Circuit QED Lattices

Alicia Kollár

Department of Physics and JQI, University of Maryland

Trento, Oct 4, 2022

Outline

- Coplanar Waveguide (CPW) Lattices
 - Deformable lattice sites
 - Line-graph lattices
 - Interacting photons
- Band Engineering
 - Hyperbolic lattice
 - Gapped flat bands
- Mathematical Connections
 - Planar Gaps
 - Maximal Gaps
 - Quantum Error Correcting Codes
- Experimental Developments

Microwave Coplanar Waveguide Resonators

- 2D analog of coaxial cable
- Cavity defined by cutting center pin
- Voltage antinode at "mirror"

Microwave Coplanar Waveguide Resonators

- 2D analog of coaxial cable
- Cavity defined by cutting center pin
- Voltage antinode at "mirror"

Microwave Coplanar Waveguide Resonators

- 2D analog of coaxial cable
- Cavity defined by cutting center pin
- Voltage antinode at "mirror"

Harmonic oscillator

$$\hat{H} = \frac{1}{2C}\hat{n}^2 + \frac{1}{2L}\hat{\varphi}^2$$

Houck *et al*. Nat Phys **8**, (2012) Underwood *et al*. PRA **86**, 023837 (2012)

Underwood *et al*. PRA **86**, 023837 (2012)

Houck *et al*. Nat Phys **8**, (2012) Underwood *et al*. PRA **86**, 023837 (2012)

Houck *et al*. Nat Phys **8**, (2012) Underwood *et al*. PRA **86**, 023837 (2012)

Number-Resolved Transitions

$$H_{JC} = \omega_c a^{\dagger} a + \frac{1}{2} \omega_q \sigma_z + g_0 (a^{\dagger} \sigma^- + a \sigma^+)$$

Probe Frequency

Bishop *et al*. Nat Phys **5**, (2009) | Houck *et al*. Nat Phys **8**, (2012)

Number-Resolved Transitions

$$H_{JC} = \omega_c a^{\dagger} a + \frac{1}{2} \omega_q \sigma_z + g_0 (a^{\dagger} \sigma^- + a \sigma^+)$$

Probe Frequency

Qubits in Photonic Crystals

- Effective swap interaction between qubits
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

Bishop *et al*. Nat Phys **5**, (2009) | Houck *et al*. Nat Phys **8**, (2012)

Number-Resolved Transitions

$$H_{JC} = \omega_c a^{\dagger} a + \frac{1}{2} \omega_q \sigma_z + g_0 (a^{\dagger} \sigma^- + a \sigma^+)$$

Probe Frequency

Qubits in Photonic Crystals

- Effective swap interaction between qubits
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

1D-Photonic Crystal

Exponentially localized bound state

Douglas *et al*. Nat. Photon. (2015) Calajó *et al*. PRA (2016) Sundaresan *et al*. PRX (2019) Ferreira *et al*. arXiv 2001.0324 (2020)

Bishop *et al*. Nat Phys **5**, (2009) | Houck *et al*. Nat Phys **8**, (2012)

Number-Resolved Transitions

$$H_{JC} = \omega_c a^{\dagger} a + \frac{1}{2} \omega_q \sigma_z + g_0 (a^{\dagger} \sigma^- + a \sigma^+)$$

Probe Frequency

Qubits in Photonic Crystals

- Effective swap interaction between qubits
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

1D-Photonic Crystal

• Exponentially localized bound state

New Regimes:New lattices

Douglas *et al.* Nat. Photon. (2015) Calajó *et al.* PRA (2016) Sundaresan *et al.* PRX (2019) Ferreira *et al.* arXiv 2001.0324 (2020)

Bishop *et al*. Nat Phys **5**, (2009) | Houck *et al*. Nat Phys **8**, (2012)

• Frequency depends only on length

- Frequency depends only on length
- Coupling depends on ends

- Frequency depends only on length
- Coupling depends on ends
- "Bendable"

• "Bendable"

• "Bendable"

Resonator Lattice

Resonator Lattice

• An *edge* on each resonator

Resonator Lattice

• An *edge* on each resonator

Effective Photonic Lattice

Resonator Lattice

• An *edge* on each resonator

Effective Photonic Lattice

• A vertex on each resonator

Resonator Lattice

• An *edge* on each resonator

Layout X

Effective Photonic Lattice

• A vertex on each resonator

Resonator Lattice

• An *edge* on each resonator

${\rm Layout} \ X$

Effective Photonic Lattice

• A vertex on each resonator

Outline

- Coplanar Waveguide (CPW) Lattices
 - Deformable lattice sites
 - Line-graph lattices
 - Interacting photons
- Band Engineering
 - Hyperbolic lattice
 - Gapped flat bands
- Mathematical Connections
 - Planar Gaps
 - Maximal Gaps
 - Quantum Error Correcting Codes
- Experimental Developments

Outline

- Coplanar Waveguide (CPW) Lattices
 - Deformable lattice sites
 - Line-graph lattices
 - Interacting photons
- Band Engineering
 - Hyperbolic lattice
 - Gapped flat bands
- Mathematical Connections
 - Planar Gaps
 - Maximal Gaps
 - Quantum Error Correcting Codes
- Experimental Developments

Projecting to Flat 2D

• 2 shells

• 2 shells

• Operating frequency: 16 GHz

• 2 shells

• Operating frequency: 16 GHz

• 4 input-output ports

Kollár *et al*. Nature **571** (2019)

What is the spectrum of this?

Graphene

Graphene

 $\mathsf{Layout}\ X$

Density of States and Flat-Band States

Kollár et al. Comm. Math. Phys. 376, 1909 (2020)

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

• Hyperbolic Lattice

• Follows hyperbolic metric

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

• Hyperbolic Lattice

• Follows hyperbolic metric

AJK et al. Nature 571 (2019)

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

• Hyperbolic Lattice

• Follows hyperbolic metric

Bienias, AJK *et al*. Phys. Rev. Lett. **128**, 013601 (2022)

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

Hyperbolic Lattice

• Follows hyperbolic metric

• Flat-Band Lattice

• Frustrated Magnet

Bienias, AJK *et al*. Phys. Rev. Lett. **128**, 013601 (2022)

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

Hyperbolic Lattice

• Follows hyperbolic metric

• Flat-Band Lattice

• Frustrated Magnet

AJK et al. Nature 571 (2019)

Bienias, AJK *et al*. Phys. Rev. Lett. **128**, 013601 (2022)

AJK et al. Comm. Math. Phys. 376, 1909 (2020)

AJK et al. Nature 571 (2019)

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

Hyperbolic Lattice

• Follows hyperbolic metric

• Flat-Band Lattice

• Frustrated Magnet

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

• Hyperbolic Lattice

• Follows hyperbolic metric

• Flat-Band Lattice

• Frustrated Magnet

Bienias, AJK *et al*. Phys. Rev. Lett. **128**, 013601 (2022)

Outline

- Coplanar Waveguide (CPW) Lattices
 - Deformable lattice sites
 - Line-graph lattices
 - Interacting photons
- Band Engineering
 - Hyperbolic lattice
 - Gapped flat bands
- Mathematical Connections
 - Planar Gaps
 - Maximal Gaps
 - Quantum Error Correcting Codes
- Experimental Developments
Outline

- Coplanar Waveguide (CPW) Lattices
 - Deformable lattice sites
 - Line-graph lattices
 - Interacting photons
- Band Engineering
 - Hyperbolic lattice
 - Gapped flat bands
- Mathematical Connections
 - Planar Gaps
 - Maximal Gaps
 - Quantum Error Correcting Codes
- Experimental Developments

Two Driving Questions

- Even larger gaps possible at other energies?
- Where can planar graphs have gaps?

Two Driving Questions

- Even larger gaps possible at other energies?
- Where can planar graphs have gaps?

Thm:

No large 3-regular graph can have a gap larger than 2.

Two Driving Questions

- Even larger gaps possible at other energies?
- Where can planar graphs have gaps?

Thm:

No large 3-regular graph can have a gap larger than 2.

- Have found 2 such gaps.
- Conjecture that these are the only ones.

Two Driving Questions

- Even larger gaps possible at other energies?
- Where can planar graphs have gaps?

Thm:

No large 3-regular graph can have a gap larger than 2.

- Have found 2 such gaps.
- Conjecture that these are the only ones.

Kollár *et al*. Comm. AMS **1**,1 (2021) Guo, Mohar Lin. Alg. and Appl. **449, 68-75** (2014)

Two Driving Questions

- Even larger gaps possible at other energies?
- Where can planar graphs have gaps?

Thm:

No large 3-regular graph can have a gap larger than 2.

- Have found 2 such gaps.
- Conjecture that these are the only ones.

Kollár *et al*. Comm. AMS **1**,1 (2021) Guo, Mohar Lin. Alg. and Appl. **449, 68-75** (2014)

Two Driving Questions

- Even larger gaps possible at other energies?
- Where can planar graphs have gaps?

Thm:

No large 3-regular graph can have a gap larger than 2.

- Have found 2 such gaps.
- Conjecture that these are the only ones.

A.K.A. n=2, m=0 carbon nanotube

Kollár *et al*. Comm. AMS **1**,1 (2021) Guo, Mohar Lin. Alg. and Appl. **449, 68-75** (2014)

New Lattice Viewpoint

Kollár *et al*. Comm. AMS **1**,1 (2021)

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
 - "Unwrap" small graph to form lattice

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
 - "Unwrap" small graph to form lattice

- tabulated."Periodic table" of unit cells to
- start from.

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
 - "Unwrap" small graph to form lattice

the lattice

- Small graphs and their spectra tabulated.
- "Periodic table" of unit cells to start from.

Thm:

All points in [-3,3) can be gapped by large 3-regular planar graphs.

• Iteration of L(S(X)) covers the rest.

Kollár *et al*. Comm. AMS **1**,1 (2021)

Thm: (Chapman and Flammia) A spin model can be solved exactly by

mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

Chapman *et al*. Quantum **4**, 278 (2020)

Thm: (Chapman and Flammia) A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

Chapman *et al*. Quantum **4**, 278 (2020)

The Checkerboard-Lattice Code

• Built on the square lattice

Fermion Lattice

Thm: (Chapman and Flammia) A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

• Built on the square lattice

Thm: (Chapman and Flammia) A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

Chapman *et al*. Quantum **4**, 278 (2020)

The Checkerboard-Lattice Code

• Built on the square lattice

- Three Ingredients
 - Two commuting free-fermion models on the square lattice
 - Set of stabilizers

Chapman, Flammia, AJK, PRX Quantum **3**, 030321 (2022)

Checkerboard Lattice Code

Checkerboard Lattice Code

Outline

- Coplanar Waveguide (CPW) Lattices
 - Deformable lattice sites
 - Line-graph lattices
 - Interacting photons
- Band Engineering
 - Hyperbolic lattice
 - Gapped flat bands
- Mathematical Connections
 - Planar Gaps
 - Maximal Gaps
 - Quantum Error Correcting Codes
- Experimental Developments

Outline

- Coplanar Waveguide (CPW) Lattices
 - Deformable lattice sites
 - Line-graph lattices
 - Interacting photons
- Band Engineering
 - Hyperbolic lattice
 - Gapped flat bands
- Mathematical Connections
 - Planar Gaps
 - Maximal Gaps
 - Quantum Error Correcting Codes
- Experimental Developments

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

Underwood et al. PRA 86, 023837 (2012)

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

• Parallel measurement

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

- Parallel measurement
- Disorder extracted from comb spacing

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Numerical Test Geometries

4mm 4.75mm

5.5mm

6

7

8

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Numerical Test Geometries

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Numerical Test Geometries

Hardware Layout

Effective Lattice

Hardware Layout

Effective Lattice

Band Structure

- Flat bands
 - Gapped
 - Ungapped
- Linear bands
- Quadratic bands

- Circuit QED lattices
 - Artificial photonic materials
 - Interacting photons
- Hyperbolic lattices
 - On-chip fabrication
- Flat-band lattices
 - Optimal gaps
- Mathematics
 - Graph Spectra
 - Gap Sets
 - Abelian Covers

Kollár *et al.* Nature **571** (2019) Kollár *et al.* Comm. Math. Phys. **376**, 1909 (2020) Boettcher *et al.* Phys. Rev. A **102**, 032208 (2020) Kollár *et al.* Comm. AMS **1**,1 (2021) Boettcher *et al.* arXiv:2105.0187 (2021) Bienias *et al.* Phys. Rev. Lett. **128**, 013601 (2022) Chapman, Flammia, AJK, PRX Quantum **3**, 030321 (2022)

Outlook

- Circuit QED lattices
 - Artificial photonic materials
 - Interacting photons
- Hyperbolic lattices
 - On-chip fabrication
- Flat-band lattices
 - Optimal gaps
- Mathematics
 - Graph Spectra
 - Gap Sets
 - Abelian Covers

Kollár *et al.* Nature **571** (2019) Kollár *et al.* Comm. Math. Phys. **376**, 1909 (2020) Boettcher *et al.* Phys. Rev. A **102**, 032208 (2020) Kollár *et al.* Comm. AMS **1**,1 (2021) Boettcher *et al.* arXiv:2105.0187 (2021) Bienias *et al.* Phys. Rev. Lett. **128**, 013601 (2022) Chapman, Flammia, AJK, PRX Quantum **3**, 030321 (2022)

- Circuit QED lattices
 - Artificial photonic materials
 - Interacting photons
- Hyperbolic lattices
 - On-chip fabrication
- Flat-band lattices
 - Optimal gaps
- Mathematics
 - Graph Spectra
 - Gap Sets
 - Abelian Covers

Kollár *et al.* Nature **571** (2019) Kollár *et al.* Comm. Math. Phys. **376**, 1909 (2020) Boettcher *et al.* Phys. Rev. A **102**, 032208 (2020) Kollár *et al.* Comm. AMS **1**,1 (2021) Boettcher *et al.* arXiv:2105.0187 (2021) Bienias *et al.* Phys. Rev. Lett. **128**, 013601 (2022) Chapman, Flammia, AJK, PRX Quantum **3**, 030321 (2022)

- Outlook
 - Frustrated and hyperbolic interactions

- Circuit QED lattices
 - Artificial photonic materials
 - Interacting photons
- Hyperbolic lattices
 - On-chip fabrication
- Flat-band lattices
 - Optimal gaps
- Mathematics
 - Graph Spectra
 - Gap Sets
 - Abelian Covers

Kollár *et al.* Nature **571** (2019) Kollár *et al.* Comm. Math. Phys. **376**, 1909 (2020) Boettcher *et al.* Phys. Rev. A **102**, 032208 (2020) Kollár *et al.* Comm. AMS **1**,1 (2021) Boettcher *et al.* arXiv:2105.0187 (2021) Bienias *et al.* Phys. Rev. Lett. **128**, 013601 (2022) Chapman, Flammia, AJK, PRX Quantum **3**, 030321 (2022) Outlook

- Frustrated and hyperbolic interactions
- Many-body physics in flat bands

- Circuit QED lattices
 - Artificial photonic materials
 - Interacting photons
- Hyperbolic lattices
 - On-chip fabrication
- Flat-band lattices
 - Optimal gaps
- Mathematics
 - Graph Spectra
 - Gap Sets
 - Abelian Covers

Kollár *et al.* Nature **571** (2019) Kollár *et al.* Comm. Math. Phys. **376**, 1909 (2020) Boettcher *et al.* Phys. Rev. A **102**, 032208 (2020) Kollár *et al.* Comm. AMS **1**,1 (2021) Boettcher *et al.* arXiv:2105.0187 (2021) Bienias *et al.* Phys. Rev. Lett. **128**, 013601 (2022) Chapman, Flammia, AJK, PRX Quantum **3**, 030321 (2022)

Outlook

- Frustrated and hyperbolic interactions
- Many-body physics in flat bands
- Exactly-solvable 3D line-graph codes

- Circuit QED lattices
 - Artificial photonic materials
 - Interacting photons
- Hyperbolic lattices
 - On-chip fabrication
- Flat-band lattices
 - Optimal gaps
- Mathematics
 - Graph Spectra
 - Gap Sets
 - Abelian Covers

Kollár *et al.* Nature **571** (2019) Kollár *et al.* Comm. Math. Phys. **376**, 1909 (2020) Boettcher *et al.* Phys. Rev. A **102**, 032208 (2020) Kollár *et al.* Comm. AMS **1**,1 (2021) Boettcher *et al.* arXiv:2105.0187 (2021) Bienias *et al.* Phys. Rev. Lett. **128**, 013601 (2022) Chapman, Flammia, AJK, PRX Quantum **3**, 030321 (2022) Outlook

- Frustrated and hyperbolic interactions
- Many-body physics in flat bands
- Exactly-solvable 3D line-graph codes
- Leapfrog Fullerenes

Circuit QED Lattices

Qubit-Cavity

(Jaynes-Cummings Model)

$$H_{JC} = \omega_c a^{\dagger} a + \frac{1}{2} \omega_q \sigma_z + g_0 (a^{\dagger} \sigma^- + a \sigma^+)$$

Regular Lattice

Disordered Lattice

Disordered Lattice

Regular Tight-Binding Graph

Regular Tight-Binding Graph

Disordered Lattice

Disordered TB Graph

Disordered Lattice

Regular Tight-Binding Graph

Regular Tight-Binding Graph

Disordered TB Graph

Regular Tight-Binding Graph

Disordered TB Graph

- General relativity
 - Curved space-time
- 2D materials
 - graphene, fullerenes

- General relativity
 - Curved space-time
- 2D materials
 - graphene, fullerenes
- Mathematics
 - Trees
 - Cayley graphs of non-commutative groups
 - Automorphic forms

- General relativity
 - Curved space-time
- 2D materials
 - graphene, fullerenes
- Mathematics
 - Trees
 - Cayley graphs of non-commutative groups
 - Automorphic forms
- Computer Science
 - Trees
 - Efficient communication networks
 - Tamper-resistant networks

High Energy Limit of The Spectrum

• Long-wavelength modes

- Long-wavelength modes
- Lattice should course-grain out

- Long-wavelength modes
- Lattice should course-grain out
- Hyperbolic particle in a box

- Long-wavelength modes
- Lattice should course-grain out
- Hyperbolic particle in a box

High Energy Limit of The Spectrum 0.8 0.6 0.4 0.6 Long-wavelength modes $< G_{ij}(\omega) >$ 0.2 0.0 0.4 0.0 Lattice should course-grain out 0.2 Hyperbolic particle in a box 0.0 0.5 1.5 2.0 1.0 0.0 0.6 0.2 0.0 0.4 <Re $G_{ij}(\omega)$ > -0.20.2 -0.40.0 0.0 -0.20.5 2.0 0.0 1.0 1.5 $\langle d_{ij} \rangle$

0.5

0.5

1.0

2.5

1.0

2.5

1.5

3.0

1.5

3.0

2.0

3.5

2.0

3.5

- Long-wavelength modes
- Lattice should course-grain out
- Hyperbolic particle in a box

• Green's function

High Energy Limit of The Spectrum

- Long-wavelength modes
- Lattice should course-grain out
- Hyperbolic particle in a box

Quantitive Match for Large System Sizes

- Green's function
- "Ground" state energy
Continuum Limit and Green's Function

High Energy Limit of The Spectrum

- Long-wavelength modes
- Lattice should course-grain out
- Hyperbolic particle in a box

Quantitive Match for Large System Sizes

- Green's function
- "Ground" state energy
- "First" excited state energies.

Boettcher et al. Phys. Rev. A 102, 032208 (2020)

Bipartite

• All neighbors opposite sign

• All neighbors opposite sign

• All neighbors opposite sign

• All neighbors opposite sign

 Not all neighbors can be opposite sign

Layout Tight-Binding Hamiltonian

• Bounded self-adjoint operator on X

Kollár et al. Comm. Math. Phys. 376, 1909 (2020)

Layout Tight-Binding Hamiltonian

• Bounded self-adjoint operator on X

 H_X

Effective Hamiltonian

Bounded self-adjoint operator on L(X)

 $\bar{H}_s(X) = H_{L(X)}$

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Incidence Operator

• From X to L(X)

$$M: \ell^2(X) \to \ell^2(L(X))$$

Effective Hamiltonian

Bounded self-adjoint operator on L(X)

 $\bar{H}_s(X) = H_{L(X)}$

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Incidence Operator

• From X to L(X)

$$M: \ell^2(X) \to \ell^2(L(X))$$

 $M(v, e) = \begin{cases} 1, & \text{if } e \text{ and } v \text{ are incident,} \\ 0 & \text{otherwise.} \end{cases}$

Effective Hamiltonian

Bounded self-adjoint operator on L(X)

 $\bar{H}_s(X) = H_{L(X)}$

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Incidence Operator

• From X to L(X)

$$M: \ell^2(X) \to \ell^2(L(X))$$

 $M(v, e) = \begin{cases} 1, & \text{if } e \text{ and } v \text{ are incident,} \\ 0 & \text{otherwise.} \end{cases}$

Effective Hamiltonian

Bounded self-adjoint operator on L(X)

 $\bar{H}_s(X) = H_{L(X)}$

 $M^{t}M = D_{X} + H_{X}$ $MM^{t} = 2I + \bar{H}_{s}(X)$

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Incidence Operator

• From X to L(X)

$$M: \ell^2(X) \to \ell^2(L(X))$$

 $M(v, e) = \begin{cases} 1, & \text{if } e \text{ and } v \text{ are incident,} \\ 0 & \text{otherwise.} \end{cases}$

Effective Hamiltonian

Bounded self-adjoint operator on L(X)

 $\bar{H}_s(X) = H_{L(X)}$

 $M^{t}M = D_{X} + H_{X}$ $MM^{t} = 2I + \bar{H}_{s}(X)$

 $D_X + H_X \simeq 2I + \bar{H}_s(X)$

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Incidence Operator

• From X to L(X)

$$M: \ell^2(X) \to \ell^2(L(X))$$

 $M(v, e) = \begin{cases} 1, & \text{if } e \text{ and } v \text{ are incident,} \\ 0 & \text{otherwise.} \end{cases}$

Effective Hamiltonian

Bounded self-adjoint operator on L(X)

 $\bar{H}_s(X) = H_{L(X)}$

 $M^{t}M = D_{X} + H_{X}$ $MM^{t} = 2I + \bar{H}_{s}(X)$

$$D_X + H_X \simeq 2I + \bar{H}_s(X)$$
$$E_{\bar{H}_s} = \begin{cases} d - 2 + E_{H_X} \\ -2 \end{cases}$$

Kollár *et al*. Comm. Math. Phys. **376**, 1909 (2020)

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

Underwood et al. PRA 86, 023837 (2012)

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

• Parallel measurement

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

- Parallel measurement
- Disorder extracted from comb spacing

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Numerical Test Geometries

First Generation Test Device

 Varied number of bends

First Generation Test Device

 Varied number of bends

First Generation Test Device

 Varied number of bends

Second Generation Device

• Higher dynamic range (in progress)

Hardware Layout

Effective Lattice

Hardware Layout

Effective Lattice

Band Structure

- Flat bands
 - Gapped
 - Ungapped
- Linear bands
- Quadratic bands

Line Graphs and Quantum Error Correction

Thm: (Chapman and Flammia) A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from half-filling of magnetic models on the root graph.
- Gaps in and between these spectra dictate robustness of the code.

Numerical Phenomenology

Error suppression is limited by energy differences between orientations, not singleparticle gaps

Line Graphs and Quantum Error Correction

Thm: (Chapman and Flammia) A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from half-filling of magnetic models on the root graph.
- Gaps in and between these spectra dictate robustness of the code.

Numerical Phenomenology

Lattice Gap Examples

Free-Fermion Solutions

Free-Fermion Solutions

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
 - "Unwrap" small graph to form lattice

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
 - "Unwrap" small graph to form lattice

the lattice

- Small graphs and their spectra tabulated.
- "Periodic table" of unit cells to start from.

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
 - "Unwrap" small graph to form lattice

Thm: (Chapman and Flammia) A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph. • Spin-model energies found from half-filling of magnetic models on the root graph.

Connections to Error-Correcting Codes

- Gaps in and between these spectra dictate robustness of the code.
- In progress: using Abelian cover method to categorize large gaps in this sense.

the lattice

- Small graphs and their spectra tabulated.
- "Periodic table" of unit cells to start from.

between orientations, not single-particle gaps

Chapman et al. Quantum 4, 278 (2020)

Thm: (Chapman and Flammia) A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

Thm: (Chapman and Flammia) A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

• Spin-model energies found from the skew energy of the oriented root graph.

Thm: (Chapman and Flammia) A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from the skew energy of the oriented root graph.
- Gaps in and between these spectra dictate robustness of the code.

Thm: (Chapman and Flammia) A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from the skew energy of the oriented root graph.
- Gaps in and between these spectra dictate robustness of the code.
- In progress: using Abelian cover search to categorize large gaps in this sense.

Thm: (Chapman and Flammia) A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from the skew energy of the oriented root graph.
- Gaps in and between these spectra dictate robustness of the code.
- In progress: using Abelian cover search to categorize large gaps in this sense.

 Abelian covers of small regular graphs yield examples with a large gap within the ground state orientation

Thm: (Chapman and Flammia) A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from the skew energy of the oriented root graph.
- Gaps in and between these spectra dictate robustness of the code.
- In progress: using Abelian cover search to categorize large gaps in this sense.

- Abelian covers of small regular graphs yield examples with a large gap within the ground state orientation
- But, skew energy gaps between orientations remain small

Thm: (Chapman and Flammia) A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from the skew energy of the oriented root graph.
- Gaps in and between these spectra dictate robustness of the code.
- In progress: using Abelian cover search to categorize large gaps in this sense.

- Abelian covers of small regular graphs yield examples with a large gap within the ground state orientation
- But, skew energy gaps between orientations remain small
- Error suppression limited by skew energy, so far

The Triangle Models

Three Combined Models

- Free-fermion model : Kitaev Honeycomb
- Stabilizer code : Wen Plaquette
- Paramagnet to couple the two

Wen Plaquette Model

Kitaev Honeycomb Model

Exact logicals without fermion participation

Effective Qubits

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

1D-Photonic Crystal

• Exponentially localized bound state

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

1D-Photonic Crystal

• Exponentially localized bound state

Photon-Mediated Avoided Crossing

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

1D-Photonic Crystal

• Exponentially localized bound state

Photon-Mediated Avoided Crossing

New Regimes:

- New lattices
- Different coupling scheme

AJK et al. Nature 571 (2019)

Hyperbolic Lattice

• Follows hyperbolic metric

AJK et al. Nature 571 (2019)

Bienias, AJK et al. arXiv:2105.06490 (2021)

Hyperbolic Lattice

• Follows hyperbolic metric

AJK et al. Nature 571 (2019)

Bienias, AJK et al. arXiv:2105.06490 (2021)

Hyperbolic Lattice

• Follows hyperbolic metric

Flat-Band Lattice

• Frustrated Magnet

AJK et al. Nature 571 (2019)

Bienias, AJK et al. arXiv:2105.06490 (2021)

Hyperbolic Lattice

• Follows hyperbolic metric

Flat-Band Lattice

• Frustrated Magnet

AJK et al. Comm. Math. Phys. **376**, 1909 (2020)

Bienias, AJK et al. arXiv:2105.06490 (2021)

Hyperbolic Lattice

• Follows hyperbolic metric

Flat-Band Lattice

• Frustrated Magnet

AJK et al. Comm. Math. Phys. 376, 1909 (2020)

• Microwave-activated coupling

- Microwave-activated coupling
- Two relevant detunings

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

$$H_{Raman} = \hbar \frac{g^2 \Omega^2}{\Delta^2 \delta} \ \sigma_1^+ \sigma_2^- + h.c.$$

1D-Photonic Crystal + Single Drive

• Exponentially localized interaction

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

$$H_{Raman} = \hbar \frac{g^2 \Omega^2}{\Delta^2 \delta} \ \sigma_1^+ \sigma_2^- + h.c.$$

1D-Photonic Crystal + Single Drive

Exponentially localized interaction

1D-Photonic Crystal + Multiple Drives

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

$$H_{Raman} = \hbar \frac{g^2 \Omega^2}{\Delta^2 \delta} \ \sigma_1^+ \sigma_2^- + h.c.$$

Douglas et al. Nat. Photon. 9 (2015)

1D-Photonic Crystal + Single Drive

Exponentially localized interaction

1D-Photonic Crystal + Multiple Drives

• Superposition of exponentials

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

$$H_{Raman} = \hbar \frac{g^2 \Omega^2}{\Delta^2 \delta} \ \sigma_1^+ \sigma_2^- + h.c.$$

Douglas et al. Nat. Photon. 9 (2015)

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

$$H_{Raman} = \hbar \frac{g^2 \Omega^2}{\Delta^2 \delta} \ \sigma_1^+ \sigma_2^- + h.c.$$

1D-Photonic Crystal + Single Drive

Exponentially localized interaction

1D-Photonic Crystal + Multiple Drives

- Superposition of exponentials
- Approximate power-law interaction

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

$$H_{Raman} = \hbar \frac{g^2 \Omega^2}{\Delta^2 \delta} \ \sigma_1^+ \sigma_2^- + h.c.$$

1D-Photonic Crystal + Single Drive

Exponentially localized interaction

1D-Photonic Crystal + Multiple Drives

- Superposition of exponentials
- Approximate power-law interaction

Need 3-level qubit

Raman Transitions in Fluxonium

Rabi oscillation

- Gaussian pulse off-resonant of plasmon
- Vacuum Rabi rate of fluxon

Raman Transitions in Fluxonium

Rabi oscillation

- Gaussian pulse off-resonant of plasmon
- Vacuum Rabi rate of fluxon

Raman Transitions in Fluxonium

Rabi oscillation

- Gaussian pulse off-resonant of plasmon
- Vacuum Rabi rate of fluxon

Second-Generation Raman Device

Redesigned Device

- 3-cavities
- Separate resonators allow
 - Optimized readout
 - Parallel readout and coupling

Second-Generation Raman Device

Redesigned Device

- 3-cavities
- Separate resonators allow
 - Optimized readout
 - Parallel readout and coupling

Second-Generation Raman Device

Full-Wave Flat-Band States

Gaussian Curvature

$$K = -\frac{1}{R^2}$$

Tiling Polygon (n)

7	0.566	0.492
8	0.727	0.633
9	0.819	0.714
10	0.879	0.767
11	0.921	0.804
12	0.952	0.831

Lattice Constant

Medial Lattice Constant

Gaussian Curvature

$$K = -\frac{1}{R^2}$$

Hyperbolic Numerics

Hyperbolic Numerics

Subdivision Graphs: Flat Bands at 0

Kollár *et al*. arXiv:1902.02794 (2019)

Tight Binding

 $\mathcal{H} = \sum \omega C_c \Phi^+ \Phi^$ coupling

capacitors

 $\mathcal{H} = \sum_{\ldots} \omega C_c \Phi^+ \Phi^$ coupling

capacitors

1 4

Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian

• Bounded self-adjoint operator on X

 H_X
Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Effective Hamiltonian

- Bounded self-adjoint operator on L(X)
- Mixed positive and negative hopping

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Incidence Operator

• From X to L(X)

$$N: \ell^2(X) \to \ell^2(L(X))$$

Effective Hamiltonian

Bounded self-adjoint operator on L(X)

• Mixed positive and negative hopping

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Incidence Operator

• From X to L(X)

$$N: \ell^2(X) \to \ell^2(L(X))$$

$$N(v, e) = \begin{cases} 1, & \text{if } e^+ = v, \\ -1 & \text{if } e^- = v, \\ 0 & \text{otherwise.} \end{cases}$$

Effective Hamiltonian

- Bounded self-adjoint operator on L(X)
- Mixed positive and negative hopping

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Effective Hamiltonian

- Bounded self-adjoint operator on L(X)
- Mixed positive and negative hopping

 $H_a(X) \neq H_{L(X)}$

Incidence Operator

• From X to L(X)

$$N: \ell^2(X) \to \ell^2(L(X))$$

 $N(v,e) = \begin{cases} 1, & \text{if } e^+ = v, \\ -1 & \text{if } e^- = v, \\ 0 & \text{otherwise.} \end{cases}$

$$N^t N = D_X - H_X$$
$$NN^t = 2I + \bar{H}_a(X)$$

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Incidence Operator

• From X to L(X)

$$N: \ell^2(X) \to \ell^2(L(X))$$

 $N(v,e) = \begin{cases} 1, & \text{if } e^+ = v, \\ -1 & \text{if } e^- = v, \\ 0 & \text{otherwise.} \end{cases}$

Effective Hamiltonian

- Bounded self-adjoint operator on L(X)
- Mixed positive and negative hopping

 $\bar{H}_a(X) \neq H_{L(X)}$

 $N^t N = D_X - H_X$ $NN^t = 2I + \bar{H}_a(X)$

$$D_X - H_X \simeq 2I + \bar{H}_a(X)$$

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Incidence Operator

• From X to L(X)

$$N: \ell^2(X) \to \ell^2(L(X))$$

 $N(v,e) = \begin{cases} 1, & \text{if } e^+ = v, \\ -1 & \text{if } e^- = v, \\ 0 & \text{otherwise.} \end{cases}$

Effective Hamiltonian

- Bounded self-adjoint operator on L(X)
- Mixed positive and negative hopping

 $\bar{H}_a(X) \neq H_{L(X)}$

$$N^t N = D_X - H_X$$
$$NN^t = 2I + \bar{H}_a(X)$$

$$D_X - H_X \simeq 2I + \bar{H}_a(X)$$
$$E_{\bar{H}_a} = \begin{cases} d - 2 - E_{H_X} \\ -2 \end{cases}$$

Kollár *et al*. in preparation

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Incidence Operator

• From X to L(X)

$$N: \ell^2(X) \to \ell^2(L(X))$$

$$N(v,e) = \begin{cases} 1, & \text{if } e^+ = v, \\ -1 & \text{if } e^- = v, \\ 0 & \text{otherwise} \end{cases}$$

(

$$N^t N = D_X - H_X$$

$$NN^t = 2I + \bar{H}_a(X)$$

$$D_X - H_X \simeq 2I + \bar{H}_a(X)$$

$$E_{\bar{H}_a} = \begin{cases} d - 2 - E_{H_X} & \bullet \text{ Identical on bipartite graphs} \\ -2 \end{cases}$$
Kollár *et al.* in preparation

Effective Hamiltonian

- Bounded self-adjoint operator on L(X)
- Mixed positive and negative hopping

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Incidence Operator

• From X to L(X)

$$N: \ell^2(X) \to \ell^2(L(X))$$

$$N(v,e) = \begin{cases} 1, & \text{if } e^+ = v, \\ -1 & \text{if } e^- = v, \\ 0 & \text{otherwise} \end{cases}$$

(

$$N^{t}N = D_{X} - H_{X}$$
$$NN^{t} = 2I + \bar{H}_{a}(X)$$

$$D_X - H_X \simeq 2I + \bar{H}_a(X)$$

$$E_{\bar{H}_a} = \begin{cases} d - 2 - E_{H_X} & \text{• Identical on bipartite graphs} \\ -2 & \text{• Inverted otherwise} \end{cases}$$

$$Kollár et al. in preparation$$

Effective Hamiltonian

- Bounded self-adjoint operator on L(X)
- Mixed positive and negative hopping

• Full-wave has localized states on only even cycles of the layout.

• Full-wave has localized states on only even cycles of the layout.

• Half-wave has localized states on any cycle of the layout.

Full-Wave Half-Wave Correspondence

Real-Space Topology

