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e Cavity defined by cutting center pin
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Heptagon-Kagome Device

® 2 shells

¢ e Operating frequency: 16 GHz

® 4 input-output ports

—— experiment
—— theory

Transmission (dB)

16l.0 16.1 l. ]. 16l.4
Frequency (GHz)

Kollar et al. Nature 571 (2019)
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Line-Graph Lattices

Graphene Heptagon-Graphene

—~
=
~
L
Q.
©
—
O
<))
c
=




Line-Graph Lattices

Graphene Heptagon-Graphene

—~
=
~
L
Q.
©
—
O
<))
c
=




Line-Graph Lattices

Graphene

~—~
=
~
N o
Q
(C
-
O
v
c
=




Band Structure Correspondence
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Density of States and Flat-Band States
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Subdivision Graphs and Optimally Gapped Flat Bands
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Other Maximal Gaps?

Two Driving Questions
® Even larger gaps possible at other energies?

® Where can planar graphs have gaps?

Thm:
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Abelian Covers and Planar Gaps

Thm:

All points in [-3,3) can be gapped by
large 3-regular planar graphs.

New Lattice Viewpoint

® Use method of Abelian covers to

construct examples.
® “Unwrap” small graph to form lattice

Four Seeds

® Initial energies are k=0 energies of

the lattice
® Small graphs and their spectra
tabulated.
® “Periodic table” of unit cells to
start from.

® Combined gaps cover [-3,2V2].

® |teration of L(S(X)) covers the rest.
Kollar et al. Comm. AMS 1,1 (2021)




Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by
mapping to free fermions if and if only
the anticommutation relations of its
terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)




Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by
mapping to free fermions if and if only
the anticommutation relations of its
terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

® Built on the square lattice

Fermion Lattice

Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)




Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by

mapping to free fermions if and if only
the anticommutation relations of its
terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

® Built on the square lattice

Fermion Lattice Anticommutation Relations

Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)




Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by

mapping to free fermions if and if only
the anticommutation relations of its
terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

® Built on the square lattice

Fermion Lattice Anticommutation Relations

® Three Ingredients
[ Two commuting free-fermion
models on the square lattice

) Set of stabilizers

Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)




Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by

mapping to free fermions if and if only
the anticommutation relations of its
terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

® Built on the square lattice

Fermion Lattice Anticommutation Relations

® Three Ingredients
[ Two commuting free-fermion
models on the square lattice

) Set of stabilizers

Free-Fermion 1

Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)



Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by

mapping to free fermions if and if only
the anticommutation relations of its
terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

® Built on the square lattice

Fermion Lattice Anticommutation Relations

® Three Ingredients
[ Two commuting free-fermion
models on the square lattice

) Set of stabilizers

Free-Fermion 1

Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)



Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by

mapping to free fermions if and if only
the anticommutation relations of its
terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

® Built on the square lattice

Fermion Lattice Anticommutation Relations

® Three Ingredients
[ Two commuting free-fermion
models on the square lattice

) Set of stabilizers

Free-Fermion 1

Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)



Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by

mapping to free fermions if and if only
the anticommutation relations of its
terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

® Built on the square lattice

Fermion Lattice Anticommutation Relations

® Three Ingredients
[ Two commuting free-fermion
models on the square lattice

) Set of stabilizers

Free-Fermion 1

Free-Fermion 2

Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)




Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by

mapping to free fermions if and if only
the anticommutation relations of its
terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

® Built on the square lattice

Fermion Lattice Anticommutation Relations

® Three Ingredients
[ Two commuting free-fermion
models on the square lattice

) Set of stabilizers

Free-Fermion 1

Free-Fermion 2

Stabilizers

Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)




Checkerboard Lattice Code

Hamiltonian Terms/Gauge Generators

Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)
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Hamiltonian Terms/Gauge Generators Exact Logical Qubits
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® General relativity
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® Cayley graphs of non-commutative groups
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® Efficient communication networks
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Line Graphs and Quantum Error Correction

Thm: (Chapman and Flammia)
A spin model can be solved exactly by
mapping to free fermions if and if only
the anticommutation relations of its
terms have the structure of a line graph.

® Spin-model energies found from half-filling of
magnetic models on the root graph.

® Gaps in and between these spectra dictate
robustness of the code.

Numerical Phenomenology

Error suppression is limited by
energy differences between
orientations, not single-
particle gaps

Chapman et al. Quantum 4, 278 (2020) Chapman, Flammia, AJK, arXiv:2201.07254 (2022)




Line Graphs and Quantum Error Correction

Thm: (Chapman and Flammia)
A spin model can be solved exactly by
mapping to free fermions if and if only
the anticommutation relations of its
terms have the structure of a line graph.

® Spin-model energies found from half-filling of
magnetic models on the root graph.

® Gaps in and between these spectra dictate
robustness of the code.

Numerical Phenomenology

0.25 A
Large gap

-

wn
8 0.02 1 But not the
0.01 - ground state

Error suppression is limited by
0.00 - energy differences between
0.04 - orietltations, not single-
particle gaps

Large gap

And the
ground state

-3 2 -1 0 1 2 3
Energy (|t|)

Chapman et al. Quantum 4, 278 (2020) Chapman, Flammia, AJK, arXiv:2201.07254 (2022)




Lattice Gap Examples
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Free-Fermion Solutions

average skew energy = -1.564

2,0 nanotube : elementary, max SP gap

® Llargegap
® But not the ground
state
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1,1 nanotube : elementary orientation

1,1 nanotube : max SP gap, min skew E

Free-Fermion Solutions

average skew energy = -1.436

0
Energy (|t])

average skew energy = -1.678
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Energy (t])

® Non-magnetic
orientation
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® Ground State




Mathematical Outlook: Abelian Covers and Error Correction

New Lattice Viewpoint

® Use method of Abelian covers to

construct examples.
® “Unwrap” small graph to form lattice

shppdhy
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So far, error suppression is limited by energy differences
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Abelian covers of small regular graphs vyield
examples with a large gap within the ground
state orientation

But, skew energy gaps between orientations
remain small

Error suppression limited by skew energy, so far

Chapman et al. Quantum 4, 278 (2020) AJK, Sarnak arXiv:2005.05379 (2020) Chapman, Flammia, AJK, In Preparation (2021)




The Triangle Models

Three Combined Models Wen Plaquette Model

® Free-fermion model : Kitaev Honeycomb

® Stabilizer code : Wen Plaquette

® Paramagnet to couple the two %
Effective Qubits

Kitaev Honeycomb Model
XX YY ZZ

Exact logicals without fermion participation

Chapman et al. Quantum 4, 278 (2020) Chapman, Flammia, AJK, arXiv:2201.07254 (2022)
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® All modes in parallel
2

H=ho o, zm: A(T;”L) U (x1)0) (22) + h.c.
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® Exponentially localized bound state

Qubit frequency (GHz)
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New Regimes:

o N |atti Douglas et al. Nat. Photon. (2015)
ew lattices Calajo et al. PRA (2016)
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New Lattices for Photon-Mediated Interactions

AJK et al. Nature 571 (2019) Bienias, AJK et al. arXiv:2105.06490 (2021)

Hyperbolic Lattice

® Follows hyperbolic metric

Flat-Band Lattice
® Frustrated Magnet

L -1
I2
-3

AJK et al. Comm. Math. Phys. 376, 1909 (2020)
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Raman-Coupled Spin Models

1D-Photonic Crystal + Single Drive

® Exponentially localized interaction

I

e ———, o e o . T IT

1D-Photonic Crystal + Multiple Drives

gl ® Superposition of exponentials

® Approximate power-law interaction
® Microwave-activated coupling

® Two relevant detunings l

e Effective swap interaction Need 3-level qubit

g2Q2
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_|_ _
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H Raman — h

Douglas et al. Nat. Photon. 9 (2015)
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Second-Generation Raman Device

Redesignhed Device

® 3-cavities Raman In

® Separate resonators allow
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Second-Generation Raman Device

Redesignhed Device

Raman In
—

® Separate resonators allow . 1:
ux
e Optimized readout

e Parallel readout and coupling

® 3-cavities
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Subdivision Graphs: Flat Bands at O
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Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian Incidence Operator

® Bounded self-adjoint operator on X ® From X to L(X)
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Full-Wave v Half-Wave Flat Band States

® Full-wave has localized states
on only even cycles of the layout.




Full-Wave v Half-Wave Flat Band States

® Full-wave has localized states
on only even cycles of the layout.

e Half-wave has localized states
on any cycle of the layout.
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