its phase. a, The maximally excited state. This state
is uniform in phase, but its amplitude varies radially due to the e↵ective confinement from the missing links at the boundary
of the simulation. b-c, Examples of the two next-highest states. They bear a striking resemblance to Laguerre-Gaussian or
particle-in-a-cylindrical box modes found in flat Euclidean space. d-f, Selected intermediate excited states. Notice that the
state in f shows both amplitude and phase modulation in the azimuthal direction, with independent periods. g, The localized
eigenstate of compact support that forms the flat band.

large number of states like the one in Fig. 8e which reside
primarily at the edge of the system. Another intriguing
feature is the existence of states like the one in Fig. 8f,
which display azimuthal amplitude and phase modula-
tion with di↵erent periods.

A flat-band eigenstate is shown in Fig. 8g. The analo-
gous state in the kagome lattice encircles a single hexago-
nal plaquette, but this type of behavior is not possible in
a hyperbolic kagome-like lattice formed with odd-sided
polygons because the sign flips cannot be consistently
maintained. Therefore, the flat-band state in the hep-
tagon kagome lattice (or any 2n+ 1-gon kagome lattice)
consists of a single loop across two plaquettes in which
the phase flips by ⇡ between every neighboring pair of
sites. It is a localized eigenstate which is protected from
hopping by destructive interference in the triangular pla-
quettes which border the loop. Since this state has com-
pact support, translations of it are orthogonal and form
a degenerate manifold of states whose multiplicity is pro-
portional to the system size.

Lattice Curvatures

Compared to spherical or hyperbolic space, familiar
Euclidean space is unique in that there is no intrinsic
length scale. In particular, polygons have the same in-
ternal angles, regardless of size. Therefore, any Euclidean
tiling can be scaled up or down in size and remain un-
changed. This is not true in spherical or hyperbolic space

where there is a natural length scale R which is set by
the Gaussian curvature K = ±1/R2 [45]. In both cases,
the shape of a polygon depends on its size relative to this
length scale [1, 25]. For example, consider a triangle on
the surface of a sphere which has one vertex at the north
pole and the other two on the equator separated by ⇡/2
longitudinally. The total internal angle of this triangle
is 3⇡/2 (each angle is ⇡/2), but if it is reduced in size
until it is much smaller than the radius of curvature of
the sphere, it tends to a Euclidean triangle with a total
internal angle of ⇡. Tiles in spherical space therefore get
“fatter” as they increase in size and can cover gaps left
between Euclidean tiles of the same shape. Hyperbolic
polygons, however, have smaller internal angles at their
vertices than their Euclidean counterparts. Therefore,
hyperbolic tilings are precisely those for which the tiles
would overlap if drawn according to Euclidean geometry.
(See Fig. 3.) As hyperbolic polygons become larger and
larger, their internal angles decrease progressively, and
they become “pointier”.

Because of this size-dependent geometry, whether or
not a set of tiles can form a valid lattice in curved space
depends on their size. The polygons must be precisely big
enough so that the tiles fit exactly. Increasing the size
of the polygons any further will cause gaps or overlaps
to appear between the tiles, depending on the sign of
the curvature. Therefore, for fixed curvature, each non-
Euclidean lattice can only exist for a specific tile size.
Conversely each lattice can be though of as having an
intrinsic curvature given by the required ratio of inter-
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first two eigenvalues ofH(cont) are readily computed from
 km(L) = 0 for m = 0, 1, respectively, and agree remark-
ably well with the graph data for ` & 4, see Table I and
Fig. 2. For `! 1 we have [51]

E
(cont)
0,1 ⇠ E1 +

3⇡2
h
2

4

1

(ln' · `+ c0,1)2
, (14)

with ' = (1 +
p
5)/2, c0 = ln 2, and c1 = ln 2� 1.

As we go to higher energies, the spectra of H

and H
(cont) start to deviate more and more. Still,

the graph and continuum partition functions Z =P
n ⇥(�En)e��En and Z

0 =
P

n ⇥(�E
(cont)
n )e��E(cont)

n

with inverse temperature � agree well, see the inset of
Fig. 2. (We limit the sums to negative energies to
roughly cut o↵ high energy contributions clearly outside
the continuum approximation.) The ability to quanti-

tatively reproduce the low-energy graph spectrum and
predict the behavior for large graphs by means of the
continuum approximation constitutes the third main re-
sult of this work.

Our second application of the continuum theory is the
computation of correlation functions on the graph from
the continuum Green function. We denote the Green
function of H = �A by

Gij(!) =
⇣ 1

H � !

⌘

ij
=

NX

n=1

 n(i) ⇤
n(j)

En � !
. (15)

Here  n and En are the eigenvectors and eigenenergies
of H, H n = En n, and ! 2 C is a complex frequency.
Gij(!) constitutes the measurable two-point correlation

function hâi(!)â†j(!)i0 for the free theory averaged with

respect to Ĥ0, and can be written as an auxiliary field
Gaussian path integral on the graph. Approximating the
latter by the continuum expressions we obtain [51]

Gij(!) ⇡
⇡

21h2
G

⇣
zi, zj ,

4(! + 3)

3h2
, L

⌘
. (16)

Here G(z, z0,�, L) is the Green function of the hyperbolic
Helmholtz operator, satisfying (� + �g)G(z, z0,�, L) =
�(1�|z|2)2�(2)(z�z

0) and Dirichlet boundary conditions
G(z, z0,�, L) = 0 for |z| = L or |z0| = L. Again, the disk
radius L is matched to ` through Eq. (9). The accuracy
of the approximation in Eq. (16) is remarkably good as
we show in Fig. 3.

The continuum Green function G(z, z0,�, L) is
uniquely specified by the Dirichlet boundary condition
[55, 61–63]. The full but lengthy analytic expression is
given in the SM [51]. As L ! 1, it is solely a function
of the hyperbolic distance d(z, z0) due to automorphism
invariance. For example, for � = 0 we have

G(z, z0, 0, L) = � 1

4⇡
ln
���
L(z � z

0)

L2 � zz0

���
2
, (17)
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FIG. 3. Quantitative match between graph Green function
Gij and continuum Green function G(zi, zj). We fix site zi

to be on the 2nd ring, and plot the correlations as a function
Fj of site zj . Upper panel. Results for ! = �2.95 just below
E0. (Left). The two plots are Fj = Gij and Fj = G(zi, zj).
The size of dots is proportional to |Fj |1/2, and blue/red corre-
sponds to positive/negative sign of Fj . (Right). Mean corre-
lation function vs. hyperbolic distance dij = d(zi, zj), where
the red (black) data is the graph (continuum) function. To
obtain the curves, we make a list of pairs (Fj , dij) and com-
pute the average Fj as a function of distance, with the error
bar being the standard deviation. The quantitative agree-
ment between graph and continuum is remarkable. Emergent
conformal symmetry is reflected by the data points collapsing
onto a single curve Gij = f(dij) with some function f for large
`. The main plots are for ` = 6, the insets for ` = 3. Lower

panel. The same setting for ! = �2.5+0.1i with Re(!) > E0.
We plot the real part of the correlation function.

which is a function of tanh d(z, z0) = | z�z0

1�zz̄0 | for L =
1. In turn, this implies that also the graph correlation
function Gij(!) is approximately a universal function of
the hyperbolic distance dij = d(zi, zj) for large `, as is
shown in Fig. 3. The quantiative matching of graph and
continuum Green functions and the finding of emergent
conformal symmetry on the hyperbolic lattice constitute
our fourth main result of this work.

The continuum approximation for hyperbolic lattices
that we have put forward provides a computational
framework to e�ciently compute observables relevant
for future circuit QED experiments simulating curved
spaces: the continuum Green functions can be used in
diagrammatic techniques to explore interactions between
photons and other degrees of freedom such as qubits
by means of Fourier analysis on hyperbolic space. The
strong coupling regime in experiment then constitutes an

14

FIG. 8. Colour plots of selected numerical eigenstates of three shells of the heptagon-kagome lattice. States are
ordered from highest to lowest energy, and are plotted by placing a circle on each lattice site of the e↵ective lattice. The size of
the circle indicates the amplitude of the state on that site, and the colour its phase. a, The maximally excited state. This state
is uniform in phase, but its amplitude varies radially due to the e↵ective confinement from the missing links at the boundary
of the simulation. b-c, Examples of the two next-highest states. They bear a striking resemblance to Laguerre-Gaussian or
particle-in-a-cylindrical box modes found in flat Euclidean space. d-f, Selected intermediate excited states. Notice that the
state in f shows both amplitude and phase modulation in the azimuthal direction, with independent periods. g, The localized
eigenstate of compact support that forms the flat band.

large number of states like the one in Fig. 8e which reside
primarily at the edge of the system. Another intriguing
feature is the existence of states like the one in Fig. 8f,
which display azimuthal amplitude and phase modula-
tion with di↵erent periods.

A flat-band eigenstate is shown in Fig. 8g. The analo-
gous state in the kagome lattice encircles a single hexago-
nal plaquette, but this type of behavior is not possible in
a hyperbolic kagome-like lattice formed with odd-sided
polygons because the sign flips cannot be consistently
maintained. Therefore, the flat-band state in the hep-
tagon kagome lattice (or any 2n+ 1-gon kagome lattice)
consists of a single loop across two plaquettes in which
the phase flips by ⇡ between every neighboring pair of
sites. It is a localized eigenstate which is protected from
hopping by destructive interference in the triangular pla-
quettes which border the loop. Since this state has com-
pact support, translations of it are orthogonal and form
a degenerate manifold of states whose multiplicity is pro-
portional to the system size.

Lattice Curvatures

Compared to spherical or hyperbolic space, familiar
Euclidean space is unique in that there is no intrinsic
length scale. In particular, polygons have the same in-
ternal angles, regardless of size. Therefore, any Euclidean
tiling can be scaled up or down in size and remain un-
changed. This is not true in spherical or hyperbolic space

where there is a natural length scale R which is set by
the Gaussian curvature K = ±1/R2 [45]. In both cases,
the shape of a polygon depends on its size relative to this
length scale [1, 25]. For example, consider a triangle on
the surface of a sphere which has one vertex at the north
pole and the other two on the equator separated by ⇡/2
longitudinally. The total internal angle of this triangle
is 3⇡/2 (each angle is ⇡/2), but if it is reduced in size
until it is much smaller than the radius of curvature of
the sphere, it tends to a Euclidean triangle with a total
internal angle of ⇡. Tiles in spherical space therefore get
“fatter” as they increase in size and can cover gaps left
between Euclidean tiles of the same shape. Hyperbolic
polygons, however, have smaller internal angles at their
vertices than their Euclidean counterparts. Therefore,
hyperbolic tilings are precisely those for which the tiles
would overlap if drawn according to Euclidean geometry.
(See Fig. 3.) As hyperbolic polygons become larger and
larger, their internal angles decrease progressively, and
they become “pointier”.

Because of this size-dependent geometry, whether or
not a set of tiles can form a valid lattice in curved space
depends on their size. The polygons must be precisely big
enough so that the tiles fit exactly. Increasing the size
of the polygons any further will cause gaps or overlaps
to appear between the tiles, depending on the sign of
the curvature. Therefore, for fixed curvature, each non-
Euclidean lattice can only exist for a specific tile size.
Conversely each lattice can be though of as having an
intrinsic curvature given by the required ratio of inter-
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first two eigenvalues ofH(cont) are readily computed from
 km(L) = 0 for m = 0, 1, respectively, and agree remark-
ably well with the graph data for ` & 4, see Table I and
Fig. 2. For `! 1 we have [51]

E
(cont)
0,1 ⇠ E1 +

3⇡2
h
2

4

1

(ln' · `+ c0,1)2
, (14)

with ' = (1 +
p
5)/2, c0 = ln 2, and c1 = ln 2� 1.

As we go to higher energies, the spectra of H

and H
(cont) start to deviate more and more. Still,

the graph and continuum partition functions Z =P
n ⇥(�En)e��En and Z

0 =
P

n ⇥(�E
(cont)
n )e��E(cont)

n

with inverse temperature � agree well, see the inset of
Fig. 2. (We limit the sums to negative energies to
roughly cut o↵ high energy contributions clearly outside
the continuum approximation.) The ability to quanti-

tatively reproduce the low-energy graph spectrum and
predict the behavior for large graphs by means of the
continuum approximation constitutes the third main re-
sult of this work.

Our second application of the continuum theory is the
computation of correlation functions on the graph from
the continuum Green function. We denote the Green
function of H = �A by

Gij(!) =
⇣ 1

H � !

⌘

ij
=

NX

n=1

 n(i) ⇤
n(j)

En � !
. (15)

Here  n and En are the eigenvectors and eigenenergies
of H, H n = En n, and ! 2 C is a complex frequency.
Gij(!) constitutes the measurable two-point correlation

function hâi(!)â†j(!)i0 for the free theory averaged with

respect to Ĥ0, and can be written as an auxiliary field
Gaussian path integral on the graph. Approximating the
latter by the continuum expressions we obtain [51]

Gij(!) ⇡
⇡

21h2
G

⇣
zi, zj ,

4(! + 3)

3h2
, L

⌘
. (16)

Here G(z, z0,�, L) is the Green function of the hyperbolic
Helmholtz operator, satisfying (� + �g)G(z, z0,�, L) =
�(1�|z|2)2�(2)(z�z

0) and Dirichlet boundary conditions
G(z, z0,�, L) = 0 for |z| = L or |z0| = L. Again, the disk
radius L is matched to ` through Eq. (9). The accuracy
of the approximation in Eq. (16) is remarkably good as
we show in Fig. 3.

The continuum Green function G(z, z0,�, L) is
uniquely specified by the Dirichlet boundary condition
[55, 61–63]. The full but lengthy analytic expression is
given in the SM [51]. As L ! 1, it is solely a function
of the hyperbolic distance d(z, z0) due to automorphism
invariance. For example, for � = 0 we have

G(z, z0, 0, L) = � 1

4⇡
ln
���
L(z � z

0)

L2 � zz0

���
2
, (17)
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FIG. 3. Quantitative match between graph Green function
Gij and continuum Green function G(zi, zj). We fix site zi

to be on the 2nd ring, and plot the correlations as a function
Fj of site zj . Upper panel. Results for ! = �2.95 just below
E0. (Left). The two plots are Fj = Gij and Fj = G(zi, zj).
The size of dots is proportional to |Fj |1/2, and blue/red corre-
sponds to positive/negative sign of Fj . (Right). Mean corre-
lation function vs. hyperbolic distance dij = d(zi, zj), where
the red (black) data is the graph (continuum) function. To
obtain the curves, we make a list of pairs (Fj , dij) and com-
pute the average Fj as a function of distance, with the error
bar being the standard deviation. The quantitative agree-
ment between graph and continuum is remarkable. Emergent
conformal symmetry is reflected by the data points collapsing
onto a single curve Gij = f(dij) with some function f for large
`. The main plots are for ` = 6, the insets for ` = 3. Lower

panel. The same setting for ! = �2.5+0.1i with Re(!) > E0.
We plot the real part of the correlation function.

which is a function of tanh d(z, z0) = | z�z0

1�zz̄0 | for L =
1. In turn, this implies that also the graph correlation
function Gij(!) is approximately a universal function of
the hyperbolic distance dij = d(zi, zj) for large `, as is
shown in Fig. 3. The quantiative matching of graph and
continuum Green functions and the finding of emergent
conformal symmetry on the hyperbolic lattice constitute
our fourth main result of this work.

The continuum approximation for hyperbolic lattices
that we have put forward provides a computational
framework to e�ciently compute observables relevant
for future circuit QED experiments simulating curved
spaces: the continuum Green functions can be used in
diagrammatic techniques to explore interactions between
photons and other degrees of freedom such as qubits
by means of Fourier analysis on hyperbolic space. The
strong coupling regime in experiment then constitutes an

• Green’s	funcKon
QuanKKve	Match	for	Large	System	Sizes

14

FIG. 8. Colour plots of selected numerical eigenstates of three shells of the heptagon-kagome lattice. States are
ordered from highest to lowest energy, and are plotted by placing a circle on each lattice site of the e↵ective lattice. The size of
the circle indicates the amplitude of the state on that site, and the colour its phase. a, The maximally excited state. This state
is uniform in phase, but its amplitude varies radially due to the e↵ective confinement from the missing links at the boundary
of the simulation. b-c, Examples of the two next-highest states. They bear a striking resemblance to Laguerre-Gaussian or
particle-in-a-cylindrical box modes found in flat Euclidean space. d-f, Selected intermediate excited states. Notice that the
state in f shows both amplitude and phase modulation in the azimuthal direction, with independent periods. g, The localized
eigenstate of compact support that forms the flat band.

large number of states like the one in Fig. 8e which reside
primarily at the edge of the system. Another intriguing
feature is the existence of states like the one in Fig. 8f,
which display azimuthal amplitude and phase modula-
tion with di↵erent periods.

A flat-band eigenstate is shown in Fig. 8g. The analo-
gous state in the kagome lattice encircles a single hexago-
nal plaquette, but this type of behavior is not possible in
a hyperbolic kagome-like lattice formed with odd-sided
polygons because the sign flips cannot be consistently
maintained. Therefore, the flat-band state in the hep-
tagon kagome lattice (or any 2n+ 1-gon kagome lattice)
consists of a single loop across two plaquettes in which
the phase flips by ⇡ between every neighboring pair of
sites. It is a localized eigenstate which is protected from
hopping by destructive interference in the triangular pla-
quettes which border the loop. Since this state has com-
pact support, translations of it are orthogonal and form
a degenerate manifold of states whose multiplicity is pro-
portional to the system size.

Lattice Curvatures

Compared to spherical or hyperbolic space, familiar
Euclidean space is unique in that there is no intrinsic
length scale. In particular, polygons have the same in-
ternal angles, regardless of size. Therefore, any Euclidean
tiling can be scaled up or down in size and remain un-
changed. This is not true in spherical or hyperbolic space

where there is a natural length scale R which is set by
the Gaussian curvature K = ±1/R2 [45]. In both cases,
the shape of a polygon depends on its size relative to this
length scale [1, 25]. For example, consider a triangle on
the surface of a sphere which has one vertex at the north
pole and the other two on the equator separated by ⇡/2
longitudinally. The total internal angle of this triangle
is 3⇡/2 (each angle is ⇡/2), but if it is reduced in size
until it is much smaller than the radius of curvature of
the sphere, it tends to a Euclidean triangle with a total
internal angle of ⇡. Tiles in spherical space therefore get
“fatter” as they increase in size and can cover gaps left
between Euclidean tiles of the same shape. Hyperbolic
polygons, however, have smaller internal angles at their
vertices than their Euclidean counterparts. Therefore,
hyperbolic tilings are precisely those for which the tiles
would overlap if drawn according to Euclidean geometry.
(See Fig. 3.) As hyperbolic polygons become larger and
larger, their internal angles decrease progressively, and
they become “pointier”.

Because of this size-dependent geometry, whether or
not a set of tiles can form a valid lattice in curved space
depends on their size. The polygons must be precisely big
enough so that the tiles fit exactly. Increasing the size
of the polygons any further will cause gaps or overlaps
to appear between the tiles, depending on the sign of
the curvature. Therefore, for fixed curvature, each non-
Euclidean lattice can only exist for a specific tile size.
Conversely each lattice can be though of as having an
intrinsic curvature given by the required ratio of inter-
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first two eigenvalues ofH(cont) are readily computed from
 km(L) = 0 for m = 0, 1, respectively, and agree remark-
ably well with the graph data for ` & 4, see Table I and
Fig. 2. For `! 1 we have [51]

E
(cont)
0,1 ⇠ E1 +

3⇡2
h
2

4

1

(ln' · `+ c0,1)2
, (14)

with ' = (1 +
p
5)/2, c0 = ln 2, and c1 = ln 2� 1.

As we go to higher energies, the spectra of H

and H
(cont) start to deviate more and more. Still,

the graph and continuum partition functions Z =P
n ⇥(�En)e��En and Z

0 =
P

n ⇥(�E
(cont)
n )e��E(cont)

n

with inverse temperature � agree well, see the inset of
Fig. 2. (We limit the sums to negative energies to
roughly cut o↵ high energy contributions clearly outside
the continuum approximation.) The ability to quanti-

tatively reproduce the low-energy graph spectrum and
predict the behavior for large graphs by means of the
continuum approximation constitutes the third main re-
sult of this work.

Our second application of the continuum theory is the
computation of correlation functions on the graph from
the continuum Green function. We denote the Green
function of H = �A by

Gij(!) =
⇣ 1

H � !

⌘

ij
=

NX

n=1

 n(i) ⇤
n(j)

En � !
. (15)

Here  n and En are the eigenvectors and eigenenergies
of H, H n = En n, and ! 2 C is a complex frequency.
Gij(!) constitutes the measurable two-point correlation

function hâi(!)â†j(!)i0 for the free theory averaged with

respect to Ĥ0, and can be written as an auxiliary field
Gaussian path integral on the graph. Approximating the
latter by the continuum expressions we obtain [51]

Gij(!) ⇡
⇡

21h2
G

⇣
zi, zj ,

4(! + 3)

3h2
, L

⌘
. (16)

Here G(z, z0,�, L) is the Green function of the hyperbolic
Helmholtz operator, satisfying (� + �g)G(z, z0,�, L) =
�(1�|z|2)2�(2)(z�z

0) and Dirichlet boundary conditions
G(z, z0,�, L) = 0 for |z| = L or |z0| = L. Again, the disk
radius L is matched to ` through Eq. (9). The accuracy
of the approximation in Eq. (16) is remarkably good as
we show in Fig. 3.

The continuum Green function G(z, z0,�, L) is
uniquely specified by the Dirichlet boundary condition
[55, 61–63]. The full but lengthy analytic expression is
given in the SM [51]. As L ! 1, it is solely a function
of the hyperbolic distance d(z, z0) due to automorphism
invariance. For example, for � = 0 we have

G(z, z0, 0, L) = � 1

4⇡
ln
���
L(z � z

0)

L2 � zz0

���
2
, (17)
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FIG. 3. Quantitative match between graph Green function
Gij and continuum Green function G(zi, zj). We fix site zi

to be on the 2nd ring, and plot the correlations as a function
Fj of site zj . Upper panel. Results for ! = �2.95 just below
E0. (Left). The two plots are Fj = Gij and Fj = G(zi, zj).
The size of dots is proportional to |Fj |1/2, and blue/red corre-
sponds to positive/negative sign of Fj . (Right). Mean corre-
lation function vs. hyperbolic distance dij = d(zi, zj), where
the red (black) data is the graph (continuum) function. To
obtain the curves, we make a list of pairs (Fj , dij) and com-
pute the average Fj as a function of distance, with the error
bar being the standard deviation. The quantitative agree-
ment between graph and continuum is remarkable. Emergent
conformal symmetry is reflected by the data points collapsing
onto a single curve Gij = f(dij) with some function f for large
`. The main plots are for ` = 6, the insets for ` = 3. Lower

panel. The same setting for ! = �2.5+0.1i with Re(!) > E0.
We plot the real part of the correlation function.

which is a function of tanh d(z, z0) = | z�z0

1�zz̄0 | for L =
1. In turn, this implies that also the graph correlation
function Gij(!) is approximately a universal function of
the hyperbolic distance dij = d(zi, zj) for large `, as is
shown in Fig. 3. The quantiative matching of graph and
continuum Green functions and the finding of emergent
conformal symmetry on the hyperbolic lattice constitute
our fourth main result of this work.

The continuum approximation for hyperbolic lattices
that we have put forward provides a computational
framework to e�ciently compute observables relevant
for future circuit QED experiments simulating curved
spaces: the continuum Green functions can be used in
diagrammatic techniques to explore interactions between
photons and other degrees of freedom such as qubits
by means of Fourier analysis on hyperbolic space. The
strong coupling regime in experiment then constitutes an

• Green’s	funcKon

• “Ground”	state	energy
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FIG. 8. Colour plots of selected numerical eigenstates of three shells of the heptagon-kagome lattice. States are
ordered from highest to lowest energy, and are plotted by placing a circle on each lattice site of the e↵ective lattice. The size of
the circle indicates the amplitude of the state on that site, and the colour its phase. a, The maximally excited state. This state
is uniform in phase, but its amplitude varies radially due to the e↵ective confinement from the missing links at the boundary
of the simulation. b-c, Examples of the two next-highest states. They bear a striking resemblance to Laguerre-Gaussian or
particle-in-a-cylindrical box modes found in flat Euclidean space. d-f, Selected intermediate excited states. Notice that the
state in f shows both amplitude and phase modulation in the azimuthal direction, with independent periods. g, The localized
eigenstate of compact support that forms the flat band.

large number of states like the one in Fig. 8e which reside
primarily at the edge of the system. Another intriguing
feature is the existence of states like the one in Fig. 8f,
which display azimuthal amplitude and phase modula-
tion with di↵erent periods.

A flat-band eigenstate is shown in Fig. 8g. The analo-
gous state in the kagome lattice encircles a single hexago-
nal plaquette, but this type of behavior is not possible in
a hyperbolic kagome-like lattice formed with odd-sided
polygons because the sign flips cannot be consistently
maintained. Therefore, the flat-band state in the hep-
tagon kagome lattice (or any 2n+ 1-gon kagome lattice)
consists of a single loop across two plaquettes in which
the phase flips by ⇡ between every neighboring pair of
sites. It is a localized eigenstate which is protected from
hopping by destructive interference in the triangular pla-
quettes which border the loop. Since this state has com-
pact support, translations of it are orthogonal and form
a degenerate manifold of states whose multiplicity is pro-
portional to the system size.

Lattice Curvatures

Compared to spherical or hyperbolic space, familiar
Euclidean space is unique in that there is no intrinsic
length scale. In particular, polygons have the same in-
ternal angles, regardless of size. Therefore, any Euclidean
tiling can be scaled up or down in size and remain un-
changed. This is not true in spherical or hyperbolic space

where there is a natural length scale R which is set by
the Gaussian curvature K = ±1/R2 [45]. In both cases,
the shape of a polygon depends on its size relative to this
length scale [1, 25]. For example, consider a triangle on
the surface of a sphere which has one vertex at the north
pole and the other two on the equator separated by ⇡/2
longitudinally. The total internal angle of this triangle
is 3⇡/2 (each angle is ⇡/2), but if it is reduced in size
until it is much smaller than the radius of curvature of
the sphere, it tends to a Euclidean triangle with a total
internal angle of ⇡. Tiles in spherical space therefore get
“fatter” as they increase in size and can cover gaps left
between Euclidean tiles of the same shape. Hyperbolic
polygons, however, have smaller internal angles at their
vertices than their Euclidean counterparts. Therefore,
hyperbolic tilings are precisely those for which the tiles
would overlap if drawn according to Euclidean geometry.
(See Fig. 3.) As hyperbolic polygons become larger and
larger, their internal angles decrease progressively, and
they become “pointier”.

Because of this size-dependent geometry, whether or
not a set of tiles can form a valid lattice in curved space
depends on their size. The polygons must be precisely big
enough so that the tiles fit exactly. Increasing the size
of the polygons any further will cause gaps or overlaps
to appear between the tiles, depending on the sign of
the curvature. Therefore, for fixed curvature, each non-
Euclidean lattice can only exist for a specific tile size.
Conversely each lattice can be though of as having an
intrinsic curvature given by the required ratio of inter-
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first two eigenvalues ofH(cont) are readily computed from
 km(L) = 0 for m = 0, 1, respectively, and agree remark-
ably well with the graph data for ` & 4, see Table I and
Fig. 2. For `! 1 we have [51]

E
(cont)
0,1 ⇠ E1 +

3⇡2
h
2

4

1

(ln' · `+ c0,1)2
, (14)

with ' = (1 +
p
5)/2, c0 = ln 2, and c1 = ln 2� 1.

As we go to higher energies, the spectra of H

and H
(cont) start to deviate more and more. Still,

the graph and continuum partition functions Z =P
n ⇥(�En)e��En and Z

0 =
P

n ⇥(�E
(cont)
n )e��E(cont)

n

with inverse temperature � agree well, see the inset of
Fig. 2. (We limit the sums to negative energies to
roughly cut o↵ high energy contributions clearly outside
the continuum approximation.) The ability to quanti-

tatively reproduce the low-energy graph spectrum and
predict the behavior for large graphs by means of the
continuum approximation constitutes the third main re-
sult of this work.

Our second application of the continuum theory is the
computation of correlation functions on the graph from
the continuum Green function. We denote the Green
function of H = �A by

Gij(!) =
⇣ 1

H � !

⌘

ij
=

NX

n=1

 n(i) ⇤
n(j)

En � !
. (15)

Here  n and En are the eigenvectors and eigenenergies
of H, H n = En n, and ! 2 C is a complex frequency.
Gij(!) constitutes the measurable two-point correlation

function hâi(!)â†j(!)i0 for the free theory averaged with

respect to Ĥ0, and can be written as an auxiliary field
Gaussian path integral on the graph. Approximating the
latter by the continuum expressions we obtain [51]

Gij(!) ⇡
⇡

21h2
G

⇣
zi, zj ,

4(! + 3)

3h2
, L

⌘
. (16)

Here G(z, z0,�, L) is the Green function of the hyperbolic
Helmholtz operator, satisfying (� + �g)G(z, z0,�, L) =
�(1�|z|2)2�(2)(z�z

0) and Dirichlet boundary conditions
G(z, z0,�, L) = 0 for |z| = L or |z0| = L. Again, the disk
radius L is matched to ` through Eq. (9). The accuracy
of the approximation in Eq. (16) is remarkably good as
we show in Fig. 3.

The continuum Green function G(z, z0,�, L) is
uniquely specified by the Dirichlet boundary condition
[55, 61–63]. The full but lengthy analytic expression is
given in the SM [51]. As L ! 1, it is solely a function
of the hyperbolic distance d(z, z0) due to automorphism
invariance. For example, for � = 0 we have

G(z, z0, 0, L) = � 1

4⇡
ln
���
L(z � z

0)

L2 � zz0

���
2
, (17)
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FIG. 3. Quantitative match between graph Green function
Gij and continuum Green function G(zi, zj). We fix site zi

to be on the 2nd ring, and plot the correlations as a function
Fj of site zj . Upper panel. Results for ! = �2.95 just below
E0. (Left). The two plots are Fj = Gij and Fj = G(zi, zj).
The size of dots is proportional to |Fj |1/2, and blue/red corre-
sponds to positive/negative sign of Fj . (Right). Mean corre-
lation function vs. hyperbolic distance dij = d(zi, zj), where
the red (black) data is the graph (continuum) function. To
obtain the curves, we make a list of pairs (Fj , dij) and com-
pute the average Fj as a function of distance, with the error
bar being the standard deviation. The quantitative agree-
ment between graph and continuum is remarkable. Emergent
conformal symmetry is reflected by the data points collapsing
onto a single curve Gij = f(dij) with some function f for large
`. The main plots are for ` = 6, the insets for ` = 3. Lower

panel. The same setting for ! = �2.5+0.1i with Re(!) > E0.
We plot the real part of the correlation function.

which is a function of tanh d(z, z0) = | z�z0

1�zz̄0 | for L =
1. In turn, this implies that also the graph correlation
function Gij(!) is approximately a universal function of
the hyperbolic distance dij = d(zi, zj) for large `, as is
shown in Fig. 3. The quantiative matching of graph and
continuum Green functions and the finding of emergent
conformal symmetry on the hyperbolic lattice constitute
our fourth main result of this work.

The continuum approximation for hyperbolic lattices
that we have put forward provides a computational
framework to e�ciently compute observables relevant
for future circuit QED experiments simulating curved
spaces: the continuum Green functions can be used in
diagrammatic techniques to explore interactions between
photons and other degrees of freedom such as qubits
by means of Fourier analysis on hyperbolic space. The
strong coupling regime in experiment then constitutes an

• Green’s	funcKon

• “Ground”	state	energy

• “First”	excited	state	energies.
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FIG. 8. Colour plots of selected numerical eigenstates of three shells of the heptagon-kagome lattice. States are
ordered from highest to lowest energy, and are plotted by placing a circle on each lattice site of the e↵ective lattice. The size of
the circle indicates the amplitude of the state on that site, and the colour its phase. a, The maximally excited state. This state
is uniform in phase, but its amplitude varies radially due to the e↵ective confinement from the missing links at the boundary
of the simulation. b-c, Examples of the two next-highest states. They bear a striking resemblance to Laguerre-Gaussian or
particle-in-a-cylindrical box modes found in flat Euclidean space. d-f, Selected intermediate excited states. Notice that the
state in f shows both amplitude and phase modulation in the azimuthal direction, with independent periods. g, The localized
eigenstate of compact support that forms the flat band.

large number of states like the one in Fig. 8e which reside
primarily at the edge of the system. Another intriguing
feature is the existence of states like the one in Fig. 8f,
which display azimuthal amplitude and phase modula-
tion with di↵erent periods.

A flat-band eigenstate is shown in Fig. 8g. The analo-
gous state in the kagome lattice encircles a single hexago-
nal plaquette, but this type of behavior is not possible in
a hyperbolic kagome-like lattice formed with odd-sided
polygons because the sign flips cannot be consistently
maintained. Therefore, the flat-band state in the hep-
tagon kagome lattice (or any 2n+ 1-gon kagome lattice)
consists of a single loop across two plaquettes in which
the phase flips by ⇡ between every neighboring pair of
sites. It is a localized eigenstate which is protected from
hopping by destructive interference in the triangular pla-
quettes which border the loop. Since this state has com-
pact support, translations of it are orthogonal and form
a degenerate manifold of states whose multiplicity is pro-
portional to the system size.

Lattice Curvatures

Compared to spherical or hyperbolic space, familiar
Euclidean space is unique in that there is no intrinsic
length scale. In particular, polygons have the same in-
ternal angles, regardless of size. Therefore, any Euclidean
tiling can be scaled up or down in size and remain un-
changed. This is not true in spherical or hyperbolic space

where there is a natural length scale R which is set by
the Gaussian curvature K = ±1/R2 [45]. In both cases,
the shape of a polygon depends on its size relative to this
length scale [1, 25]. For example, consider a triangle on
the surface of a sphere which has one vertex at the north
pole and the other two on the equator separated by ⇡/2
longitudinally. The total internal angle of this triangle
is 3⇡/2 (each angle is ⇡/2), but if it is reduced in size
until it is much smaller than the radius of curvature of
the sphere, it tends to a Euclidean triangle with a total
internal angle of ⇡. Tiles in spherical space therefore get
“fatter” as they increase in size and can cover gaps left
between Euclidean tiles of the same shape. Hyperbolic
polygons, however, have smaller internal angles at their
vertices than their Euclidean counterparts. Therefore,
hyperbolic tilings are precisely those for which the tiles
would overlap if drawn according to Euclidean geometry.
(See Fig. 3.) As hyperbolic polygons become larger and
larger, their internal angles decrease progressively, and
they become “pointier”.

Because of this size-dependent geometry, whether or
not a set of tiles can form a valid lattice in curved space
depends on their size. The polygons must be precisely big
enough so that the tiles fit exactly. Increasing the size
of the polygons any further will cause gaps or overlaps
to appear between the tiles, depending on the sign of
the curvature. Therefore, for fixed curvature, each non-
Euclidean lattice can only exist for a specific tile size.
Conversely each lattice can be though of as having an
intrinsic curvature given by the required ratio of inter-
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FIG. 1. (Color online) (a) Device picture of 12 capacitively
coupled resonators. The overlaid orange dashed lines have been
drawn between the coupled resonators and illustrate how the photonic
lattice sites form a single Kagomé star. Transmission was measured
between the ports labeled “Input” and “Output”. (b) and (c) Images of
symmetric three-way capacitors with low hopping rate (t/2π = 0.8
MHz) with 10- and 40−µm-wide center pins. (d) Capacitor with
high hopping rate (t/2π = 31 MHz) and 40-µm-wide center pin. (e)
Image of outer coupling capacitor (κ/2π = 0.05 MHz) for 40-µm
center pin. (f) Cross section of coplanar waveguide resonator with
center pin width a, on a dielectric substrate εr .

frequencies, and results in 12 distinct frequencies. We study
the effects of disorder by numerically diagonalizing the Hamil-
tonian for random {δi} drawn from a Gaussian distribution
with a standard deviation σ . The resulting histogram for
the number of eigenmodes N (ω)dω in a given frequency
interval [ω,ω + dω] is shown in Fig. 2 for varying amounts
of disorder σ . When σ " t , disorder is negligible and the
normal-mode frequencies are all close to those of the ideal
lattice. As σ increases and becomes larger than t , the peaks
in the distribution associated with individual normal-mode

FIG. 2. (Color online) The normal-mode histogram in the pres-
ence of disorder. Normal mode frequencies are calculated from Eq. (1)
using a set of {δi} drawn from a Gaussian distribution with standard
deviation σ . For each value of σ , this procedure is repeated 107

times. Histograms are generated from 107 disorder realizations (for
each value of σ ), and are normalized to the maximum number of
counts for clarity. For σ # t , the histogram is dominated by disorder
and forms a single Gaussian. For σ " t , the histogram shows sharp
peaks corresponding to the ideal normal-mode frequencies.

frequencies broaden and ultimately merge. Once merging
occurs, the observed mode frequencies and corresponding
modes can no longer be easily identified with the idealized
modes. In the limit of σ # t , the normal-mode histogram
approaches a single Gaussian of width σ from which the
overall disorder of individual resonator frequencies can be
extracted. For this reason, devices with a small hopping rate t
are ideal for discerning the effects of disorder.

We have fabricated and measured 25 arrays of 12 cavities
to quantify disorder and assess the feasibility of quantum
simulation in CQED lattices. By design, each coplanar
waveguide resonator had a frequency of ωr/2π ≈ 7 GHz,
and an impedance Z0 = 50 '. The devices were fabricated
using photolithography on 200 nm of Nb sputtered onto a
500−µm-thick sapphire substrate. Each device was mounted
using high-performance silver paste and then wire bonded to
a copper circuit board. Wire bonds were also used to connect
all ground planes. At the outer edges of the array, each cavity
is capacitively coupled to a transmission line, resulting in a
photon escape rate κ = 4Z2

0C
2
outω

3
r to the continuum. This

allows us to measure transmission through opposite ports
(Fig. 1) of the array using a vector network analyzer. The
unused ports were connected to 50 ' terminators, although
no significant difference was observed when the ports were
left open. Each device was cooled to a base temperature of
20 mK inside a dilution refrigerator—a necessary requirement
for future quantum simulations with small numbers of polari-
tons [7–11,23].

The set of our 25 devices, summarized in Table I, includes
samples with two distinct hopping rates of t/2π = 0.8 MHz
and t/2π = 31 MHz. These nominal values were obtained
from Eq. (2) by using values for the coupling capacitances
determined using a finite-element calculation. While the high-t
devices allow us to access t # σ and are most useful for
quantum simulation, the low-t devices are the better choice
for characterizing disorder.

We extract normal-mode frequencies from the peak posi-
tions in the measured transmission spectra [Figs. 3(a)–3(c)]
in order to determine the disorder. To account for small
systematic shifts in devices made in separate fabrication
batches, all frequencies were expressed relative to the mean
peak frequency of each spectrum. For low-t devices, not all
12 peaks are always visible. Such “missing” peaks can be due

TABLE I. Results extracted from 25 measured devices. Devices
were characterized with two different photon hopping rates t and
three different center pin widths a. The random disorder σ was
extracted from peak positions of the transmission spectrum for each
device. The disorder decreases for increasing a. The ratio σ/t is a
metric of how the normal-mode frequencies are affected by disorder.
For the 40 µm devices, σ is reduced to less that two parts in 104 of
ωr/2π . All uncertainties are computed from standard deviation of
individual measurements.

t/2π (MHz) a (µm) σ/2π (MHz) σ/t No. measured

0.8 10 9.1 ± 2.8 11.5 13
0.8 20 3.9 ± 1.2 4.9 4
0.8 40 1.4 ± 0.8 1.7 4
31 40 1.3 ± 0.3 0.04 4
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FIG. 3. (Color online) Transmission spectra for measured de-
vices. The first column shows spectra for devices with (a) t/2π =
0.8 MHz, a = 40 µm, (b) t/2π = 0.8 MHz, a = 20 µm, and (c) and
t/2π = 0.8 MHz, a = 10 µm. The width of the spectrum decreases
for increasing resonator width, demonstrating a decrease in σ . The
second column (d),(e) shows transmission spectra for two nominally
identical devices with t/2π = 31 MHz and a = 40 µm. Each scan
contains 12 well-defined peaks that are consistent between the
two devices. Peak positions are similar to those expected, when a
systematic edge effect due to the difference between inner and outer
capacitors is accounted for. The inset shows the lowest-energy mode
that is localized on the inner six resonators in the absence of disorder.

to normal-mode degeneracies (occurring in the ideal case), as
well as normal modes with small or vanishing amplitude in
either of the resonators coupled to the input or output port.

For low-t devices, analyzing the peak positions provides a
systematic method for extracting σ from a transmission mea-
surement. Specifically, the disorder strength can be extracted
from the peak positions using

σ 2 =
〈

1
n

n∑

i=1

δ2
i

〉

=
〈

1
n

n∑

i=1

(
$dis

i − $̄dis
i

)2

〉

− 1
n

n∑

i=1

($i − $̄i)2, (3)

where n = 12 is the number of resonators in each sample, and
$i and $dis

i denote the 12 normal-mode frequencies in the
absence and presence of disorder, respectively. $̄i and $̄dis

i

are their means (for a single disorder realization), whereas
ensemble averages over disorder realization are denoted by
〈·〉. In the disorderless case, the “variance” of the normal-mode
frequencies of the Kagomé star is 3t2.

Applying this method to samples with a standard 10 µm
width of the transmission line center pin, we find that the
disorder σ/2π = (9.1 ± 2.8) MHz is larger than expected
from resonator length variations due to finite resolution in
optical lithography. To investigate the origin of this disorder,
we fabricate devices with different widths a of the center pin,
while maintaining a constant Z0 throughout, and find that there
is a systematic dependence of disorder on a.

The magnitude of disorder decreases with increasing center
pin width (Fig. 4). This dependence of disorder on the device
geometry can be attributed to random variations in the width
of the center pin that arise during microfabrication. These
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FIG. 4. (Color online) Random disorder versus center pin width
for all devices. Disorder extracted from low-t devices is plotted in
black with upward pointing triangles, while disorder extracted from
high-t devices is plotted in green with downward pointing triangle.
The curve shows the difference in frequency for two resonators, one
with center pin width equal to the value on the horizontal axis and
the other with center pin width 600 nm smaller and dielectric gap
1200 nm larger. Error bars are computed from the standard deviation
of individual measurements.

variations in width result in variations in the kinetic inductance
Lk , which in turn affects the resonator frequency through the
relation

ωr = 1
2
√

(Lm + Lk)Ctot
, (4)

where Lm is the intrinsic magnetic inductance and Ctot is
the total capacitance. In normal metals, Lk is suppressed by
electron scattering but in superconductors the dc electrical
resistance is vanishing and Lk is no longer suppressed.
Although Lk is more relevant in superconductors, it is still
two orders of magnitude smaller than Lm, for the device
geometry considered here. For a single resonator, Lk typically
results in only a small shift in ωr [24,25]. For arrays of
coupled resonators, however, these small shifts can introduce
significant disorder if the kinetic inductance contributions vary
across the array.

For the small length scales used here, the sensitivity of the
kinetic inductance to variations in a decreases rapidly as the
width a is increased [26,27].

In our devices, we observe variations in the center pin width
of up to ∼600 nm and twice that for the dielectric gap, when
examining them with a scanning electron microscope. The
random disorder expected due to kinetic inductance variations
can be estimated by comparing ωr for cavities of equal
length but with widths differing by the observed 600 nm; see
Fig. 4. The random disorder observed here is consistent with
variations in device geometry and can be reduced to less than
two parts in 104 by making resonators with 40-µm-wide center
pins.

Using this strategy to reproducibly obtain devices with
small disorder, we next turn to the high-t devices. Trans-
mission spectra for all four of these devices revealed very
similar normal-mode frequencies, confirming that disorder
was small. Two representative transmission spectra are shown
in Figs. 3(d) and 3(e). For all high-t devices, the lowest-energy
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FIG. 1. (Color online) (a) Device picture of 12 capacitively
coupled resonators. The overlaid orange dashed lines have been
drawn between the coupled resonators and illustrate how the photonic
lattice sites form a single Kagomé star. Transmission was measured
between the ports labeled “Input” and “Output”. (b) and (c) Images of
symmetric three-way capacitors with low hopping rate (t/2π = 0.8
MHz) with 10- and 40−µm-wide center pins. (d) Capacitor with
high hopping rate (t/2π = 31 MHz) and 40-µm-wide center pin. (e)
Image of outer coupling capacitor (κ/2π = 0.05 MHz) for 40-µm
center pin. (f) Cross section of coplanar waveguide resonator with
center pin width a, on a dielectric substrate εr .

frequencies, and results in 12 distinct frequencies. We study
the effects of disorder by numerically diagonalizing the Hamil-
tonian for random {δi} drawn from a Gaussian distribution
with a standard deviation σ . The resulting histogram for
the number of eigenmodes N (ω)dω in a given frequency
interval [ω,ω + dω] is shown in Fig. 2 for varying amounts
of disorder σ . When σ " t , disorder is negligible and the
normal-mode frequencies are all close to those of the ideal
lattice. As σ increases and becomes larger than t , the peaks
in the distribution associated with individual normal-mode

FIG. 2. (Color online) The normal-mode histogram in the pres-
ence of disorder. Normal mode frequencies are calculated from Eq. (1)
using a set of {δi} drawn from a Gaussian distribution with standard
deviation σ . For each value of σ , this procedure is repeated 107

times. Histograms are generated from 107 disorder realizations (for
each value of σ ), and are normalized to the maximum number of
counts for clarity. For σ # t , the histogram is dominated by disorder
and forms a single Gaussian. For σ " t , the histogram shows sharp
peaks corresponding to the ideal normal-mode frequencies.

frequencies broaden and ultimately merge. Once merging
occurs, the observed mode frequencies and corresponding
modes can no longer be easily identified with the idealized
modes. In the limit of σ # t , the normal-mode histogram
approaches a single Gaussian of width σ from which the
overall disorder of individual resonator frequencies can be
extracted. For this reason, devices with a small hopping rate t
are ideal for discerning the effects of disorder.

We have fabricated and measured 25 arrays of 12 cavities
to quantify disorder and assess the feasibility of quantum
simulation in CQED lattices. By design, each coplanar
waveguide resonator had a frequency of ωr/2π ≈ 7 GHz,
and an impedance Z0 = 50 '. The devices were fabricated
using photolithography on 200 nm of Nb sputtered onto a
500−µm-thick sapphire substrate. Each device was mounted
using high-performance silver paste and then wire bonded to
a copper circuit board. Wire bonds were also used to connect
all ground planes. At the outer edges of the array, each cavity
is capacitively coupled to a transmission line, resulting in a
photon escape rate κ = 4Z2

0C
2
outω

3
r to the continuum. This

allows us to measure transmission through opposite ports
(Fig. 1) of the array using a vector network analyzer. The
unused ports were connected to 50 ' terminators, although
no significant difference was observed when the ports were
left open. Each device was cooled to a base temperature of
20 mK inside a dilution refrigerator—a necessary requirement
for future quantum simulations with small numbers of polari-
tons [7–11,23].

The set of our 25 devices, summarized in Table I, includes
samples with two distinct hopping rates of t/2π = 0.8 MHz
and t/2π = 31 MHz. These nominal values were obtained
from Eq. (2) by using values for the coupling capacitances
determined using a finite-element calculation. While the high-t
devices allow us to access t # σ and are most useful for
quantum simulation, the low-t devices are the better choice
for characterizing disorder.

We extract normal-mode frequencies from the peak posi-
tions in the measured transmission spectra [Figs. 3(a)–3(c)]
in order to determine the disorder. To account for small
systematic shifts in devices made in separate fabrication
batches, all frequencies were expressed relative to the mean
peak frequency of each spectrum. For low-t devices, not all
12 peaks are always visible. Such “missing” peaks can be due

TABLE I. Results extracted from 25 measured devices. Devices
were characterized with two different photon hopping rates t and
three different center pin widths a. The random disorder σ was
extracted from peak positions of the transmission spectrum for each
device. The disorder decreases for increasing a. The ratio σ/t is a
metric of how the normal-mode frequencies are affected by disorder.
For the 40 µm devices, σ is reduced to less that two parts in 104 of
ωr/2π . All uncertainties are computed from standard deviation of
individual measurements.

t/2π (MHz) a (µm) σ/2π (MHz) σ/t No. measured

0.8 10 9.1 ± 2.8 11.5 13
0.8 20 3.9 ± 1.2 4.9 4
0.8 40 1.4 ± 0.8 1.7 4
31 40 1.3 ± 0.3 0.04 4
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FIG. 3. (Color online) Transmission spectra for measured de-
vices. The first column shows spectra for devices with (a) t/2π =
0.8 MHz, a = 40 µm, (b) t/2π = 0.8 MHz, a = 20 µm, and (c) and
t/2π = 0.8 MHz, a = 10 µm. The width of the spectrum decreases
for increasing resonator width, demonstrating a decrease in σ . The
second column (d),(e) shows transmission spectra for two nominally
identical devices with t/2π = 31 MHz and a = 40 µm. Each scan
contains 12 well-defined peaks that are consistent between the
two devices. Peak positions are similar to those expected, when a
systematic edge effect due to the difference between inner and outer
capacitors is accounted for. The inset shows the lowest-energy mode
that is localized on the inner six resonators in the absence of disorder.

to normal-mode degeneracies (occurring in the ideal case), as
well as normal modes with small or vanishing amplitude in
either of the resonators coupled to the input or output port.

For low-t devices, analyzing the peak positions provides a
systematic method for extracting σ from a transmission mea-
surement. Specifically, the disorder strength can be extracted
from the peak positions using

σ 2 =
〈

1
n

n∑

i=1

δ2
i

〉

=
〈

1
n

n∑

i=1

(
$dis

i − $̄dis
i

)2

〉

− 1
n

n∑

i=1

($i − $̄i)2, (3)

where n = 12 is the number of resonators in each sample, and
$i and $dis

i denote the 12 normal-mode frequencies in the
absence and presence of disorder, respectively. $̄i and $̄dis

i

are their means (for a single disorder realization), whereas
ensemble averages over disorder realization are denoted by
〈·〉. In the disorderless case, the “variance” of the normal-mode
frequencies of the Kagomé star is 3t2.

Applying this method to samples with a standard 10 µm
width of the transmission line center pin, we find that the
disorder σ/2π = (9.1 ± 2.8) MHz is larger than expected
from resonator length variations due to finite resolution in
optical lithography. To investigate the origin of this disorder,
we fabricate devices with different widths a of the center pin,
while maintaining a constant Z0 throughout, and find that there
is a systematic dependence of disorder on a.

The magnitude of disorder decreases with increasing center
pin width (Fig. 4). This dependence of disorder on the device
geometry can be attributed to random variations in the width
of the center pin that arise during microfabrication. These
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FIG. 4. (Color online) Random disorder versus center pin width
for all devices. Disorder extracted from low-t devices is plotted in
black with upward pointing triangles, while disorder extracted from
high-t devices is plotted in green with downward pointing triangle.
The curve shows the difference in frequency for two resonators, one
with center pin width equal to the value on the horizontal axis and
the other with center pin width 600 nm smaller and dielectric gap
1200 nm larger. Error bars are computed from the standard deviation
of individual measurements.

variations in width result in variations in the kinetic inductance
Lk , which in turn affects the resonator frequency through the
relation

ωr = 1
2
√

(Lm + Lk)Ctot
, (4)

where Lm is the intrinsic magnetic inductance and Ctot is
the total capacitance. In normal metals, Lk is suppressed by
electron scattering but in superconductors the dc electrical
resistance is vanishing and Lk is no longer suppressed.
Although Lk is more relevant in superconductors, it is still
two orders of magnitude smaller than Lm, for the device
geometry considered here. For a single resonator, Lk typically
results in only a small shift in ωr [24,25]. For arrays of
coupled resonators, however, these small shifts can introduce
significant disorder if the kinetic inductance contributions vary
across the array.

For the small length scales used here, the sensitivity of the
kinetic inductance to variations in a decreases rapidly as the
width a is increased [26,27].

In our devices, we observe variations in the center pin width
of up to ∼600 nm and twice that for the dielectric gap, when
examining them with a scanning electron microscope. The
random disorder expected due to kinetic inductance variations
can be estimated by comparing ωr for cavities of equal
length but with widths differing by the observed 600 nm; see
Fig. 4. The random disorder observed here is consistent with
variations in device geometry and can be reduced to less than
two parts in 104 by making resonators with 40-µm-wide center
pins.

Using this strategy to reproducibly obtain devices with
small disorder, we next turn to the high-t devices. Trans-
mission spectra for all four of these devices revealed very
similar normal-mode frequencies, confirming that disorder
was small. Two representative transmission spectra are shown
in Figs. 3(d) and 3(e). For all high-t devices, the lowest-energy
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Figure 5.2: Left: Frequency vs length for the eight resonators of a disorder test chip.
These frequencies are fit to the two-parameter equation 3.9, shown as a black curve.
The extracted value of ✏eff is shown. The residuals of this fit shown below do not show
any trend, indicating a good fit, and the size of the residuals describe the disorder of
our fabrication process. Their standard deviation is 2.7 MHz, a disorder consistent
with the fabrication process in [9]. Right: the disorder test chip, the design being
measured in this section. Note that the shape of all eight resonators is the same,
di↵ering only by the length of the tail.

obtain an uncertainty on each resonator frequency would be to perform a fit on the

resonance and use a fit parameter uncertainty. This would yield very small error bars,

less than 1 MHz. That would accurately describe the uncertainty in the frequency

of a single realization of a resonator, but we are interested in the uncertainty of the

frequency of all the resonators fabricated with this same geometry. The fabrication

process introduces an error in the frequency much larger than the uncertainty in the

fit.

5.3 Parallel Straight Test

We now measure the parallel straight distance test chip, which aims to detect the same

e↵ect seen in section 4.3. Those simulations predict that the e↵ect of changing the
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FIG. 1. (Color online) (a) Device picture of 12 capacitively
coupled resonators. The overlaid orange dashed lines have been
drawn between the coupled resonators and illustrate how the photonic
lattice sites form a single Kagomé star. Transmission was measured
between the ports labeled “Input” and “Output”. (b) and (c) Images of
symmetric three-way capacitors with low hopping rate (t/2π = 0.8
MHz) with 10- and 40−µm-wide center pins. (d) Capacitor with
high hopping rate (t/2π = 31 MHz) and 40-µm-wide center pin. (e)
Image of outer coupling capacitor (κ/2π = 0.05 MHz) for 40-µm
center pin. (f) Cross section of coplanar waveguide resonator with
center pin width a, on a dielectric substrate εr .

frequencies, and results in 12 distinct frequencies. We study
the effects of disorder by numerically diagonalizing the Hamil-
tonian for random {δi} drawn from a Gaussian distribution
with a standard deviation σ . The resulting histogram for
the number of eigenmodes N (ω)dω in a given frequency
interval [ω,ω + dω] is shown in Fig. 2 for varying amounts
of disorder σ . When σ " t , disorder is negligible and the
normal-mode frequencies are all close to those of the ideal
lattice. As σ increases and becomes larger than t , the peaks
in the distribution associated with individual normal-mode

FIG. 2. (Color online) The normal-mode histogram in the pres-
ence of disorder. Normal mode frequencies are calculated from Eq. (1)
using a set of {δi} drawn from a Gaussian distribution with standard
deviation σ . For each value of σ , this procedure is repeated 107

times. Histograms are generated from 107 disorder realizations (for
each value of σ ), and are normalized to the maximum number of
counts for clarity. For σ # t , the histogram is dominated by disorder
and forms a single Gaussian. For σ " t , the histogram shows sharp
peaks corresponding to the ideal normal-mode frequencies.

frequencies broaden and ultimately merge. Once merging
occurs, the observed mode frequencies and corresponding
modes can no longer be easily identified with the idealized
modes. In the limit of σ # t , the normal-mode histogram
approaches a single Gaussian of width σ from which the
overall disorder of individual resonator frequencies can be
extracted. For this reason, devices with a small hopping rate t
are ideal for discerning the effects of disorder.

We have fabricated and measured 25 arrays of 12 cavities
to quantify disorder and assess the feasibility of quantum
simulation in CQED lattices. By design, each coplanar
waveguide resonator had a frequency of ωr/2π ≈ 7 GHz,
and an impedance Z0 = 50 '. The devices were fabricated
using photolithography on 200 nm of Nb sputtered onto a
500−µm-thick sapphire substrate. Each device was mounted
using high-performance silver paste and then wire bonded to
a copper circuit board. Wire bonds were also used to connect
all ground planes. At the outer edges of the array, each cavity
is capacitively coupled to a transmission line, resulting in a
photon escape rate κ = 4Z2

0C
2
outω

3
r to the continuum. This

allows us to measure transmission through opposite ports
(Fig. 1) of the array using a vector network analyzer. The
unused ports were connected to 50 ' terminators, although
no significant difference was observed when the ports were
left open. Each device was cooled to a base temperature of
20 mK inside a dilution refrigerator—a necessary requirement
for future quantum simulations with small numbers of polari-
tons [7–11,23].

The set of our 25 devices, summarized in Table I, includes
samples with two distinct hopping rates of t/2π = 0.8 MHz
and t/2π = 31 MHz. These nominal values were obtained
from Eq. (2) by using values for the coupling capacitances
determined using a finite-element calculation. While the high-t
devices allow us to access t # σ and are most useful for
quantum simulation, the low-t devices are the better choice
for characterizing disorder.

We extract normal-mode frequencies from the peak posi-
tions in the measured transmission spectra [Figs. 3(a)–3(c)]
in order to determine the disorder. To account for small
systematic shifts in devices made in separate fabrication
batches, all frequencies were expressed relative to the mean
peak frequency of each spectrum. For low-t devices, not all
12 peaks are always visible. Such “missing” peaks can be due

TABLE I. Results extracted from 25 measured devices. Devices
were characterized with two different photon hopping rates t and
three different center pin widths a. The random disorder σ was
extracted from peak positions of the transmission spectrum for each
device. The disorder decreases for increasing a. The ratio σ/t is a
metric of how the normal-mode frequencies are affected by disorder.
For the 40 µm devices, σ is reduced to less that two parts in 104 of
ωr/2π . All uncertainties are computed from standard deviation of
individual measurements.

t/2π (MHz) a (µm) σ/2π (MHz) σ/t No. measured

0.8 10 9.1 ± 2.8 11.5 13
0.8 20 3.9 ± 1.2 4.9 4
0.8 40 1.4 ± 0.8 1.7 4
31 40 1.3 ± 0.3 0.04 4
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FIG. 3. (Color online) Transmission spectra for measured de-
vices. The first column shows spectra for devices with (a) t/2π =
0.8 MHz, a = 40 µm, (b) t/2π = 0.8 MHz, a = 20 µm, and (c) and
t/2π = 0.8 MHz, a = 10 µm. The width of the spectrum decreases
for increasing resonator width, demonstrating a decrease in σ . The
second column (d),(e) shows transmission spectra for two nominally
identical devices with t/2π = 31 MHz and a = 40 µm. Each scan
contains 12 well-defined peaks that are consistent between the
two devices. Peak positions are similar to those expected, when a
systematic edge effect due to the difference between inner and outer
capacitors is accounted for. The inset shows the lowest-energy mode
that is localized on the inner six resonators in the absence of disorder.

to normal-mode degeneracies (occurring in the ideal case), as
well as normal modes with small or vanishing amplitude in
either of the resonators coupled to the input or output port.

For low-t devices, analyzing the peak positions provides a
systematic method for extracting σ from a transmission mea-
surement. Specifically, the disorder strength can be extracted
from the peak positions using

σ 2 =
〈

1
n

n∑

i=1

δ2
i

〉

=
〈

1
n

n∑

i=1

(
$dis

i − $̄dis
i

)2

〉

− 1
n

n∑

i=1

($i − $̄i)2, (3)

where n = 12 is the number of resonators in each sample, and
$i and $dis

i denote the 12 normal-mode frequencies in the
absence and presence of disorder, respectively. $̄i and $̄dis

i

are their means (for a single disorder realization), whereas
ensemble averages over disorder realization are denoted by
〈·〉. In the disorderless case, the “variance” of the normal-mode
frequencies of the Kagomé star is 3t2.

Applying this method to samples with a standard 10 µm
width of the transmission line center pin, we find that the
disorder σ/2π = (9.1 ± 2.8) MHz is larger than expected
from resonator length variations due to finite resolution in
optical lithography. To investigate the origin of this disorder,
we fabricate devices with different widths a of the center pin,
while maintaining a constant Z0 throughout, and find that there
is a systematic dependence of disorder on a.

The magnitude of disorder decreases with increasing center
pin width (Fig. 4). This dependence of disorder on the device
geometry can be attributed to random variations in the width
of the center pin that arise during microfabrication. These
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FIG. 4. (Color online) Random disorder versus center pin width
for all devices. Disorder extracted from low-t devices is plotted in
black with upward pointing triangles, while disorder extracted from
high-t devices is plotted in green with downward pointing triangle.
The curve shows the difference in frequency for two resonators, one
with center pin width equal to the value on the horizontal axis and
the other with center pin width 600 nm smaller and dielectric gap
1200 nm larger. Error bars are computed from the standard deviation
of individual measurements.

variations in width result in variations in the kinetic inductance
Lk , which in turn affects the resonator frequency through the
relation

ωr = 1
2
√

(Lm + Lk)Ctot
, (4)

where Lm is the intrinsic magnetic inductance and Ctot is
the total capacitance. In normal metals, Lk is suppressed by
electron scattering but in superconductors the dc electrical
resistance is vanishing and Lk is no longer suppressed.
Although Lk is more relevant in superconductors, it is still
two orders of magnitude smaller than Lm, for the device
geometry considered here. For a single resonator, Lk typically
results in only a small shift in ωr [24,25]. For arrays of
coupled resonators, however, these small shifts can introduce
significant disorder if the kinetic inductance contributions vary
across the array.

For the small length scales used here, the sensitivity of the
kinetic inductance to variations in a decreases rapidly as the
width a is increased [26,27].

In our devices, we observe variations in the center pin width
of up to ∼600 nm and twice that for the dielectric gap, when
examining them with a scanning electron microscope. The
random disorder expected due to kinetic inductance variations
can be estimated by comparing ωr for cavities of equal
length but with widths differing by the observed 600 nm; see
Fig. 4. The random disorder observed here is consistent with
variations in device geometry and can be reduced to less than
two parts in 104 by making resonators with 40-µm-wide center
pins.

Using this strategy to reproducibly obtain devices with
small disorder, we next turn to the high-t devices. Trans-
mission spectra for all four of these devices revealed very
similar normal-mode frequencies, confirming that disorder
was small. Two representative transmission spectra are shown
in Figs. 3(d) and 3(e). For all high-t devices, the lowest-energy
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Figure 5.2: Left: Frequency vs length for the eight resonators of a disorder test chip.
These frequencies are fit to the two-parameter equation 3.9, shown as a black curve.
The extracted value of ✏eff is shown. The residuals of this fit shown below do not show
any trend, indicating a good fit, and the size of the residuals describe the disorder of
our fabrication process. Their standard deviation is 2.7 MHz, a disorder consistent
with the fabrication process in [9]. Right: the disorder test chip, the design being
measured in this section. Note that the shape of all eight resonators is the same,
di↵ering only by the length of the tail.

obtain an uncertainty on each resonator frequency would be to perform a fit on the

resonance and use a fit parameter uncertainty. This would yield very small error bars,

less than 1 MHz. That would accurately describe the uncertainty in the frequency

of a single realization of a resonator, but we are interested in the uncertainty of the

frequency of all the resonators fabricated with this same geometry. The fabrication

process introduces an error in the frequency much larger than the uncertainty in the

fit.

5.3 Parallel Straight Test

We now measure the parallel straight distance test chip, which aims to detect the same

e↵ect seen in section 4.3. Those simulations predict that the e↵ect of changing the
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Figure 5.1: Left: a wide scan of eight hanger resonators. The resonators have linearly
spaced nominal lengths, resulting in a larger frequency di↵erence between the higher-
frequency resonators. Right: a close-up of a single resonance, taken to precisely
determine the frequency of this resonance. Note that the depth of the resonance
appears greater on the close-up, this is from sparse frequency sampling on the wide
scan missing the lowest point. The 8 dips here correspond to the eight resonators
seen in figure 5.2.

5.2 Disorder Test

The control chip is called the disorder test chip, because it will tell us about the

disorder in our fabrication process. These resonator geometries di↵er only in the

length of their “tails,” whose lengths are spaced evenly between 3.7mm and 4.75mm

in increments of 150µm. Since there are no changes to the shape of each resonator

other than length we expect equation 3.9 to describe their frequencies well, and we

will compare the frequencies of the resonators from other chips to this fit.

The disorder seen here is the result of small variations in the fabrication process

across a single chip, resulting in unpredictable frequency shifts. The authors of ref-

erence [9] reported a disorder of 2 parts in 104 for their fabrication process, which

corresponds to shifts of 1.5 MHz on a 7.5GHz resonator. Our disorder of 2.7MHz is

less than a factor of two greater.

For the remaining experimental data we will take the frequency of lowest trans-

mission to be the resonant frequency, and use the value of 2.7MHz from the disorder

test chip as the uncertainty in the frequency of all the resonators. Another way to

Transmission
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FIG. 1. (Color online) (a) Device picture of 12 capacitively
coupled resonators. The overlaid orange dashed lines have been
drawn between the coupled resonators and illustrate how the photonic
lattice sites form a single Kagomé star. Transmission was measured
between the ports labeled “Input” and “Output”. (b) and (c) Images of
symmetric three-way capacitors with low hopping rate (t/2π = 0.8
MHz) with 10- and 40−µm-wide center pins. (d) Capacitor with
high hopping rate (t/2π = 31 MHz) and 40-µm-wide center pin. (e)
Image of outer coupling capacitor (κ/2π = 0.05 MHz) for 40-µm
center pin. (f) Cross section of coplanar waveguide resonator with
center pin width a, on a dielectric substrate εr .

frequencies, and results in 12 distinct frequencies. We study
the effects of disorder by numerically diagonalizing the Hamil-
tonian for random {δi} drawn from a Gaussian distribution
with a standard deviation σ . The resulting histogram for
the number of eigenmodes N (ω)dω in a given frequency
interval [ω,ω + dω] is shown in Fig. 2 for varying amounts
of disorder σ . When σ " t , disorder is negligible and the
normal-mode frequencies are all close to those of the ideal
lattice. As σ increases and becomes larger than t , the peaks
in the distribution associated with individual normal-mode

FIG. 2. (Color online) The normal-mode histogram in the pres-
ence of disorder. Normal mode frequencies are calculated from Eq. (1)
using a set of {δi} drawn from a Gaussian distribution with standard
deviation σ . For each value of σ , this procedure is repeated 107

times. Histograms are generated from 107 disorder realizations (for
each value of σ ), and are normalized to the maximum number of
counts for clarity. For σ # t , the histogram is dominated by disorder
and forms a single Gaussian. For σ " t , the histogram shows sharp
peaks corresponding to the ideal normal-mode frequencies.

frequencies broaden and ultimately merge. Once merging
occurs, the observed mode frequencies and corresponding
modes can no longer be easily identified with the idealized
modes. In the limit of σ # t , the normal-mode histogram
approaches a single Gaussian of width σ from which the
overall disorder of individual resonator frequencies can be
extracted. For this reason, devices with a small hopping rate t
are ideal for discerning the effects of disorder.

We have fabricated and measured 25 arrays of 12 cavities
to quantify disorder and assess the feasibility of quantum
simulation in CQED lattices. By design, each coplanar
waveguide resonator had a frequency of ωr/2π ≈ 7 GHz,
and an impedance Z0 = 50 '. The devices were fabricated
using photolithography on 200 nm of Nb sputtered onto a
500−µm-thick sapphire substrate. Each device was mounted
using high-performance silver paste and then wire bonded to
a copper circuit board. Wire bonds were also used to connect
all ground planes. At the outer edges of the array, each cavity
is capacitively coupled to a transmission line, resulting in a
photon escape rate κ = 4Z2

0C
2
outω

3
r to the continuum. This

allows us to measure transmission through opposite ports
(Fig. 1) of the array using a vector network analyzer. The
unused ports were connected to 50 ' terminators, although
no significant difference was observed when the ports were
left open. Each device was cooled to a base temperature of
20 mK inside a dilution refrigerator—a necessary requirement
for future quantum simulations with small numbers of polari-
tons [7–11,23].

The set of our 25 devices, summarized in Table I, includes
samples with two distinct hopping rates of t/2π = 0.8 MHz
and t/2π = 31 MHz. These nominal values were obtained
from Eq. (2) by using values for the coupling capacitances
determined using a finite-element calculation. While the high-t
devices allow us to access t # σ and are most useful for
quantum simulation, the low-t devices are the better choice
for characterizing disorder.

We extract normal-mode frequencies from the peak posi-
tions in the measured transmission spectra [Figs. 3(a)–3(c)]
in order to determine the disorder. To account for small
systematic shifts in devices made in separate fabrication
batches, all frequencies were expressed relative to the mean
peak frequency of each spectrum. For low-t devices, not all
12 peaks are always visible. Such “missing” peaks can be due

TABLE I. Results extracted from 25 measured devices. Devices
were characterized with two different photon hopping rates t and
three different center pin widths a. The random disorder σ was
extracted from peak positions of the transmission spectrum for each
device. The disorder decreases for increasing a. The ratio σ/t is a
metric of how the normal-mode frequencies are affected by disorder.
For the 40 µm devices, σ is reduced to less that two parts in 104 of
ωr/2π . All uncertainties are computed from standard deviation of
individual measurements.

t/2π (MHz) a (µm) σ/2π (MHz) σ/t No. measured

0.8 10 9.1 ± 2.8 11.5 13
0.8 20 3.9 ± 1.2 4.9 4
0.8 40 1.4 ± 0.8 1.7 4
31 40 1.3 ± 0.3 0.04 4
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FIG. 3. (Color online) Transmission spectra for measured de-
vices. The first column shows spectra for devices with (a) t/2π =
0.8 MHz, a = 40 µm, (b) t/2π = 0.8 MHz, a = 20 µm, and (c) and
t/2π = 0.8 MHz, a = 10 µm. The width of the spectrum decreases
for increasing resonator width, demonstrating a decrease in σ . The
second column (d),(e) shows transmission spectra for two nominally
identical devices with t/2π = 31 MHz and a = 40 µm. Each scan
contains 12 well-defined peaks that are consistent between the
two devices. Peak positions are similar to those expected, when a
systematic edge effect due to the difference between inner and outer
capacitors is accounted for. The inset shows the lowest-energy mode
that is localized on the inner six resonators in the absence of disorder.

to normal-mode degeneracies (occurring in the ideal case), as
well as normal modes with small or vanishing amplitude in
either of the resonators coupled to the input or output port.

For low-t devices, analyzing the peak positions provides a
systematic method for extracting σ from a transmission mea-
surement. Specifically, the disorder strength can be extracted
from the peak positions using

σ 2 =
〈

1
n

n∑

i=1

δ2
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〉

=
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where n = 12 is the number of resonators in each sample, and
$i and $dis

i denote the 12 normal-mode frequencies in the
absence and presence of disorder, respectively. $̄i and $̄dis

i

are their means (for a single disorder realization), whereas
ensemble averages over disorder realization are denoted by
〈·〉. In the disorderless case, the “variance” of the normal-mode
frequencies of the Kagomé star is 3t2.

Applying this method to samples with a standard 10 µm
width of the transmission line center pin, we find that the
disorder σ/2π = (9.1 ± 2.8) MHz is larger than expected
from resonator length variations due to finite resolution in
optical lithography. To investigate the origin of this disorder,
we fabricate devices with different widths a of the center pin,
while maintaining a constant Z0 throughout, and find that there
is a systematic dependence of disorder on a.

The magnitude of disorder decreases with increasing center
pin width (Fig. 4). This dependence of disorder on the device
geometry can be attributed to random variations in the width
of the center pin that arise during microfabrication. These
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FIG. 4. (Color online) Random disorder versus center pin width
for all devices. Disorder extracted from low-t devices is plotted in
black with upward pointing triangles, while disorder extracted from
high-t devices is plotted in green with downward pointing triangle.
The curve shows the difference in frequency for two resonators, one
with center pin width equal to the value on the horizontal axis and
the other with center pin width 600 nm smaller and dielectric gap
1200 nm larger. Error bars are computed from the standard deviation
of individual measurements.

variations in width result in variations in the kinetic inductance
Lk , which in turn affects the resonator frequency through the
relation

ωr = 1
2
√

(Lm + Lk)Ctot
, (4)

where Lm is the intrinsic magnetic inductance and Ctot is
the total capacitance. In normal metals, Lk is suppressed by
electron scattering but in superconductors the dc electrical
resistance is vanishing and Lk is no longer suppressed.
Although Lk is more relevant in superconductors, it is still
two orders of magnitude smaller than Lm, for the device
geometry considered here. For a single resonator, Lk typically
results in only a small shift in ωr [24,25]. For arrays of
coupled resonators, however, these small shifts can introduce
significant disorder if the kinetic inductance contributions vary
across the array.

For the small length scales used here, the sensitivity of the
kinetic inductance to variations in a decreases rapidly as the
width a is increased [26,27].

In our devices, we observe variations in the center pin width
of up to ∼600 nm and twice that for the dielectric gap, when
examining them with a scanning electron microscope. The
random disorder expected due to kinetic inductance variations
can be estimated by comparing ωr for cavities of equal
length but with widths differing by the observed 600 nm; see
Fig. 4. The random disorder observed here is consistent with
variations in device geometry and can be reduced to less than
two parts in 104 by making resonators with 40-µm-wide center
pins.

Using this strategy to reproducibly obtain devices with
small disorder, we next turn to the high-t devices. Trans-
mission spectra for all four of these devices revealed very
similar normal-mode frequencies, confirming that disorder
was small. Two representative transmission spectra are shown
in Figs. 3(d) and 3(e). For all high-t devices, the lowest-energy

023837-3

• Parallel measurement

Current	Devices	
• Fabricated at UMD 
• Fabrication disorder ~3e-4

CHAPTER 5. EXPERIMENTAL RESULTS 27

Figure 5.2: Left: Frequency vs length for the eight resonators of a disorder test chip.
These frequencies are fit to the two-parameter equation 3.9, shown as a black curve.
The extracted value of ✏eff is shown. The residuals of this fit shown below do not show
any trend, indicating a good fit, and the size of the residuals describe the disorder of
our fabrication process. Their standard deviation is 2.7 MHz, a disorder consistent
with the fabrication process in [9]. Right: the disorder test chip, the design being
measured in this section. Note that the shape of all eight resonators is the same,
di↵ering only by the length of the tail.

obtain an uncertainty on each resonator frequency would be to perform a fit on the

resonance and use a fit parameter uncertainty. This would yield very small error bars,

less than 1 MHz. That would accurately describe the uncertainty in the frequency

of a single realization of a resonator, but we are interested in the uncertainty of the

frequency of all the resonators fabricated with this same geometry. The fabrication

process introduces an error in the frequency much larger than the uncertainty in the

fit.

5.3 Parallel Straight Test

We now measure the parallel straight distance test chip, which aims to detect the same

e↵ect seen in section 4.3. Those simulations predict that the e↵ect of changing the
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Figure 5.1: Left: a wide scan of eight hanger resonators. The resonators have linearly
spaced nominal lengths, resulting in a larger frequency di↵erence between the higher-
frequency resonators. Right: a close-up of a single resonance, taken to precisely
determine the frequency of this resonance. Note that the depth of the resonance
appears greater on the close-up, this is from sparse frequency sampling on the wide
scan missing the lowest point. The 8 dips here correspond to the eight resonators
seen in figure 5.2.

5.2 Disorder Test

The control chip is called the disorder test chip, because it will tell us about the

disorder in our fabrication process. These resonator geometries di↵er only in the

length of their “tails,” whose lengths are spaced evenly between 3.7mm and 4.75mm

in increments of 150µm. Since there are no changes to the shape of each resonator

other than length we expect equation 3.9 to describe their frequencies well, and we

will compare the frequencies of the resonators from other chips to this fit.

The disorder seen here is the result of small variations in the fabrication process

across a single chip, resulting in unpredictable frequency shifts. The authors of ref-

erence [9] reported a disorder of 2 parts in 104 for their fabrication process, which

corresponds to shifts of 1.5 MHz on a 7.5GHz resonator. Our disorder of 2.7MHz is

less than a factor of two greater.

For the remaining experimental data we will take the frequency of lowest trans-

mission to be the resonant frequency, and use the value of 2.7MHz from the disorder

test chip as the uncertainty in the frequency of all the resonators. Another way to
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FIG. 1. (Color online) (a) Device picture of 12 capacitively
coupled resonators. The overlaid orange dashed lines have been
drawn between the coupled resonators and illustrate how the photonic
lattice sites form a single Kagomé star. Transmission was measured
between the ports labeled “Input” and “Output”. (b) and (c) Images of
symmetric three-way capacitors with low hopping rate (t/2π = 0.8
MHz) with 10- and 40−µm-wide center pins. (d) Capacitor with
high hopping rate (t/2π = 31 MHz) and 40-µm-wide center pin. (e)
Image of outer coupling capacitor (κ/2π = 0.05 MHz) for 40-µm
center pin. (f) Cross section of coplanar waveguide resonator with
center pin width a, on a dielectric substrate εr .

frequencies, and results in 12 distinct frequencies. We study
the effects of disorder by numerically diagonalizing the Hamil-
tonian for random {δi} drawn from a Gaussian distribution
with a standard deviation σ . The resulting histogram for
the number of eigenmodes N (ω)dω in a given frequency
interval [ω,ω + dω] is shown in Fig. 2 for varying amounts
of disorder σ . When σ " t , disorder is negligible and the
normal-mode frequencies are all close to those of the ideal
lattice. As σ increases and becomes larger than t , the peaks
in the distribution associated with individual normal-mode

FIG. 2. (Color online) The normal-mode histogram in the pres-
ence of disorder. Normal mode frequencies are calculated from Eq. (1)
using a set of {δi} drawn from a Gaussian distribution with standard
deviation σ . For each value of σ , this procedure is repeated 107

times. Histograms are generated from 107 disorder realizations (for
each value of σ ), and are normalized to the maximum number of
counts for clarity. For σ # t , the histogram is dominated by disorder
and forms a single Gaussian. For σ " t , the histogram shows sharp
peaks corresponding to the ideal normal-mode frequencies.

frequencies broaden and ultimately merge. Once merging
occurs, the observed mode frequencies and corresponding
modes can no longer be easily identified with the idealized
modes. In the limit of σ # t , the normal-mode histogram
approaches a single Gaussian of width σ from which the
overall disorder of individual resonator frequencies can be
extracted. For this reason, devices with a small hopping rate t
are ideal for discerning the effects of disorder.

We have fabricated and measured 25 arrays of 12 cavities
to quantify disorder and assess the feasibility of quantum
simulation in CQED lattices. By design, each coplanar
waveguide resonator had a frequency of ωr/2π ≈ 7 GHz,
and an impedance Z0 = 50 '. The devices were fabricated
using photolithography on 200 nm of Nb sputtered onto a
500−µm-thick sapphire substrate. Each device was mounted
using high-performance silver paste and then wire bonded to
a copper circuit board. Wire bonds were also used to connect
all ground planes. At the outer edges of the array, each cavity
is capacitively coupled to a transmission line, resulting in a
photon escape rate κ = 4Z2

0C
2
outω

3
r to the continuum. This

allows us to measure transmission through opposite ports
(Fig. 1) of the array using a vector network analyzer. The
unused ports were connected to 50 ' terminators, although
no significant difference was observed when the ports were
left open. Each device was cooled to a base temperature of
20 mK inside a dilution refrigerator—a necessary requirement
for future quantum simulations with small numbers of polari-
tons [7–11,23].

The set of our 25 devices, summarized in Table I, includes
samples with two distinct hopping rates of t/2π = 0.8 MHz
and t/2π = 31 MHz. These nominal values were obtained
from Eq. (2) by using values for the coupling capacitances
determined using a finite-element calculation. While the high-t
devices allow us to access t # σ and are most useful for
quantum simulation, the low-t devices are the better choice
for characterizing disorder.

We extract normal-mode frequencies from the peak posi-
tions in the measured transmission spectra [Figs. 3(a)–3(c)]
in order to determine the disorder. To account for small
systematic shifts in devices made in separate fabrication
batches, all frequencies were expressed relative to the mean
peak frequency of each spectrum. For low-t devices, not all
12 peaks are always visible. Such “missing” peaks can be due

TABLE I. Results extracted from 25 measured devices. Devices
were characterized with two different photon hopping rates t and
three different center pin widths a. The random disorder σ was
extracted from peak positions of the transmission spectrum for each
device. The disorder decreases for increasing a. The ratio σ/t is a
metric of how the normal-mode frequencies are affected by disorder.
For the 40 µm devices, σ is reduced to less that two parts in 104 of
ωr/2π . All uncertainties are computed from standard deviation of
individual measurements.

t/2π (MHz) a (µm) σ/2π (MHz) σ/t No. measured

0.8 10 9.1 ± 2.8 11.5 13
0.8 20 3.9 ± 1.2 4.9 4
0.8 40 1.4 ± 0.8 1.7 4
31 40 1.3 ± 0.3 0.04 4
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(a)

(b)

(c)

(d)

(e)

FIG. 3. (Color online) Transmission spectra for measured de-
vices. The first column shows spectra for devices with (a) t/2π =
0.8 MHz, a = 40 µm, (b) t/2π = 0.8 MHz, a = 20 µm, and (c) and
t/2π = 0.8 MHz, a = 10 µm. The width of the spectrum decreases
for increasing resonator width, demonstrating a decrease in σ . The
second column (d),(e) shows transmission spectra for two nominally
identical devices with t/2π = 31 MHz and a = 40 µm. Each scan
contains 12 well-defined peaks that are consistent between the
two devices. Peak positions are similar to those expected, when a
systematic edge effect due to the difference between inner and outer
capacitors is accounted for. The inset shows the lowest-energy mode
that is localized on the inner six resonators in the absence of disorder.

to normal-mode degeneracies (occurring in the ideal case), as
well as normal modes with small or vanishing amplitude in
either of the resonators coupled to the input or output port.

For low-t devices, analyzing the peak positions provides a
systematic method for extracting σ from a transmission mea-
surement. Specifically, the disorder strength can be extracted
from the peak positions using

σ 2 =
〈

1
n

n∑

i=1

δ2
i

〉

=
〈

1
n

n∑

i=1

(
$dis

i − $̄dis
i

)2

〉

− 1
n

n∑

i=1

($i − $̄i)2, (3)

where n = 12 is the number of resonators in each sample, and
$i and $dis

i denote the 12 normal-mode frequencies in the
absence and presence of disorder, respectively. $̄i and $̄dis

i

are their means (for a single disorder realization), whereas
ensemble averages over disorder realization are denoted by
〈·〉. In the disorderless case, the “variance” of the normal-mode
frequencies of the Kagomé star is 3t2.

Applying this method to samples with a standard 10 µm
width of the transmission line center pin, we find that the
disorder σ/2π = (9.1 ± 2.8) MHz is larger than expected
from resonator length variations due to finite resolution in
optical lithography. To investigate the origin of this disorder,
we fabricate devices with different widths a of the center pin,
while maintaining a constant Z0 throughout, and find that there
is a systematic dependence of disorder on a.

The magnitude of disorder decreases with increasing center
pin width (Fig. 4). This dependence of disorder on the device
geometry can be attributed to random variations in the width
of the center pin that arise during microfabrication. These
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FIG. 4. (Color online) Random disorder versus center pin width
for all devices. Disorder extracted from low-t devices is plotted in
black with upward pointing triangles, while disorder extracted from
high-t devices is plotted in green with downward pointing triangle.
The curve shows the difference in frequency for two resonators, one
with center pin width equal to the value on the horizontal axis and
the other with center pin width 600 nm smaller and dielectric gap
1200 nm larger. Error bars are computed from the standard deviation
of individual measurements.

variations in width result in variations in the kinetic inductance
Lk , which in turn affects the resonator frequency through the
relation

ωr = 1
2
√

(Lm + Lk)Ctot
, (4)

where Lm is the intrinsic magnetic inductance and Ctot is
the total capacitance. In normal metals, Lk is suppressed by
electron scattering but in superconductors the dc electrical
resistance is vanishing and Lk is no longer suppressed.
Although Lk is more relevant in superconductors, it is still
two orders of magnitude smaller than Lm, for the device
geometry considered here. For a single resonator, Lk typically
results in only a small shift in ωr [24,25]. For arrays of
coupled resonators, however, these small shifts can introduce
significant disorder if the kinetic inductance contributions vary
across the array.

For the small length scales used here, the sensitivity of the
kinetic inductance to variations in a decreases rapidly as the
width a is increased [26,27].

In our devices, we observe variations in the center pin width
of up to ∼600 nm and twice that for the dielectric gap, when
examining them with a scanning electron microscope. The
random disorder expected due to kinetic inductance variations
can be estimated by comparing ωr for cavities of equal
length but with widths differing by the observed 600 nm; see
Fig. 4. The random disorder observed here is consistent with
variations in device geometry and can be reduced to less than
two parts in 104 by making resonators with 40-µm-wide center
pins.

Using this strategy to reproducibly obtain devices with
small disorder, we next turn to the high-t devices. Trans-
mission spectra for all four of these devices revealed very
similar normal-mode frequencies, confirming that disorder
was small. Two representative transmission spectra are shown
in Figs. 3(d) and 3(e). For all high-t devices, the lowest-energy

023837-3

• Parallel measurement
• Disorder extracted from comb spacing

Current	Devices	
• Fabricated at UMD 
• Fabrication disorder ~3e-4

CHAPTER 5. EXPERIMENTAL RESULTS 27

Figure 5.2: Left: Frequency vs length for the eight resonators of a disorder test chip.
These frequencies are fit to the two-parameter equation 3.9, shown as a black curve.
The extracted value of ✏eff is shown. The residuals of this fit shown below do not show
any trend, indicating a good fit, and the size of the residuals describe the disorder of
our fabrication process. Their standard deviation is 2.7 MHz, a disorder consistent
with the fabrication process in [9]. Right: the disorder test chip, the design being
measured in this section. Note that the shape of all eight resonators is the same,
di↵ering only by the length of the tail.

obtain an uncertainty on each resonator frequency would be to perform a fit on the

resonance and use a fit parameter uncertainty. This would yield very small error bars,

less than 1 MHz. That would accurately describe the uncertainty in the frequency

of a single realization of a resonator, but we are interested in the uncertainty of the

frequency of all the resonators fabricated with this same geometry. The fabrication

process introduces an error in the frequency much larger than the uncertainty in the

fit.

5.3 Parallel Straight Test

We now measure the parallel straight distance test chip, which aims to detect the same

e↵ect seen in section 4.3. Those simulations predict that the e↵ect of changing the
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Figure 5.1: Left: a wide scan of eight hanger resonators. The resonators have linearly
spaced nominal lengths, resulting in a larger frequency di↵erence between the higher-
frequency resonators. Right: a close-up of a single resonance, taken to precisely
determine the frequency of this resonance. Note that the depth of the resonance
appears greater on the close-up, this is from sparse frequency sampling on the wide
scan missing the lowest point. The 8 dips here correspond to the eight resonators
seen in figure 5.2.

5.2 Disorder Test

The control chip is called the disorder test chip, because it will tell us about the

disorder in our fabrication process. These resonator geometries di↵er only in the

length of their “tails,” whose lengths are spaced evenly between 3.7mm and 4.75mm

in increments of 150µm. Since there are no changes to the shape of each resonator

other than length we expect equation 3.9 to describe their frequencies well, and we

will compare the frequencies of the resonators from other chips to this fit.

The disorder seen here is the result of small variations in the fabrication process

across a single chip, resulting in unpredictable frequency shifts. The authors of ref-

erence [9] reported a disorder of 2 parts in 104 for their fabrication process, which

corresponds to shifts of 1.5 MHz on a 7.5GHz resonator. Our disorder of 2.7MHz is

less than a factor of two greater.

For the remaining experimental data we will take the frequency of lowest trans-

mission to be the resonant frequency, and use the value of 2.7MHz from the disorder

test chip as the uncertainty in the frequency of all the resonators. Another way to
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FIG. 1. (Color online) (a) Device picture of 12 capacitively
coupled resonators. The overlaid orange dashed lines have been
drawn between the coupled resonators and illustrate how the photonic
lattice sites form a single Kagomé star. Transmission was measured
between the ports labeled “Input” and “Output”. (b) and (c) Images of
symmetric three-way capacitors with low hopping rate (t/2π = 0.8
MHz) with 10- and 40−µm-wide center pins. (d) Capacitor with
high hopping rate (t/2π = 31 MHz) and 40-µm-wide center pin. (e)
Image of outer coupling capacitor (κ/2π = 0.05 MHz) for 40-µm
center pin. (f) Cross section of coplanar waveguide resonator with
center pin width a, on a dielectric substrate εr .

frequencies, and results in 12 distinct frequencies. We study
the effects of disorder by numerically diagonalizing the Hamil-
tonian for random {δi} drawn from a Gaussian distribution
with a standard deviation σ . The resulting histogram for
the number of eigenmodes N (ω)dω in a given frequency
interval [ω,ω + dω] is shown in Fig. 2 for varying amounts
of disorder σ . When σ " t , disorder is negligible and the
normal-mode frequencies are all close to those of the ideal
lattice. As σ increases and becomes larger than t , the peaks
in the distribution associated with individual normal-mode

FIG. 2. (Color online) The normal-mode histogram in the pres-
ence of disorder. Normal mode frequencies are calculated from Eq. (1)
using a set of {δi} drawn from a Gaussian distribution with standard
deviation σ . For each value of σ , this procedure is repeated 107

times. Histograms are generated from 107 disorder realizations (for
each value of σ ), and are normalized to the maximum number of
counts for clarity. For σ # t , the histogram is dominated by disorder
and forms a single Gaussian. For σ " t , the histogram shows sharp
peaks corresponding to the ideal normal-mode frequencies.

frequencies broaden and ultimately merge. Once merging
occurs, the observed mode frequencies and corresponding
modes can no longer be easily identified with the idealized
modes. In the limit of σ # t , the normal-mode histogram
approaches a single Gaussian of width σ from which the
overall disorder of individual resonator frequencies can be
extracted. For this reason, devices with a small hopping rate t
are ideal for discerning the effects of disorder.

We have fabricated and measured 25 arrays of 12 cavities
to quantify disorder and assess the feasibility of quantum
simulation in CQED lattices. By design, each coplanar
waveguide resonator had a frequency of ωr/2π ≈ 7 GHz,
and an impedance Z0 = 50 '. The devices were fabricated
using photolithography on 200 nm of Nb sputtered onto a
500−µm-thick sapphire substrate. Each device was mounted
using high-performance silver paste and then wire bonded to
a copper circuit board. Wire bonds were also used to connect
all ground planes. At the outer edges of the array, each cavity
is capacitively coupled to a transmission line, resulting in a
photon escape rate κ = 4Z2

0C
2
outω

3
r to the continuum. This

allows us to measure transmission through opposite ports
(Fig. 1) of the array using a vector network analyzer. The
unused ports were connected to 50 ' terminators, although
no significant difference was observed when the ports were
left open. Each device was cooled to a base temperature of
20 mK inside a dilution refrigerator—a necessary requirement
for future quantum simulations with small numbers of polari-
tons [7–11,23].

The set of our 25 devices, summarized in Table I, includes
samples with two distinct hopping rates of t/2π = 0.8 MHz
and t/2π = 31 MHz. These nominal values were obtained
from Eq. (2) by using values for the coupling capacitances
determined using a finite-element calculation. While the high-t
devices allow us to access t # σ and are most useful for
quantum simulation, the low-t devices are the better choice
for characterizing disorder.

We extract normal-mode frequencies from the peak posi-
tions in the measured transmission spectra [Figs. 3(a)–3(c)]
in order to determine the disorder. To account for small
systematic shifts in devices made in separate fabrication
batches, all frequencies were expressed relative to the mean
peak frequency of each spectrum. For low-t devices, not all
12 peaks are always visible. Such “missing” peaks can be due

TABLE I. Results extracted from 25 measured devices. Devices
were characterized with two different photon hopping rates t and
three different center pin widths a. The random disorder σ was
extracted from peak positions of the transmission spectrum for each
device. The disorder decreases for increasing a. The ratio σ/t is a
metric of how the normal-mode frequencies are affected by disorder.
For the 40 µm devices, σ is reduced to less that two parts in 104 of
ωr/2π . All uncertainties are computed from standard deviation of
individual measurements.

t/2π (MHz) a (µm) σ/2π (MHz) σ/t No. measured

0.8 10 9.1 ± 2.8 11.5 13
0.8 20 3.9 ± 1.2 4.9 4
0.8 40 1.4 ± 0.8 1.7 4
31 40 1.3 ± 0.3 0.04 4
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(d)
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FIG. 3. (Color online) Transmission spectra for measured de-
vices. The first column shows spectra for devices with (a) t/2π =
0.8 MHz, a = 40 µm, (b) t/2π = 0.8 MHz, a = 20 µm, and (c) and
t/2π = 0.8 MHz, a = 10 µm. The width of the spectrum decreases
for increasing resonator width, demonstrating a decrease in σ . The
second column (d),(e) shows transmission spectra for two nominally
identical devices with t/2π = 31 MHz and a = 40 µm. Each scan
contains 12 well-defined peaks that are consistent between the
two devices. Peak positions are similar to those expected, when a
systematic edge effect due to the difference between inner and outer
capacitors is accounted for. The inset shows the lowest-energy mode
that is localized on the inner six resonators in the absence of disorder.

to normal-mode degeneracies (occurring in the ideal case), as
well as normal modes with small or vanishing amplitude in
either of the resonators coupled to the input or output port.

For low-t devices, analyzing the peak positions provides a
systematic method for extracting σ from a transmission mea-
surement. Specifically, the disorder strength can be extracted
from the peak positions using

σ 2 =
〈

1
n

n∑

i=1

δ2
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〉

=
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where n = 12 is the number of resonators in each sample, and
$i and $dis

i denote the 12 normal-mode frequencies in the
absence and presence of disorder, respectively. $̄i and $̄dis

i

are their means (for a single disorder realization), whereas
ensemble averages over disorder realization are denoted by
〈·〉. In the disorderless case, the “variance” of the normal-mode
frequencies of the Kagomé star is 3t2.

Applying this method to samples with a standard 10 µm
width of the transmission line center pin, we find that the
disorder σ/2π = (9.1 ± 2.8) MHz is larger than expected
from resonator length variations due to finite resolution in
optical lithography. To investigate the origin of this disorder,
we fabricate devices with different widths a of the center pin,
while maintaining a constant Z0 throughout, and find that there
is a systematic dependence of disorder on a.

The magnitude of disorder decreases with increasing center
pin width (Fig. 4). This dependence of disorder on the device
geometry can be attributed to random variations in the width
of the center pin that arise during microfabrication. These
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FIG. 4. (Color online) Random disorder versus center pin width
for all devices. Disorder extracted from low-t devices is plotted in
black with upward pointing triangles, while disorder extracted from
high-t devices is plotted in green with downward pointing triangle.
The curve shows the difference in frequency for two resonators, one
with center pin width equal to the value on the horizontal axis and
the other with center pin width 600 nm smaller and dielectric gap
1200 nm larger. Error bars are computed from the standard deviation
of individual measurements.

variations in width result in variations in the kinetic inductance
Lk , which in turn affects the resonator frequency through the
relation

ωr = 1
2
√

(Lm + Lk)Ctot
, (4)

where Lm is the intrinsic magnetic inductance and Ctot is
the total capacitance. In normal metals, Lk is suppressed by
electron scattering but in superconductors the dc electrical
resistance is vanishing and Lk is no longer suppressed.
Although Lk is more relevant in superconductors, it is still
two orders of magnitude smaller than Lm, for the device
geometry considered here. For a single resonator, Lk typically
results in only a small shift in ωr [24,25]. For arrays of
coupled resonators, however, these small shifts can introduce
significant disorder if the kinetic inductance contributions vary
across the array.

For the small length scales used here, the sensitivity of the
kinetic inductance to variations in a decreases rapidly as the
width a is increased [26,27].

In our devices, we observe variations in the center pin width
of up to ∼600 nm and twice that for the dielectric gap, when
examining them with a scanning electron microscope. The
random disorder expected due to kinetic inductance variations
can be estimated by comparing ωr for cavities of equal
length but with widths differing by the observed 600 nm; see
Fig. 4. The random disorder observed here is consistent with
variations in device geometry and can be reduced to less than
two parts in 104 by making resonators with 40-µm-wide center
pins.

Using this strategy to reproducibly obtain devices with
small disorder, we next turn to the high-t devices. Trans-
mission spectra for all four of these devices revealed very
similar normal-mode frequencies, confirming that disorder
was small. Two representative transmission spectra are shown
in Figs. 3(d) and 3(e). For all high-t devices, the lowest-energy
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Figure 5.2: Left: Frequency vs length for the eight resonators of a disorder test chip.
These frequencies are fit to the two-parameter equation 3.9, shown as a black curve.
The extracted value of ✏eff is shown. The residuals of this fit shown below do not show
any trend, indicating a good fit, and the size of the residuals describe the disorder of
our fabrication process. Their standard deviation is 2.7 MHz, a disorder consistent
with the fabrication process in [9]. Right: the disorder test chip, the design being
measured in this section. Note that the shape of all eight resonators is the same,
di↵ering only by the length of the tail.

obtain an uncertainty on each resonator frequency would be to perform a fit on the

resonance and use a fit parameter uncertainty. This would yield very small error bars,

less than 1 MHz. That would accurately describe the uncertainty in the frequency

of a single realization of a resonator, but we are interested in the uncertainty of the

frequency of all the resonators fabricated with this same geometry. The fabrication

process introduces an error in the frequency much larger than the uncertainty in the

fit.

5.3 Parallel Straight Test

We now measure the parallel straight distance test chip, which aims to detect the same

e↵ect seen in section 4.3. Those simulations predict that the e↵ect of changing the
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Figure 5.2: Left: Frequency vs length for the eight resonators of a disorder test chip.
These frequencies are fit to the two-parameter equation 3.9, shown as a black curve.
The extracted value of ✏eff is shown. The residuals of this fit shown below do not show
any trend, indicating a good fit, and the size of the residuals describe the disorder of
our fabrication process. Their standard deviation is 2.7 MHz, a disorder consistent
with the fabrication process in [9]. Right: the disorder test chip, the design being
measured in this section. Note that the shape of all eight resonators is the same,
di↵ering only by the length of the tail.

obtain an uncertainty on each resonator frequency would be to perform a fit on the

resonance and use a fit parameter uncertainty. This would yield very small error bars,

less than 1 MHz. That would accurately describe the uncertainty in the frequency

of a single realization of a resonator, but we are interested in the uncertainty of the

frequency of all the resonators fabricated with this same geometry. The fabrication

process introduces an error in the frequency much larger than the uncertainty in the

fit.

5.3 Parallel Straight Test

We now measure the parallel straight distance test chip, which aims to detect the same

e↵ect seen in section 4.3. Those simulations predict that the e↵ect of changing the
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Figure 5.1: Left: a wide scan of eight hanger resonators. The resonators have linearly
spaced nominal lengths, resulting in a larger frequency di↵erence between the higher-
frequency resonators. Right: a close-up of a single resonance, taken to precisely
determine the frequency of this resonance. Note that the depth of the resonance
appears greater on the close-up, this is from sparse frequency sampling on the wide
scan missing the lowest point. The 8 dips here correspond to the eight resonators
seen in figure 5.2.

5.2 Disorder Test

The control chip is called the disorder test chip, because it will tell us about the

disorder in our fabrication process. These resonator geometries di↵er only in the

length of their “tails,” whose lengths are spaced evenly between 3.7mm and 4.75mm

in increments of 150µm. Since there are no changes to the shape of each resonator

other than length we expect equation 3.9 to describe their frequencies well, and we

will compare the frequencies of the resonators from other chips to this fit.

The disorder seen here is the result of small variations in the fabrication process

across a single chip, resulting in unpredictable frequency shifts. The authors of ref-

erence [9] reported a disorder of 2 parts in 104 for their fabrication process, which

corresponds to shifts of 1.5 MHz on a 7.5GHz resonator. Our disorder of 2.7MHz is

less than a factor of two greater.

For the remaining experimental data we will take the frequency of lowest trans-

mission to be the resonant frequency, and use the value of 2.7MHz from the disorder

test chip as the uncertainty in the frequency of all the resonators. Another way to
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Figure 4.3: Right: Simulation results for resonators of the same nominal length and
increasing number of bends. The e↵ect of bends in the resonator is to increase its
frequency by an amount proportional to the number of bends. Left: Geometries for 1
bend through 5 bends are shown, with substrate in blue and conductor in grey. Note
that the resonator geometries are simulated independently, they are shown together
here as a visual aid.

rather than the change in frequency. First, take the reciprocal of all the frequencies,

yielding the period of each resonator. We can now perform a linear fit on this data,

giving a slope and a y-intercept. The y-intercept tells us the period of the zero bend

resonator, which together with the nominal length of the resonator tells us the phase

velocity on the CPW using equation 3.6. This allows us to convert each period of

oscillation into an e↵ective length. Subtracting the nominal length from the e↵ective

length yields a plot which demonstrates that the e↵ective length of a bend is roughly

a fixed amount less than the nominal length. This finding can be used to improve the

accuracy of resonator design by changing the calculation of nominal length. Instead

of using the arc length of the middle of the center pin, a smaller value could be used.

The recommended value from this data is 0.987 times the arc length. For clarity we

will continue to use the same definition of nominal length throughout this thesis, and

this modification is problematic because as we will see in the next section this e↵ective

length depends both on the radius of the bend and the length of the resonator.

Numerical	Test	Geometries
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Figure 4.3: Right: Simulation results for resonators of the same nominal length and
increasing number of bends. The e↵ect of bends in the resonator is to increase its
frequency by an amount proportional to the number of bends. Left: Geometries for 1
bend through 5 bends are shown, with substrate in blue and conductor in grey. Note
that the resonator geometries are simulated independently, they are shown together
here as a visual aid.

rather than the change in frequency. First, take the reciprocal of all the frequencies,

yielding the period of each resonator. We can now perform a linear fit on this data,

giving a slope and a y-intercept. The y-intercept tells us the period of the zero bend

resonator, which together with the nominal length of the resonator tells us the phase

velocity on the CPW using equation 3.6. This allows us to convert each period of

oscillation into an e↵ective length. Subtracting the nominal length from the e↵ective

length yields a plot which demonstrates that the e↵ective length of a bend is roughly

a fixed amount less than the nominal length. This finding can be used to improve the

accuracy of resonator design by changing the calculation of nominal length. Instead

of using the arc length of the middle of the center pin, a smaller value could be used.

The recommended value from this data is 0.987 times the arc length. For clarity we

will continue to use the same definition of nominal length throughout this thesis, and

this modification is problematic because as we will see in the next section this e↵ective

length depends both on the radius of the bend and the length of the resonator.
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Figure 4.5: Summary of data from 39 resonator geometries grouped by nominal length
and bend radius into 5 data sets. The e↵ective length of each resonator is calculated
from its frequency, and the nominal length is subtracted to give the change in e↵ective
length due to the bends. Top Left: Keeping the resonator length the same and
decreasing the radius of the bend increases the e↵ect it has on the resonator. Top
Right: fixing the bend radius and increasing the length of the resonator results in a
smaller frequency shift per bend.

4.6 Pitfalls of HFSS

As mentioned earlier, configuring HFSS to produce good results in a reasonable

amount of time is a real challenge. Now that we have shown several di↵erent ge-

ometries, we can discuss in more detail how the shape of the resonator impacts the

appropriate precision settings.

The settings provided earlier were tuned specifically for the staircase geometries.

Resonators such as the parallel straight test shapes require a finer mesh between

the straights, and as a result these geometries take significantly longer to simulate.

Those simulations took around an hour per run rather than 15 minutes. In the other
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from its frequency, and the nominal length is subtracted to give the change in e↵ective
length due to the bends. Top Left: Keeping the resonator length the same and
decreasing the radius of the bend increases the e↵ect it has on the resonator. Top
Right: fixing the bend radius and increasing the length of the resonator results in a
smaller frequency shift per bend.
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ometries, we can discuss in more detail how the shape of the resonator impacts the

appropriate precision settings.

The settings provided earlier were tuned specifically for the staircase geometries.
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the straights, and as a result these geometries take significantly longer to simulate.
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tabulated.	
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Connec6ons	to	Error-Correc6ng	Codes

• Spin-model	energies	found	from	half-filling	
of	magneKc	models	on	the	root	graph.	

• Gaps	in	and	between	these	spectra	dictate	
robustness	of	the	code.	

• In	progress:	using	Abelian	cover	method	to	
categorize	large	gaps	in	this	sense.

Thm:	(Chapman	and	Flammia)
A	spin	model	can	be	solved	exactly	by	
mapping	to	free	fermions	if	and	if	only	
the	anKcommutaKon	relaKons	of	its	
terms	have	the	structure	of	a	line	graph.	
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Figure 4. Building blocks of a triangle model. a Table showing the three e�ective qubits QP , QS , and QF formed from three
physical qubits on the edges of a triangular plaquette. Physical-qubit Pauli operators are indicated in color-coded and labeled
circles in the center of the each edge. For ease of view, we indicate the identity by the absence of a label. b, c Stabilizers of a
Wen plaquette model constructed from the e�ective qubit QS . The loop stabilizer is the product X

(S)
Y

(S)
Z

(S)
X

(S)
Y

(S)
Z

(S),
and the bond stabilizer is Z

(S)
Z

(S). Note that the definition of Z
(S) is rotated by 180 degrees on the two inequivalent plaquettes

of the ZZ bond. d-f ZZ, Y Y , and XX bonds, respectively, of a Kitaev honeycomb model defined using all the translates of
QF . Despite being defined on the same set of physical qubits, every term in the Kitaev honeycomb model in QF commutes with
every term of the Wen plaquette model in QS , and all of the Paulis of QP .

fermion solvable model, and paramagnet to pin down the
remaining degrees of freedom. Weight-one Pauli operators
are smaller than the e�ective qubits, and will therefore an-
ticommute with at least one Hamiltonian term from both
the stabilizer-code and the free-fermion model, thereby
endowing the stabilizer code with some of the energet-
ics of the free-fermion model. However, any Pauli made
entirely of X(S), Y (S), and Z(S) will commute with the
free-fermion Hamiltonian. It is thus clear that the com-
bined model still su�ers from the low-energy string errors
that plague 2D stabilizer codes, and that the free-fermion
model is ancillary to the quantum information storage.

As a result, we draw a general conclusion that if a
Hamiltonian with topological logical qubits contains both
a free-fermion-solvable model and a set of stabilizer terms
that commute with each other and the free-fermion model,
then the free-fermion terms need not play any role in
the quantum information storage. The triangle-model
construction makes this separation very explicit, but in
other models, with more complex e�ective qubits, the
existence of independent constituent models may not
be readily apparent. An exceedingly simple example of
this arises when the operator Y (F ) is redefined to also
include a factor of Y (P ). This local rotation mixes the
paramagnet qubit QP into the free-fermion qubit QF ,
but does not a�ect the commutation relations of any of
the Hamiltonian terms. It also has the e�ect of exactly
transforming the Kitaev honeycomb model terms (shown
in Fig. 4d-f) into a fiducial bosonization on the kagome
lattice.

Since the triangle-model construction only relied on the
existence of triangular plaquettes which share at most

one corner, the following relation between the Kitaev
honeycomb model and fiducial bosonizations emerges.
Given a 3-regular graph R, a fiducial bosonization of
L(R) is equivalent to a honeycomb bosonization of R,
up to local rotations. Furthermore, the vast number of
operators that commute with the fiducial bosonization can
be understood as coming from the (largely) independent
triangle qubits which are not involved in the honeycomb
bosonization.

For graphs of degree greater than three, L(R) no longer
consists of corner-sharing triangles, so the close correspon-
dence to a honeycomb model on R breaks down. However,
the “triangle” construction can in fact be extended to
non-regular graphs whose maximum degrees is three. We
will not present the construction here, because the result-
ing models are qualitatively the same, and handling the
more general case requires addressing special cases and
the possible addition of extra local stabilizers for lower-
degree vertices. However, we have verified that starting
from a graph which is 3, 1-biregular, it is possible to make
a triangle model in which the stabilizer code portion is a
generalized toric code with three qubits per edge instead
of one.

IV. LINE-GRAPH RECOGNITION

To determine if a translation-invariant spin Hamiltonian
has a free-fermion solution using Theorem 1 of Ref. [16],
we must be able to recognize that a given translation-
invariant graph is a line graph. To do this, we utilize

Effec6ve	Qubits

• Free-fermion	model	:	Kitaev	Honeycomb	

• Stabilizer	code	:	Wen	Plaqueje	

• Paramagnet	to	couple	the	two

Three	Combined	Models Wen	Plaqueje	Model
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remaining degrees of freedom. Weight-one Pauli operators
are smaller than the e�ective qubits, and will therefore an-
ticommute with at least one Hamiltonian term from both
the stabilizer-code and the free-fermion model, thereby
endowing the stabilizer code with some of the energet-
ics of the free-fermion model. However, any Pauli made
entirely of X(S), Y (S), and Z(S) will commute with the
free-fermion Hamiltonian. It is thus clear that the com-
bined model still su�ers from the low-energy string errors
that plague 2D stabilizer codes, and that the free-fermion
model is ancillary to the quantum information storage.

As a result, we draw a general conclusion that if a
Hamiltonian with topological logical qubits contains both
a free-fermion-solvable model and a set of stabilizer terms
that commute with each other and the free-fermion model,
then the free-fermion terms need not play any role in
the quantum information storage. The triangle-model
construction makes this separation very explicit, but in
other models, with more complex e�ective qubits, the
existence of independent constituent models may not
be readily apparent. An exceedingly simple example of
this arises when the operator Y (F ) is redefined to also
include a factor of Y (P ). This local rotation mixes the
paramagnet qubit QP into the free-fermion qubit QF ,
but does not a�ect the commutation relations of any of
the Hamiltonian terms. It also has the e�ect of exactly
transforming the Kitaev honeycomb model terms (shown
in Fig. 4d-f) into a fiducial bosonization on the kagome
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Since the triangle-model construction only relied on the
existence of triangular plaquettes which share at most

one corner, the following relation between the Kitaev
honeycomb model and fiducial bosonizations emerges.
Given a 3-regular graph R, a fiducial bosonization of
L(R) is equivalent to a honeycomb bosonization of R,
up to local rotations. Furthermore, the vast number of
operators that commute with the fiducial bosonization can
be understood as coming from the (largely) independent
triangle qubits which are not involved in the honeycomb
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non-regular graphs whose maximum degrees is three. We
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fermion solvable model, and paramagnet to pin down the
remaining degrees of freedom. Weight-one Pauli operators
are smaller than the e�ective qubits, and will therefore an-
ticommute with at least one Hamiltonian term from both
the stabilizer-code and the free-fermion model, thereby
endowing the stabilizer code with some of the energet-
ics of the free-fermion model. However, any Pauli made
entirely of X(S), Y (S), and Z(S) will commute with the
free-fermion Hamiltonian. It is thus clear that the com-
bined model still su�ers from the low-energy string errors
that plague 2D stabilizer codes, and that the free-fermion
model is ancillary to the quantum information storage.

As a result, we draw a general conclusion that if a
Hamiltonian with topological logical qubits contains both
a free-fermion-solvable model and a set of stabilizer terms
that commute with each other and the free-fermion model,
then the free-fermion terms need not play any role in
the quantum information storage. The triangle-model
construction makes this separation very explicit, but in
other models, with more complex e�ective qubits, the
existence of independent constituent models may not
be readily apparent. An exceedingly simple example of
this arises when the operator Y (F ) is redefined to also
include a factor of Y (P ). This local rotation mixes the
paramagnet qubit QP into the free-fermion qubit QF ,
but does not a�ect the commutation relations of any of
the Hamiltonian terms. It also has the e�ect of exactly
transforming the Kitaev honeycomb model terms (shown
in Fig. 4d-f) into a fiducial bosonization on the kagome
lattice.

Since the triangle-model construction only relied on the
existence of triangular plaquettes which share at most

one corner, the following relation between the Kitaev
honeycomb model and fiducial bosonizations emerges.
Given a 3-regular graph R, a fiducial bosonization of
L(R) is equivalent to a honeycomb bosonization of R,
up to local rotations. Furthermore, the vast number of
operators that commute with the fiducial bosonization can
be understood as coming from the (largely) independent
triangle qubits which are not involved in the honeycomb
bosonization.

For graphs of degree greater than three, L(R) no longer
consists of corner-sharing triangles, so the close correspon-
dence to a honeycomb model on R breaks down. However,
the “triangle” construction can in fact be extended to
non-regular graphs whose maximum degrees is three. We
will not present the construction here, because the result-
ing models are qualitatively the same, and handling the
more general case requires addressing special cases and
the possible addition of extra local stabilizers for lower-
degree vertices. However, we have verified that starting
from a graph which is 3, 1-biregular, it is possible to make
a triangle model in which the stabilizer code portion is a
generalized toric code with three qubits per edge instead
of one.

IV. LINE-GRAPH RECOGNITION

To determine if a translation-invariant spin Hamiltonian
has a free-fermion solution using Theorem 1 of Ref. [16],
we must be able to recognize that a given translation-
invariant graph is a line graph. To do this, we utilize
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as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
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parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
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for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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crystal, is smaller. However, because the band edge is not at
zero momentum in our system, it turns out the symmetric
state is actually dimmed and has a smaller linewidth, as we
prove in Appendix D 2. In Fig. 3(e), we see that the bound
states at the same transmission frequency (with different
bare qubit frequencies) have drastically different linewidths
with the higher-frequency bound state having a smaller
linewidth, consistent with our numerical simulations
[Figs. 3(f) and 8(d)]. This provides some indirect exper-
imental evidence that the qubit part of the higher (lower)
frequency bound-state wave function is indeed symmetric
(antisymmetric).
To further study tunable on-site interaction, we

probe the interacting bound states beyond the one-
excitation manifold using spectroscopic measurements
[see Fig. 4(a)]. Similar to spectroscopy of qubits in
cavities, we can use transmission at the band edge to help
detect bound-state transitions, a technique that provides
sharper contrast compared to transmission measurement

for the more highly localized bound states and allows
detection of higher-dressed transitions, such as the
transition between j0i and j2i driven by two photons
of frequency ω02=2.
With this technique we detect interaction between j02i,

j20i, and j11i of the coupled bound states, observed as
avoided level crossings. In addition to the single-photon
exchange interaction between j02i (j20i) and j11i [26],
remarkably we measure the two-photon virtual interaction
between j20i and j02i, despite the fact that this process is
fourth order in coupling g (see Appendix F 2). This two-
photon interaction shows consistent dependence on detun-
ing: increasing in strength (from 0MHz to over 10 MHz) as
the bound states shift towards the band edge and the states
become more delocalized [see inset of Fig. 4(a)].
Numerical simulations [Fig. 4(b)] are consistent with
experimental data and capture the relative magnitudes of
interaction between levels as well as frequency dependence
on coupling strengths. Observation of this small interaction
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FIG. 3. Interacting bound states.—Interaction between bound states is characterized by the avoided crossing (observed in S21
measurement) that arises while tuning one qubit (y axis) through resonance with the other (fixed). (a) An avoided crossing of 240 MHz is
observed when the fixed qubit is at 7.73 GHz. The two points where transmission amplitude of a bound state dims are understood as the
bound-state peak being resonant with the qubit frequency. (a), inset—Hopping model simulation of the one-excitation manifold is
consistent with experimental observation. The lamb shift in the hopping model originates from next-nearest-neighbor interaction
between coupled cavities. (b),(c),(d) Tunable bound-state interaction strength is illustrated in example bound-state avoided level
crossings for a fixed qubit whose bare frequency is circa 6.125, 6.75, and 7.625 GHz. As qubits are detuned further from the band edge,
bound states are more tightly localized, reducing overlap and thus reducing interaction. (e),(f) Transmission when the qubits are on
resonance across a range of qubit frequencies in the experiment and the simulation, respectively. The uneven linewidths of the two
bound states when they occur at the same frequency suggest they are symmetric (higher-frequency bound state) and antisymmetric
(lower-frequency bound state) states (see main text). (g) Bound-state avoided crossing and qubit population (from simulation) as a
function of average bound-state frequency. A steady reduction in interaction strength occurs with increasing detuning from the band
edge (moving deeper into the band gap) due to increasing localization of the bound states. Hopping model simulation (black) captures
this detuning-dependent behavior observed in experiment (red). Near the band edge, both bound states (blue and cyan) have a significant
photonic contribution.
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as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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crystal, is smaller. However, because the band edge is not at
zero momentum in our system, it turns out the symmetric
state is actually dimmed and has a smaller linewidth, as we
prove in Appendix D 2. In Fig. 3(e), we see that the bound
states at the same transmission frequency (with different
bare qubit frequencies) have drastically different linewidths
with the higher-frequency bound state having a smaller
linewidth, consistent with our numerical simulations
[Figs. 3(f) and 8(d)]. This provides some indirect exper-
imental evidence that the qubit part of the higher (lower)
frequency bound-state wave function is indeed symmetric
(antisymmetric).
To further study tunable on-site interaction, we

probe the interacting bound states beyond the one-
excitation manifold using spectroscopic measurements
[see Fig. 4(a)]. Similar to spectroscopy of qubits in
cavities, we can use transmission at the band edge to help
detect bound-state transitions, a technique that provides
sharper contrast compared to transmission measurement

for the more highly localized bound states and allows
detection of higher-dressed transitions, such as the
transition between j0i and j2i driven by two photons
of frequency ω02=2.
With this technique we detect interaction between j02i,

j20i, and j11i of the coupled bound states, observed as
avoided level crossings. In addition to the single-photon
exchange interaction between j02i (j20i) and j11i [26],
remarkably we measure the two-photon virtual interaction
between j20i and j02i, despite the fact that this process is
fourth order in coupling g (see Appendix F 2). This two-
photon interaction shows consistent dependence on detun-
ing: increasing in strength (from 0MHz to over 10 MHz) as
the bound states shift towards the band edge and the states
become more delocalized [see inset of Fig. 4(a)].
Numerical simulations [Fig. 4(b)] are consistent with
experimental data and capture the relative magnitudes of
interaction between levels as well as frequency dependence
on coupling strengths. Observation of this small interaction
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FIG. 3. Interacting bound states.—Interaction between bound states is characterized by the avoided crossing (observed in S21
measurement) that arises while tuning one qubit (y axis) through resonance with the other (fixed). (a) An avoided crossing of 240 MHz is
observed when the fixed qubit is at 7.73 GHz. The two points where transmission amplitude of a bound state dims are understood as the
bound-state peak being resonant with the qubit frequency. (a), inset—Hopping model simulation of the one-excitation manifold is
consistent with experimental observation. The lamb shift in the hopping model originates from next-nearest-neighbor interaction
between coupled cavities. (b),(c),(d) Tunable bound-state interaction strength is illustrated in example bound-state avoided level
crossings for a fixed qubit whose bare frequency is circa 6.125, 6.75, and 7.625 GHz. As qubits are detuned further from the band edge,
bound states are more tightly localized, reducing overlap and thus reducing interaction. (e),(f) Transmission when the qubits are on
resonance across a range of qubit frequencies in the experiment and the simulation, respectively. The uneven linewidths of the two
bound states when they occur at the same frequency suggest they are symmetric (higher-frequency bound state) and antisymmetric
(lower-frequency bound state) states (see main text). (g) Bound-state avoided crossing and qubit population (from simulation) as a
function of average bound-state frequency. A steady reduction in interaction strength occurs with increasing detuning from the band
edge (moving deeper into the band gap) due to increasing localization of the bound states. Hopping model simulation (black) captures
this detuning-dependent behavior observed in experiment (red). Near the band edge, both bound states (blue and cyan) have a significant
photonic contribution.
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FIG. 1. (a) Single-excitation single-qubit bound-state. Red
square denotes the position of the qubit. (b) Comparison
between discrete and continuous Green’s function. We see
that already the nearest neighbour photonic component is
well described by the continuum limit. (c-d) Density of the
photonic component of a two-spin bound state illustrating the
photon-mediated interactions between spins.

System.—We study photons on the hyperbolic lattice
G coupled to qubits, where photon dynamics is modelled
by a tight-binding Hamiltonian and qubits at positions i
corresponds to local spin-1/2 operators �+

i �
�
i = |1ih1|i.

The full Hamiltonian in rotating wave approximation is
given by

H = �
X

i2S
|1ih1|i + g

X

j2S

⇣
�
+
j aj + h.c.

⌘
+Hph, (1)

Hph = �t

X

<ij>2G
(a†iaj + h.c.) +

X

j2G
!ra

†
jaj (2)

with a
†
i the photon creation operator and g the coupling

between photons and qubits. The set S comprises the
qubit sites and G the hyperbolic lattice. For concreteness
we assume t > 0 in the following.

The coupling of a single qubit to the photonic bath
results in a dressing or renormalization of �. The single-
excitation bound state energy EB for a photon coupled
to a single qubit at position i is given by the solution of

EB = �+ g
2
Gii(EB), (3)

where Gij(!) = (! � Hph)
�1
ij is the photon Green func-

tion.4 Denote the lowest eigenvalue of Hph by E0 < 0,

4[Di↵erent sign of Gij as in previous paper.]

which defines the lower edge of the photon spectrum.
Equation (3) always permits a solution EB < �. In par-
ticular, for weak coupling, we find EB ⇡ � + g

2
Gii(�)

and the bound state wave-function consists mostly of the
spin component:[TODO: I think that G are in consistent
notation so we don’t need the ”-”]

| Bi ⇡ |", 0i+ g

X

j2G
Gij(�)a†j |#, 0i . (4)

This corresponds to a qubit coupled to a structured bath.
In the low-energy regime, we can describe the photonic

part of the system using the continuum limit, where the
hyperbolic lattice is mapped to the Poincaré disk with
radius L  1 and curvature radius R = 1

2 . The condition
for the bound state in the continuum is given by Eq. (3)
with the continuum approximation of the photon Green
function G(z, z0, !̄) given by

Gij(!) ⇡ �G(zi, zj , !̄), (5)

where !̄ = M(!+3), and M = 4
3h2 is e↵ective band mass

of the photons PB: “!k = E0 + k2/M and gk = g
q

⇡
28 K(z)

with  K(z) the eigenfunctions of the Laplacian”. For large lat-
tices we have L ! 1 and the photon spectrum becomes
continuous and reads 1

M (1 + k
2). The bound state con-

dition becomes

EB = �+ g
2 ⇡

28

ˆ
k⇤

d2k

(2⇡)2
tanh(⇡k/2)

EB + 3� 1
M (1 + k2)

.

The tanh-term in the measure is due to the negative
curvature of space. Importantly, the continuum de-
scription requires the introduction of a short-distance
cuto↵ ⇤ / h

�1, because G(z, z0, !̄) is not defined for
z = z

0. This is a well-known property of bound states
for parabolic bands in two dimensions. The value of ⇤
can be fixed through the renormalization condition C :=
G11(�3t) = G(z1, z1, 0), yielding ⇤ ' e
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with u(z) = Mg̃G(z, zi, !̄B). In Fig. 1(b) we show the
amplitude of the photonic component |u(z)|2 [TODO:
right?] of the bound state wave function in Eq. (4)
using both the discrete and continuum expressions, which
agree very well.
Note that, even though boundary e↵ects make the con-

tinuum limit of the DOS nuanced, the bound states for
spins away from the edge are localized in the bulk and
therefore the results are no influenced by the edge e↵ects.
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FIG. 1. (a) Single-excitation single-qubit bound-state. Red
square denotes the position of the qubit. (b) Comparison
between discrete and continuous Green’s function. We see
that already the nearest neighbour photonic component is
well described by the continuum limit. (c-d) Density of the
photonic component of a two-spin bound state illustrating the
photon-mediated interactions between spins.

System.—We study photons on the hyperbolic lattice
G coupled to qubits, where photon dynamics is modelled
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corresponds to local spin-1/2 operators �+
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with a
†
i the photon creation operator and g the coupling

between photons and qubits. The set S comprises the
qubit sites and G the hyperbolic lattice. For concreteness
we assume t > 0 in the following.

The coupling of a single qubit to the photonic bath
results in a dressing or renormalization of �. The single-
excitation bound state energy EB for a photon coupled
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Gii(EB), (3)

where Gij(!) = (! � Hph)
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ij is the photon Green func-

tion.4 Denote the lowest eigenvalue of Hph by E0 < 0,

4[Di↵erent sign of Gij as in previous paper.]

which defines the lower edge of the photon spectrum.
Equation (3) always permits a solution EB < �. In par-
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2
Gii(�)
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This corresponds to a qubit coupled to a structured bath.
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radius L  1 and curvature radius R = 1

2 . The condition
for the bound state in the continuum is given by Eq. (3)
with the continuum approximation of the photon Green
function G(z, z0, !̄) given by
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The tanh-term in the measure is due to the negative
curvature of space. Importantly, the continuum de-
scription requires the introduction of a short-distance
cuto↵ ⇤ / h

�1, because G(z, z0, !̄) is not defined for
z = z

0. This is a well-known property of bound states
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with u(z) = Mg̃G(z, zi, !̄B). In Fig. 1(b) we show the
amplitude of the photonic component |u(z)|2 [TODO:
right?] of the bound state wave function in Eq. (4)
using both the discrete and continuum expressions, which
agree very well.
Note that, even though boundary e↵ects make the con-

tinuum limit of the DOS nuanced, the bound states for
spins away from the edge are localized in the bulk and
therefore the results are no influenced by the edge e↵ects.
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FIG. 1. (a) Single-excitation single-qubit bound-state. Red
square denotes the position of the qubit. (b) Comparison
between discrete and continuous Green’s function. We see
that already the nearest neighbour photonic component is
well described by the continuum limit. (c-d) Density of the
photonic component of a two-spin bound state illustrating the
photon-mediated interactions between spins.

System.—We study photons on the hyperbolic lattice
G coupled to qubits, where photon dynamics is modelled
by a tight-binding Hamiltonian and qubits at positions i
corresponds to local spin-1/2 operators �+

i �
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i = |1ih1|i.

The full Hamiltonian in rotating wave approximation is
given by
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with a
†
i the photon creation operator and g the coupling

between photons and qubits. The set S comprises the
qubit sites and G the hyperbolic lattice. For concreteness
we assume t > 0 in the following.

The coupling of a single qubit to the photonic bath
results in a dressing or renormalization of �. The single-
excitation bound state energy EB for a photon coupled
to a single qubit at position i is given by the solution of

EB = �+ g
2
Gii(EB), (3)

where Gij(!) = (! � Hph)
�1
ij is the photon Green func-

tion.4 Denote the lowest eigenvalue of Hph by E0 < 0,

4[Di↵erent sign of Gij as in previous paper.]

which defines the lower edge of the photon spectrum.
Equation (3) always permits a solution EB < �. In par-
ticular, for weak coupling, we find EB ⇡ � + g

2
Gii(�)

and the bound state wave-function consists mostly of the
spin component:[TODO: I think that G are in consistent
notation so we don’t need the ”-”]
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This corresponds to a qubit coupled to a structured bath.
In the low-energy regime, we can describe the photonic

part of the system using the continuum limit, where the
hyperbolic lattice is mapped to the Poincaré disk with
radius L  1 and curvature radius R = 1

2 . The condition
for the bound state in the continuum is given by Eq. (3)
with the continuum approximation of the photon Green
function G(z, z0, !̄) given by

Gij(!) ⇡ �G(zi, zj , !̄), (5)

where !̄ = M(!+3), and M = 4
3h2 is e↵ective band mass

of the photons PB: “!k = E0 + k2/M and gk = g
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with  K(z) the eigenfunctions of the Laplacian”. For large lat-
tices we have L ! 1 and the photon spectrum becomes
continuous and reads 1

M (1 + k
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The tanh-term in the measure is due to the negative
curvature of space. Importantly, the continuum de-
scription requires the introduction of a short-distance
cuto↵ ⇤ / h

�1, because G(z, z0, !̄) is not defined for
z = z

0. This is a well-known property of bound states
for parabolic bands in two dimensions. The value of ⇤
can be fixed through the renormalization condition C :=
G11(�3t) = G(z1, z1, 0), yielding ⇤ ' e
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For ⇤ �

p
M , Eq. (3) becomes
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with u(z) = Mg̃G(z, zi, !̄B). In Fig. 1(b) we show the
amplitude of the photonic component |u(z)|2 [TODO:
right?] of the bound state wave function in Eq. (4)
using both the discrete and continuum expressions, which
agree very well.
Note that, even though boundary e↵ects make the con-

tinuum limit of the DOS nuanced, the bound states for
spins away from the edge are localized in the bulk and
therefore the results are no influenced by the edge e↵ects.
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FIG. 1. (a) Single-excitation single-qubit bound-state. Red
square denotes the position of the qubit. (b) Comparison
between discrete and continuous Green’s function. We see
that already the nearest neighbour photonic component is
well described by the continuum limit. (c-d) Density of the
photonic component of a two-spin bound state illustrating the
photon-mediated interactions between spins.

System.—We study photons on the hyperbolic lattice
G coupled to qubits, where photon dynamics is modelled
by a tight-binding Hamiltonian and qubits at positions i
corresponds to local spin-1/2 operators �+

i �
�
i = |1ih1|i.

The full Hamiltonian in rotating wave approximation is
given by

H = �
X

i2S
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with a
†
i the photon creation operator and g the coupling

between photons and qubits. The set S comprises the
qubit sites and G the hyperbolic lattice. For concreteness
we assume t > 0 in the following.

The coupling of a single qubit to the photonic bath
results in a dressing or renormalization of �. The single-
excitation bound state energy EB for a photon coupled
to a single qubit at position i is given by the solution of

EB = �+ g
2
Gii(EB), (3)

where Gij(!) = (! � Hph)
�1
ij is the photon Green func-

tion.4 Denote the lowest eigenvalue of Hph by E0 < 0,

4[Di↵erent sign of Gij as in previous paper.]

which defines the lower edge of the photon spectrum.
Equation (3) always permits a solution EB < �. In par-
ticular, for weak coupling, we find EB ⇡ � + g

2
Gii(�)

and the bound state wave-function consists mostly of the
spin component:[TODO: I think that G are in consistent
notation so we don’t need the ”-”]
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Gij(�)a†j |#, 0i . (4)

This corresponds to a qubit coupled to a structured bath.
In the low-energy regime, we can describe the photonic

part of the system using the continuum limit, where the
hyperbolic lattice is mapped to the Poincaré disk with
radius L  1 and curvature radius R = 1

2 . The condition
for the bound state in the continuum is given by Eq. (3)
with the continuum approximation of the photon Green
function G(z, z0, !̄) given by

Gij(!) ⇡ �G(zi, zj , !̄), (5)

where !̄ = M(!+3), and M = 4
3h2 is e↵ective band mass

of the photons PB: “!k = E0 + k2/M and gk = g
q
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28 K(z)

with  K(z) the eigenfunctions of the Laplacian”. For large lat-
tices we have L ! 1 and the photon spectrum becomes
continuous and reads 1

M (1 + k
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The tanh-term in the measure is due to the negative
curvature of space. Importantly, the continuum de-
scription requires the introduction of a short-distance
cuto↵ ⇤ / h

�1, because G(z, z0, !̄) is not defined for
z = z

0. This is a well-known property of bound states
for parabolic bands in two dimensions. The value of ⇤
can be fixed through the renormalization condition C :=
G11(�3t) = G(z1, z1, 0), yielding ⇤ ' e
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M , Eq. (3) becomes
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with u(z) = Mg̃G(z, zi, !̄B). In Fig. 1(b) we show the
amplitude of the photonic component |u(z)|2 [TODO:
right?] of the bound state wave function in Eq. (4)
using both the discrete and continuum expressions, which
agree very well.
Note that, even though boundary e↵ects make the con-

tinuum limit of the DOS nuanced, the bound states for
spins away from the edge are localized in the bulk and
therefore the results are no influenced by the edge e↵ects.
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FIG. 1. (a) Single-excitation single-qubit bound-state. Red
square denotes the position of the qubit. (b) Comparison
between discrete and continuous Green’s function. We see
that already the nearest neighbour photonic component is
well described by the continuum limit. (c-d) Density of the
photonic component of a two-spin bound state illustrating the
photon-mediated interactions between spins.

System.—We study photons on the hyperbolic lattice
G coupled to qubits, where photon dynamics is modelled
by a tight-binding Hamiltonian and qubits at positions i
corresponds to local spin-1/2 operators �+
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i = |1ih1|i.

The full Hamiltonian in rotating wave approximation is
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with a
†
i the photon creation operator and g the coupling

between photons and qubits. The set S comprises the
qubit sites and G the hyperbolic lattice. For concreteness
we assume t > 0 in the following.

The coupling of a single qubit to the photonic bath
results in a dressing or renormalization of �. The single-
excitation bound state energy EB for a photon coupled
to a single qubit at position i is given by the solution of

EB = �+ g
2
Gii(EB), (3)

where Gij(!) = (! � Hph)
�1
ij is the photon Green func-

tion.4 Denote the lowest eigenvalue of Hph by E0 < 0,

4[Di↵erent sign of Gij as in previous paper.]

which defines the lower edge of the photon spectrum.
Equation (3) always permits a solution EB < �. In par-
ticular, for weak coupling, we find EB ⇡ � + g

2
Gii(�)

and the bound state wave-function consists mostly of the
spin component:[TODO: I think that G are in consistent
notation so we don’t need the ”-”]

| Bi ⇡ |", 0i+ g

X

j2G
Gij(�)a†j |#, 0i . (4)

This corresponds to a qubit coupled to a structured bath.
In the low-energy regime, we can describe the photonic

part of the system using the continuum limit, where the
hyperbolic lattice is mapped to the Poincaré disk with
radius L  1 and curvature radius R = 1

2 . The condition
for the bound state in the continuum is given by Eq. (3)
with the continuum approximation of the photon Green
function G(z, z0, !̄) given by

Gij(!) ⇡ �G(zi, zj , !̄), (5)

where !̄ = M(!+3), and M = 4
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The tanh-term in the measure is due to the negative
curvature of space. Importantly, the continuum de-
scription requires the introduction of a short-distance
cuto↵ ⇤ / h

�1, because G(z, z0, !̄) is not defined for
z = z

0. This is a well-known property of bound states
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can be fixed through the renormalization condition C :=
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with u(z) = Mg̃G(z, zi, !̄B). In Fig. 1(b) we show the
amplitude of the photonic component |u(z)|2 [TODO:
right?] of the bound state wave function in Eq. (4)
using both the discrete and continuum expressions, which
agree very well.
Note that, even though boundary e↵ects make the con-

tinuum limit of the DOS nuanced, the bound states for
spins away from the edge are localized in the bulk and
therefore the results are no influenced by the edge e↵ects.
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1D-Photonic	Crystal	+	Single	Drive

as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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• Microwave-activated coupling

• Two relevant detunings

• Effective swap interaction

1D-Photonic	Crystal	+	Single	Drive

as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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• Microwave-activated coupling

• Two relevant detunings
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as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states

(b)

QQ

Q Q QQQ Q

(c)

(d)

Bound state frequency (GHz)

Li
ne

w
id

th
 (

M
H

z)

Experiment

(a)

Q
ub

it 
fr

eq
ue

nc
y 

(G
H

z)

Frequency (GHz)

Q
ub

it 
fr

eq
ue

nc
y 

(G
H

z)

Simulation

(e)

(f)

Experiment

Frequency (GHz)

Frequency (GHz)

S
21

 (
dB

)

Transfer matrix
Experiment

Simulation

-30

-10

-50
7.5 7.97.7 8.1

1

3

5

7

9

7.3 7.4 7.5 7.6 7.7

FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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