Circuit QED Lattices

Alicia Kollár

Department of Physics and JQI, University of Maryland

Trento, Oct 4, 2022

Outline

- Coplanar Waveguide (CPW) Lattices
- Deformable lattice sites
- Line-graph lattices
- Interacting photons
- Band Engineering
- Hyperbolic lattice
- Gapped flat bands
- Mathematical Connections
- Planar Gaps
- Maximal Gaps
- Quantum Error Correcting Codes
- Experimental Developments

Microwave Coplanar Waveguide Resonators

- 2D analog of coaxial cable
- Cavity defined by cutting center pin
- Voltage antinode at "mirror"

Microwave Coplanar Waveguide Resonators

- 2D analog of coaxial cable
- Cavity defined by cutting center pin
- Voltage antinode at "mirror"

Microwave Coplanar Waveguide Resonators

- 2D analog of coaxial cable
- Cavity defined by cutting center pin
- Voltage antinode at "mirror"

Harmonic oscillator

$$
\hat{H}=\frac{1}{2 C} \hat{n}^{2}+\frac{1}{2 L} \hat{\varphi}^{2}
$$

CPW Lattices

32 mm

CPW Lattices

- Capacitive coupling of resonators

CPW Lattices

CPW Lattices

Combining Lattices and Qubits

Number-Resolved Transitions

$$
H_{J C}=\omega_{c} a^{\dagger} a+\frac{1}{2} \omega_{q} \sigma_{z}+g_{0}\left(a^{\dagger} \sigma^{-}+a \sigma^{+}\right)
$$

Probe Frequency

Combining Lattices and Qubits

Number-Resolved Transitions

$$
H_{J C}=\omega_{c} a^{\dagger} a+\frac{1}{2} \omega_{q} \sigma_{z}+g_{0}\left(a^{\dagger} \sigma^{-}+a \sigma^{+}\right)
$$

Probe Frequency

Qubits in Photonic Crystals

- Effective swap interaction between qubits
- All modes in parallel

$$
H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right)+h . c .
$$

Combining Lattices and Qubits

Number-Resolved Transitions

$$
H_{J C}=\omega_{c} a^{\dagger} a+\frac{1}{2} \omega_{q} \sigma_{z}+g_{0}\left(a^{\dagger} \sigma^{-}+a \sigma^{+}\right)
$$

Probe Frequency

Qubits in Photonic Crystals

- Effective swap interaction between qubits
- All modes in parallel

$$
H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right)+h . c .
$$

1D-Photonic Crystal

- Exponentially localized bound state

Combining Lattices and Qubits

Number-Resolved Transitions

$$
H_{J C}=\omega_{c} a^{\dagger} a+\frac{1}{2} \omega_{q} \sigma_{z}+g_{0}\left(a^{\dagger} \sigma^{-}+a \sigma^{+}\right)
$$

Qubits in Photonic Crystals

- Effective swap interaction between qubits
- All modes in parallel

$$
H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right)+h . c .
$$

1D-Photonic Crystal

- Exponentially localized bound state

New Regimes:

- New lattices

Douglas et al. Nat. Photon. (2015)
Calajó et al. PRA (2016) Sundaresan et al. PRX (2019)

Deformable Resonators

Deformable Resonators

- Frequency depends only on length

Deformable Resonators

- Frequency depends only on length
- Coupling depends on ends

Deformable Resonators

- Frequency depends only on length
- Coupling depends on ends
-"Bendable"

Deformable Resonators

- Frequency depends only on length
- Coupling depends on ends

-"Bendable"

Deformable Resonators

- Frequency depends only on length
- Coupling depends on ends

-"Bendable"

Layout and Effective Lattices

Resonator Lattice

Layout and Effective Lattices

Resonator Lattice

- An edge on each resonator

Layout and Effective Lattices

Resonator Lattice

Effective Photonic Lattice

- An edge on each resonator

Layout and Effective Lattices

Resonator Lattice

- An edge on each resonator

Effective Photonic Lattice

- A vertex on each resonator

Layout and Effective Lattices

Resonator Lattice

- An edge on each resonator

Effective Photonic Lattice

- A vertex on each resonator

Layout and Effective Lattices

Resonator Lattice

- An edge on each resonator

Layout X

Effective Photonic Lattice

- A vertex on each resonator

Line Graph $L(X)$

Outline

- Coplanar Waveguide (CPW) Lattices
- Deformable lattice sites
- Line-graph lattices
- Interacting photons
- Band Engineering
- Hyperbolic lattice
- Gapped flat bands
- Mathematical Connections
- Planar Gaps
- Maximal Gaps
- Quantum Error Correcting Codes
- Experimental Developments

Outline

- Coplanar Waveguide (CPW) Lattices
- Deformable lattice sites
- Line-graph lattices
- Interacting photons
- Band Engineering
- Hyperbolic lattice
- Gapped flat bands
- Mathematical Connections
- Planar Gaps
- Maximal Gaps
- Quantum Error Correcting Codes
- Experimental Developments

Projecting to Flat 2D

$\mathrm{n}=6$
flat

Projecting to Flat 2D

Projecting to Flat 2D

Distance is not preserved.

Projecting to Flat 2D

Projecting to Flat 2D

Distance is not preserved.

Distance is not preserved.

Projecting to Flat 2D

Projecting to Flat 2D

Projecting to Flat 2D

Distance is not preserved.

Projecting to Flat 2D

Distance is not preserved.
t is preserved.

Projecting to Flat 2D

Graph is preserved.

Heptagon-Kagome Device

Heptagon-Kagome Device

- 2 shells

Heptagon-Kagome Device

- 2 shells
- Operating frequency: 16 GHz

Heptagon-Kagome Device

- 2 shells
- Operating frequency: 16 GHz
- 4 input-output ports

Heptagon-Kagome Device

- 2 shells
- Operating frequency: 16 GHz
- 4 input-output ports

Spectrum Calculations

What is the spectrum of this?

Spectrum Calculations

What is the spectrum of this?

Spectrum Calculations

What is the spectrum of this?

Spectrum Calculations

What is the spectrum of this?

Line-Graph Lattices

Graphene

Line-Graph Lattices

Graphene

Line-Graph Lattices

Graphene

Heptagon-Graphene

Line Graph $L(X)$

Line-Graph Lattices

Graphene

Heptagon-Graphene
Tree

Line Graph $L(X)$

Line-Graph Lattices

Band Structure Correspondence

Layout X

Band Structure Correspondence

Layout X

Line Graph $L(X)$

Band Structure Correspondence

Layout X

Band Structure Correspondence

Layout X

Line Graph $L(X)$

Band Structure Correspondence

Layout X
Line Graph $L(X)$

$$
E_{\bar{H}_{s}}=\left\{\begin{array}{l}
d-2+E_{H_{X}} \\
-2
\end{array}\right.
$$

Band Structure Correspondence

Band Structure Correspondence

Density of States and Flat－Band States

O゙メー

Subdivision Graphs and Optimally Gapped Flat Bands

Subdivision Graphs and Optimally Gapped Flat Bands

Subdivision Graphs and Optimally Gapped Flat Bands

Subdivision Graphs and Optimally Gapped Flat Bands

New Lattices for Photon-Mediated Interactions

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$
\begin{array}{r}
H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right) \\
+h . c .
\end{array}
$$

New Lattices for Photon-Mediated Interactions

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$
\begin{array}{r}
H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right) \\
+h . c .
\end{array}
$$

- Hyperbolic Lattice
- Follows hyperbolic metric

New Lattices for Photon-Mediated Interactions

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel
$H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right)$
$+h . c$.
- Hyperbolic Lattice
- Follows hyperbolic metric

New Lattices for Photon-Mediated Interactions

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel
$H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right)$
+ h.c.
- Hyperbolic Lattice
- Follows hyperbolic metric

AJK et al. Nature 571 (2019)

Bienias, AJK et al. Phys. Rev. Lett. 128, 013601 (2022)

New Lattices for Photon-Mediated Interactions

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel
$H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right)$
$+h . c$.
- Hyperbolic Lattice
- Follows hyperbolic metric

AJK et al. Nature 571 (2019)

Bienias, AJK et al. Phys. Rev. Lett. 128, 013601 (2022)

- Flat-Band Lattice
- Frustrated Magnet

New Lattices for Photon-Mediated Interactions

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel
$H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right)$
$+h . c$.
- Hyperbolic Lattice
- Follows hyperbolic metric

AJK et al. Nature 571 (2019)

Bienias, AJK et al. Phys. Rev. Lett. 128, 013601 (2022)

- Flat-Band Lattice
- Frustrated Magnet

New Lattices for Photon-Mediated Interactions

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel
$H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right)$
$+h . c$.
- Hyperbolic Lattice
- Follows hyperbolic metric

AJK et al. Nature 571 (2019)

Bienias, AJK et al. Phys. Rev. Lett. 128, 013601 (2022)

- Flat-Band Lattice
- Frustrated Magnet

New Lattices for Photon-Mediated Interactions

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel
$H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right)$
$+h . c$.
- Hyperbolic Lattice
- Follows hyperbolic metric

AJK et al. Nature 571 (2019)

Bienias, AJK et al. Phys. Rev. Lett. 128, 013601 (2022)

- Flat-Band Lattice
- Frustrated Magnet

Outline

- Coplanar Waveguide (CPW) Lattices
- Deformable lattice sites
- Line-graph lattices
- Interacting photons
- Band Engineering
- Hyperbolic lattice
- Gapped flat bands
- Mathematical Connections
- Planar Gaps
- Maximal Gaps
- Quantum Error Correcting Codes
- Experimental Developments

Outline

- Coplanar Waveguide (CPW) Lattices
- Deformable lattice sites
- Line-graph lattices
- Interacting photons
- Band Engineering
- Hyperbolic lattice
- Gapped flat bands
- Mathematical Connections
- Planar Gaps
- Maximal Gaps
- Quantum Error Correcting Codes
- Experimental Developments

Other Maximal Gaps?

Two Driving Questions

- Even larger gaps possible at other energies?
- Where can planar graphs have gaps?

Other Maximal Gaps?

Two Driving Questions

- Even larger gaps possible at other energies?
- Where can planar graphs have gaps?

Thm:
No large 3-regular graph can have a gap larger than 2.

Other Maximal Gaps?

Two Driving Questions

- Even larger gaps possible at other energies?
- Where can planar graphs have gaps?

Thm:

No large 3-regular graph can have a gap larger than 2.

- Have found 2 such gaps.
- Conjecture that these are the only ones.

Other Maximal Gaps?

Two Driving Questions

- Even larger gaps possible at other energies?
- Where can planar graphs have gaps?

Thm:

No large 3-regular graph can have a gap larger than 2.

- Have found 2 such gaps.
- Conjecture that these are the only ones.

Other Maximal Gaps?

Two Driving Questions

- Even larger gaps possible at other energies?
- Where can planar graphs have gaps?

Thm:

No large 3-regular graph can have a gap larger than 2.

- Have found 2 such gaps.
- Conjecture that these are the only ones.

Other Maximal Gaps?

Two Driving Questions

- Even larger gaps possible at other energies?
- Where can planar graphs have gaps?

Thm:

No large 3-regular graph can have a gap larger than 2.

- Have found 2 such gaps.
- Conjecture that these are the only ones.

A.K.A.
$\mathrm{n}=2, \mathrm{~m}=0$ carbon nanotube

Kollár et al. Comm. AMS 1,1 (2021)
Guo, Mohar Lin. Alg. and Appl. 449, 68-75 (2014)

Abelian Covers and Planar Gaps

New Lattice Viewpoint

Abelian Covers and Planar Gaps

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
- "Unwrap" small graph to form lattice

Abelian Covers and Planar Gaps

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
- "Unwrap" small graph to form lattice

- Initial energies are $\mathrm{k}=0$ energies of the lattice
- Small graphs and their spectra tabulated.
- "Periodic table" of unit cells to start from.

Abelian Covers and Planar Gaps

New Lattice Viewpoint

Thm:

All points in [-3,3) can be gapped by large 3-regular planar graphs.

- Use method of Abelian covers to construct examples.
- "Unwrap" small graph to form lattice

- Initial energies are $\mathrm{k}=0$ energies of the lattice
- Small graphs and their spectra tabulated.
- "Periodic table" of unit cells to start from.

Abelian Covers and Planar Gaps

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
- "Unwrap" small graph to form lattice

- Initial energies are $\mathrm{k}=0$ energies of the lattice
- Small graphs and their spectra tabulated.
- "Periodic table" of unit cells to start from.

Thm:

All points in [-3,3) can be gapped by large 3-regular planar graphs.

Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by
mapping to free fermions if and if only
the anticommutation relations of its
terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)
The Checkerboard-Lattice Code

- Built on the square lattice

Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

- Built on the square lattice

Anticommutation Relations

Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

- Built on the square lattice

Anticommutation Relations

- Three Ingredients
- Two commuting free-fermion models on the square lattice
- Set of stabilizers

Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

- Built on the square lattice

Anticommutation Relations

- Three Ingredients
- Two commuting free-fermion models on the square lattice
- Set of stabilizers

Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

- Built on the square lattice

Anticommutation Relations

- Three Ingredients
- Two commuting free-fermion models on the square lattice
- Set of stabilizers

Free-Fermion 1

Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

- Built on the square lattice

Anticommutation Relations

- Three Ingredients
- Two commuting free-fermion models on the square lattice
- Set of stabilizers

Free-Fermion 1

Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

- Built on the square lattice

Anticommutation Relations

Free-Fermion 1

Free-Fermion 2

Line-Graph Subsystem Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

Chapman et al. Quantum 4, 278 (2020)

The Checkerboard-Lattice Code

- Built on the square lattice

Anticommutation Relations

- Three Ingredients
- Two commuting free-fermion models on the square lattice
- Set of stabilizers

Free-Fermion 1

Free-Fermion 2

Stabilizers

Checkerboard Lattice Code

Hamiltonian Terms/Gauge Generators

Checkerboard Lattice Code

Hamiltonian Terms/Gauge Generators

Exact Logical Qubits

Outline

- Coplanar Waveguide (CPW) Lattices
- Deformable lattice sites
- Line-graph lattices
- Interacting photons
- Band Engineering
- Hyperbolic lattice
- Gapped flat bands
- Mathematical Connections
- Planar Gaps
- Maximal Gaps
- Quantum Error Correcting Codes
- Experimental Developments

Outline

- Coplanar Waveguide (CPW) Lattices
- Deformable lattice sites
- Line-graph lattices
- Interacting photons
- Band Engineering
- Hyperbolic lattice
- Gapped flat bands
- Mathematical Connections
- Planar Gaps
- Maximal Gaps
- Quantum Error Correcting Codes
- Experimental Developments

Intrinsic Fabrication Disorder

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Intrinsic Fabrication Disorder

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

Intrinsic Fabrication Disorder

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

Intrinsic Fabrication Disorder

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder $\sim 3 e-4$

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

- Parallel measurement

Intrinsic Fabrication Disorder

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

- Parallel measurement
- Disorder extracted from comb spacing

Intrinsic Fabrication Disorder

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder $\sim 3 e-4$

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

- Parallel measurement
- Disorder extracted from comb spacing

Disorder Mitigation

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Disorder Mitigation

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Numerical Test Geometries

Disorder Mitigation

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Numerical Test Geometries

Disorder Mitigation

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Numerical Test Geometries

Disorder Mitigation

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Numerical Test Geometries

Quasi-1D Lattice Device

Hardware Layout

Effective Lattice

Quasi-1D Lattice Device

Hardware Layout

Effective Lattice

Band Structure

- Flat bands
- Gapped
- Ungapped
- Linear bands
- Quadratic bands

Quasi-1D Lattice Device

Hardware Layout

Effective Lattice

Band Structure

- Flat bands
- Gapped
- Ungapped
- Linear bands
- Quadratic bands

Device Design

(preliminary)

Quasi-1D Lattice Device

Hardware Layout

Effective Lattice

Band Structure

- Flat bands
- Gapped
- Ungapped
- Linear bands
- Quadratic bands

Device Design

(preliminary)

Conclusion and Outlook

- Circuit QED lattices
- Artificial photonic materials
- Interacting photons
- Hyperbolic lattices
- On-chip fabrication
- Flat-band lattices
- Optimal gaps
- Mathematics
- Graph Spectra
- Gap Sets

- Abelian Covers

Kollár et al. Nature 571 (2019)
Kollár et al. Comm. Math. Phys. 376, 1909 (2020)
Boettcher et al. Phys. Rev. A 102, 032208 (2020)
Kollár et al. Comm. AMS 1,1 (2021)
Boettcher et al. arXiv:2105.0187 (2021)
Bienias et al. Phys. Rev. Lett. 128, 013601 (2022)
Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)

Conclusion and Outlook

- Circuit QED lattices

- Outlook

- Artificial photonic materials
- Interacting photons
- Hyperbolic lattices
- On-chip fabrication
- Flat-band lattices
- Optimal gaps
- Mathematics
- Graph Spectra
- Gap Sets

- Abelian Covers

Kollár et al. Nature 571 (2019)
Kollár et al. Comm. Math. Phys. 376, 1909 (2020)
Boettcher et al. Phys. Rev. A 102, 032208 (2020)
Kollár et al. Comm. AMS 1,1 (2021)
Boettcher et al. arXiv:2105.0187 (2021)
Bienias et al. Phys. Rev. Lett. 128, 013601 (2022)
Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)

Conclusion and Outlook

- Circuit QED lattices
- Artificial photonic materials
- Interacting photons
- Hyperbolic lattices
- On-chip fabrication
- Flat-band lattices
- Optimal gaps
- Mathematics
- Graph Spectra
- Gap Sets
- Abelian Covers

Kollár et al. Nature 571 (2019)
Kollár et al. Comm. Math. Phys. 376, 1909 (2020)
Boettcher et al. Phys. Rev. A 102, 032208 (2020)
Kollár et al. Comm. AMS 1,1 (2021)
Boettcher et al. arXiv:2105.0187 (2021)
Bienias et al. Phys. Rev. Lett. 128, 013601 (2022)
Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)

- Outlook

- Frustrated and hyperbolic interactions

Conclusion and Outlook

- Circuit QED lattices

- Artificial photonic materials
- Interacting photons
- Hyperbolic lattices
- On-chip fabrication
- Flat-band lattices
- Optimal gaps
- Mathematics
- Graph Spectra
- Gap Sets
- Abelian Covers

Kollár et al. Nature 571 (2019)
Kollár et al. Comm. Math. Phys. 376, 1909 (2020)
Boettcher et al. Phys. Rev. A 102, 032208 (2020)
Kollár et al. Comm. AMS 1,1 (2021)
Boettcher et al. arXiv:2105.0187 (2021)
Bienias et al. Phys. Rev. Lett. 128, 013601 (2022)
Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)

- Outlook

- Frustrated and hyperbolic interactions
- Many-body physics in flat bands

Conclusion and Outlook

- Circuit QED lattices

- Artificial photonic materials
- Interacting photons
- Hyperbolic lattices
- On-chip fabrication
- Flat-band lattices
- Optimal gaps
- Mathematics
- Graph Spectra
- Gap Sets
- Abelian Covers

Kollár et al. Nature 571 (2019)
Kollár et al. Comm. Math. Phys. 376, 1909 (2020)
Boettcher et al. Phys. Rev. A 102, 032208 (2020)
Kollár et al. Comm. AMS 1,1 (2021)
Boettcher et al. arXiv:2105.0187 (2021)
Bienias et al. Phys. Rev. Lett. 128, 013601 (2022)
Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)

- Outlook

- Frustrated and hyperbolic interactions
- Many-body physics in flat bands
- Exactly-solvable 3D line-graph codes

Conclusion and Outlook

- Circuit QED lattices

- Artificial photonic materials
- Interacting photons
- Hyperbolic lattices
- On-chip fabrication
- Flat-band lattices
- Optimal gaps
- Mathematics
- Graph Spectra
- Gap Sets
- Abelian Covers

Kollár et al. Nature 571 (2019)
Kollár et al. Comm. Math. Phys. 376, 1909 (2020)
Boettcher et al. Phys. Rev. A 102, 032208 (2020)
Kollár et al. Comm. AMS 1,1 (2021)
Boettcher et al. arXiv:2105.0187 (2021)
Bienias et al. Phys. Rev. Lett. 128, 013601 (2022)
Chapman, Flammia, AJK, PRX Quantum 3, 030321 (2022)

- Outlook

- Frustrated and hyperbolic interactions
- Many-body physics in flat bands
- Exactly-solvable 3D line-graph codes
- Leapfrog Fullerenes

Circuit QED Lattices

Transmon Qubit

Transmon Qubit

Anharmonic oscillator

$$
\hat{H}=4 E_{C} \hat{n}^{2}-E_{J} \cos \hat{\varphi}
$$

Transmon Qubit

Anharmonic oscillator

$$
\hat{H}=4 E_{C} \hat{n}^{2}-E_{J} \cos \hat{\varphi}
$$

Transmon Qubit

> Qubit-Cavity
> (Jaynes-Cummings Model)
> $H_{J C}=\omega_{c} a^{\dagger} a+\frac{1}{2} \omega_{q} \sigma_{z}+g_{0}\left(a^{\dagger} \sigma^{-}+a \sigma^{+}\right)$

Anharmonic oscillator

$$
\hat{H}=4 E_{C} \hat{n}^{2}-E_{J} \cos \hat{\varphi}
$$

Transmon Qubit

Anharmonic oscillator

$$
\hat{H}=4 E_{C} \hat{n}^{2}-E_{J} \cos \hat{\varphi}
$$

Qubit-Cavity

(Jaynes-Cummings Model)

$$
H_{J C}=\omega_{c} a^{\dagger} a+\frac{1}{2} \omega_{q} \sigma_{z}+g_{0}\left(a^{\dagger} \sigma^{-}+a \sigma^{+}\right)
$$

$$
\left| \pm_{n}\right\rangle=\frac{1}{\sqrt{2}}(|g, n\rangle \pm|e, n-1\rangle)
$$

The Graph is Everything

Regular Lattice

The Graph is Everything

Regular Lattice

Disordered Lattice

The Graph is Everything

Regular Lattice

Regular Tight-Binding Graph

The Graph is Everything

Regular Lattice

Regular Tight-Binding Graph

Disordered Lattice

Disordered TB Graph

The Graph is Everything

Regular Lattice

Disordered Lattice

Regular Tight-Binding Graph

Disordered TB Graph

The Graph is Everything

Regular Lattice

Disordered Lattice

Regular Tight-Binding Graph

\neq
Disordered TB Graph

The Graph is Everything

Regular Lattice

Disordered Lattice

Regular Tight-Binding Graph

Disordered TB Graph

Applications of Hyperbolic Systems

- General relativity
- Curved space-time
- 2D materials
- graphene, fullerenes

Applications of Hyperbolic Systems

- General relativity
- Curved space-time
- 2D materials
- graphene, fullerenes
- Mathematics

Trees $<$

- Cayley graphs of non-commutative groups
- Automorphic forms

Applications of Hyperbolic Systems

- General relativity
- Curved space-time
- 2D materials
- graphene, fullerenes
- Mathematics

Trees $<$

- Cayley graphs of non-commutative groups
- Automorphic forms
- Computer Science

Trees

- Efficient communication networks
- Tamper-resistant networks

Applications of Hyperbolic Systems

- General relativity
- Curved space-time
- 2D materials
- graphene, fullerenes
- Mathematics

Trees $<$

- Cayley graphs of non-commutative groups
- Automorphic forms
- Computer Science

Trees

- Efficient communication networks
- Tamper-resistant networks

Continuum Limit and Green's Function

High Energy Limit of The Spectrum

Continuum Limit and Green's Function

High Energy Limit of The Spectrum

- Long-wavelength modes

Continuum Limit and Green's Function

High Energy Limit of The Spectrum

- Long-wavelength modes
- Lattice should course-grain out

Continuum Limit and Green's Function

High Energy Limit of The Spectrum

- Long-wavelength modes
- Lattice should course-grain out
- Hyperbolic particle in a box

Continuum Limit and Green's Function

High Energy Limit of The Spectrum

- Long-wavelength modes
- Lattice should course-grain out
- Hyperbolic particle in a box

Continuum Limit and Green's Function

High Energy Limit of The Spectrum

- Long-wavelength modes
- Lattice should course-grain out
- Hyperbolic particle in a box

Continuum Limit and Green's Function

High Energy Limit of The Spectrum

- Long-wavelength modes
- Lattice should course-grain out
- Hyperbolic particle in a box

Quantitive Match for Large System Sizes

- Green's function

Continuum Limit and Green's Function

High Energy Limit of The Spectrum

- Long-wavelength modes
- Lattice should course-grain out
- Hyperbolic particle in a box

Quantitive Match for Large System Sizes

- Green's function
- "Ground" state energy

Continuum Limit and Green's Function

High Energy Limit of The Spectrum

- Long-wavelength modes
- Lattice should course-grain out
- Hyperbolic particle in a box

Quantitive Match for Large System Sizes

- Green's function
- "Ground" state energy
- "First" excited state energies.

Bipartite and Non-Bipartite Graphs

Bipartite

Bipartite and Non-Bipartite Graphs

Bipartite

Bipartite and Non-Bipartite Graphs

Bipartite

- All neighbors opposite sign

Bipartite and Non-Bipartite Graphs

Bipartite

- All neighbors opposite sign

Non-Bipartite

Bipartite and Non-Bipartite Graphs

Bipartite

Non-Bipartite

- All neighbors opposite sign

Bipartite and Non-Bipartite Graphs

Bipartite

- All neighbors opposite sign

Non-Bipartite

- Not all neighbors can be opposite sign

Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $\mathrm{L}(\mathrm{X})$

$$
\bar{H}_{s}(X)=H_{L(X)}
$$

Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Incidence Operator

- From X to $L(X)$
$M: \ell^{2}(X) \rightarrow \ell^{2}(L(X))$

Effective Hamiltonian

- Bounded self-adjoint operator on L(X)

$$
\bar{H}_{s}(X)=H_{L(X)}
$$

Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on L(X)

$$
\bar{H}_{s}(X)=H_{L(X)}
$$

Incidence Operator

- From X to $L(X)$

$$
M: \ell^{2}(X) \rightarrow \ell^{2}(L(X))
$$

$$
M(v, e)= \begin{cases}1, & \text { if } e \text { and } v \text { are incident } \\ 0 & \text { otherwise }\end{cases}
$$

Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $L(X)$

$$
\bar{H}_{s}(X)=H_{L(X)}
$$

Incidence Operator

- From X to $L(X)$

$$
M: \ell^{2}(X) \rightarrow \ell^{2}(L(X))
$$

$$
M(v, e)= \begin{cases}1, & \text { if } e \text { and } v \text { are incident }, \\ 0 & \text { otherwise } .\end{cases}
$$

$$
\begin{aligned}
& M^{t} M=D_{X}+H_{X} \\
& M M^{t}=2 I+\bar{H}_{s}(X)
\end{aligned}
$$

Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $\mathrm{L}(\mathrm{X})$

$$
\begin{array}{ll}
\bar{H}_{s}(X)=H_{L(X)} \quad & M^{t} M=D_{X}+H_{X} \\
& M M^{t}=2 I+\bar{H}_{s}(X)
\end{array}
$$

$$
D_{X}+H_{X} \simeq 2 I+\bar{H}_{s}(X)
$$

Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $\mathrm{L}(\mathrm{X})$

$$
\begin{array}{ll}
\bar{H}_{s}(X)=H_{L(X)} & M^{t} M=D_{X}+H_{X} \\
& M M^{t}=2 I+\bar{H}_{s}(X)
\end{array}
$$

$$
\begin{aligned}
D_{X}+H_{X} & \simeq 2 I+\bar{H}_{s}(X) \\
E_{\bar{H}_{s}}= & \left\{\begin{array}{l}
d-2+E_{H_{X}} \\
-2
\end{array}\right.
\end{aligned}
$$

Intrinsic Fabrication Disorder

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Intrinsic Fabrication Disorder

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

Intrinsic Fabrication Disorder

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

Intrinsic Fabrication Disorder

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder $\sim 3 e-4$

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

- Parallel measurement

Intrinsic Fabrication Disorder

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder ~3e-4

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

- Parallel measurement
- Disorder extracted from comb spacing

Intrinsic Fabrication Disorder

Previous Benchmarks

- Kagome star normal modes
- Fabricated at Princeton
- Fabrication disorder $\sim 3 e-4$

Current Devices

- Fabricated at UMD
- Fabrication disorder ~3e-4

- Parallel measurement
- Disorder extracted from comb spacing

Disorder Mitigation

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Disorder Mitigation

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Numerical Test Geometries

Disorder Mitigation

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Numerical Test Geometries

Disorder Mitigation

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Numerical Test Geometries

Disorder Mitigation

Systematic v. Random Disorder

- Fabrication disorder ~3e-4
- Shape-dependent disorder ~2-3e-3

Numerical Test Geometries

Disorder Mitigation

First Generation Test Device

- Varied
number of
bends

Disorder Mitigation

First Generation Test Device

- Varied number of bends

Disorder Mitigation

First Generation Test Device

Second Generation Device

- Higher dynamic range (in progress)

Quasi-1D Lattice Device

Hardware Layout

Effective Lattice

Quasi-1D Lattice Device

Hardware Layout

Effective Lattice

Band Structure

- Flat bands
- Gapped
- Ungapped
- Linear bands
- Quadratic bands

Quasi-1D Lattice Device

Hardware Layout

Effective Lattice

Band Structure

- Flat bands
- Gapped
- Ungapped
- Linear bands
- Quadratic bands

Device Design

(preliminary)

Quasi-1D Lattice Device

Hardware Layout

Effective Lattice

Band Structure

- Flat bands
- Gapped
- Ungapped
- Linear bands
- Quadratic bands

Device Design

(preliminary)

Line Graphs and Quantum Error Correction

```
Thm: (Chapman and Flammia)
    A spin model can be solved exactly by
    mapping to free fermions if and if only
    the anticommutation relations of its
    terms have the structure of a line graph.
```

- Spin-model energies found from half-filling of magnetic models on the root graph.
- Gaps in and between these spectra dictate robustness of the code.

Numerical Phenomenology

Error suppression is limited by energy differences between orientations, not singleparticle gaps

Line Graphs and Quantum Error Correction

Thm: (Chapman and Flammia)

A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from half-filling of magnetic models on the root graph.
- Gaps in and between these spectra dictate robustness of the code.

Numerical Phenomenology

Lattice Gap Examples

Orientation Known

Free-Fermion Solutions

2,0 nanotube : elementary, max SP gap

- Large gap
- But not the ground state
- Modest gap
- Ground state

Free-Fermion Solutions

1,1 nanotube : elementary orientation

- Non-magnetic orientation
- No gap

1,1 nanotube : max SP gap, min skew E

- Large gap
- Ground State

Mathematical Outlook: Abelian Covers and Error Correction

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
- "Unwrap" small graph to form lattice

Mathematical Outlook: Abelian Covers and Error Correction

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
- "Unwrap" small graph to form lattice

- Initial energies are $\mathrm{k}=0$ energies of the lattice
- Small graphs and their spectra tabulated.
- "Periodic table" of unit cells to start from.

Mathematical Outlook: Abelian Covers and Error Correction

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
- "Unwrap" small graph to form lattice

- Initial energies are k=0 energies of the lattice
- Small graphs and their spectra tabulated.
- "Periodic table" of unit cells to start from.

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from half-filling of magnetic models on the root graph.
- Gaps in and between these spectra dictate robustness of the code.
- In progress: using Abelian cover method to categorize large gaps in this sense.

Mathematical Outlook: Abelian Covers and Error Correction

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
- "Unwrap" small graph to form lattice

- Initial energies are $\mathrm{k}=0$ energies of the lattice
- Small graphs and their spectra tabulated.
- "Periodic table" of unit cells to start from.

Connections to Error-Correcting Codes

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from half-filling of magnetic models on the root graph.
- Gaps in and between these spectra dictate robustness of the code.
- In progress: using Abelian cover method to categorize large gaps in this sense.

$0.25-\square$ - Large gap
- But not the ground state

- Large gap
- And the ground state

Mathematical Outlook: Abelian Covers and Error Correction

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
- "Unwrap" small graph to form lattice

- Initial energies are $\mathrm{k}=0$ energies of the lattice
- Small graphs and their spectra tabulated.
- "Periodic table" of unit cells to start from.

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from half-filling of magnetic models on the root graph.
- Gaps in and between these spectra dictate robustness of the code.
- In progress: using Abelian cover method to categorize large gaps in this sense.

- Large gap
- But not the ground state

- Large gap
- And the ground state
So far, error suppression is limited by energy differences between orientations, not single-particle gaps

Connections to Error Correction

Connections to Error Correction

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Large gap

But not the ground state

Connections to Error Correction

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from the skew energy of the oriented root graph.

- Large gap

But not the ground state

Connections to Error Correction

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from the skew energy of the oriented root graph.
- Gaps in and between these spectra dictate robustness of the code.

- Large gap

But not the ground state

Connections to Error Correction

Thm: (Chapman and Flammia)

A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from the skew energy of the oriented root graph.
- Gaps in and between these spectra dictate robustness of the code.
- In progress: using Abelian cover search to categorize large gaps in this sense.

- Large gap

But not the ground state

Connections to Error Correction

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from the skew energy of the oriented root graph.
- Gaps in and between these spectra dictate robustness of the code.
- In progress: using Abelian cover search to categorize large gaps in this sense.

- Abelian covers of small regular graphs yield examples with a large gap within the ground state orientation

Connections to Error Correction

Thm: (Chapman and Flammia)

A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Spin-model energies found from the skew energy of the oriented root graph.
- Gaps in and between these spectra dictate robustness of the code.
- In progress: using Abelian cover search to categorize large gaps in this sense.
- Abelian covers of small regular graphs yield examples with a large gap within the ground state orientation
- But, skew energy gaps between orientations remain small

Connections to Error Correction

Thm: (Chapman and Flammia)

A spin model can be solved exactly by mapping to free fermions if and if only the anticommutation relations of its terms have the structure of a line graph.

- Large gap
But not the ground state

- Spin-model energies found from the skew energy of the oriented root graph.
- Gaps in and between these spectra dictate robustness of the code.
- In progress: using Abelian cover search to categorize large gaps in this sense.
- Abelian covers of small regular graphs yield examples with a large gap within the ground state orientation
- But, skew energy gaps between orientations remain small
- Error suppression limited by skew energy, so far

The Triangle Models

Three Combined Models

- Free-fermion model : Kitaev Honeycomb
- Stabilizer code : Wen Plaquette
- Paramagnet to couple the two

Effective Qubits

Wen Plaquette Model

Kitaev Honeycomb Model

Exact logicals without fermion participation

Photon-Mediated Interactions

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel
$H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right)+h . c$.

Photon-Mediated Interactions

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel
$H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right)+h . c$.
1D-Photonic Crystal
- Exponentially localized bound state

Photon-Mediated Interactions

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel
$H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right)+h . c$.
1D-Photonic Crystal
- Exponentially localized bound state

Douglas et al. Nat. Photon. (2015)
Calajó et al. PRA (2016)
Liu et al. Nature Physics (2016)
Sundaresan et al. PRX (2019)

Photon-Mediated Interactions

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel
$H=\hbar \sigma_{1}^{+} \sigma_{2}^{-} \sum_{m} \frac{g_{m}^{2}}{\Delta(m)} \psi_{m}\left(x_{1}\right) \psi_{m}^{*}\left(x_{2}\right)+h . c$.
1D-Photonic Crystal
- Exponentially localized bound state

Photon-Mediated Avoided Crossing

New Regimes:

- New lattices
- Different coupling scheme

New Lattices for Photon-Mediated Interactions

AJK et al. Nature 571 (2019)

Hyperbolic Lattice

- Follows hyperbolic metric

New Lattices for Photon-Mediated Interactions

AJK et al. Nature 571 (2019)
Bienias, AJK et al. arXiv:2105.06490 (2021)

Hyperbolic Lattice

- Follows hyperbolic metric

New Lattices for Photon-Mediated Interactions

AJK et al. Nature 571 (2019)
Bienias, AJK et al. arXiv:2105.06490 (2021)

Flat-Band Lattice

- Frustrated Magnet

New Lattices for Photon-Mediated Interactions

AJK et al. Nature 571 (2019)

Hyperbolic Lattice

- Follows hyperbolic metric

Bienias, AJK et al. arXiv:2105.06490 (2021)

Flat-Band Lattice

- Frustrated Magnet

New Lattices for Photon-Mediated Interactions

AJK et al. Nature 571 (2019)

Hyperbolic Lattice

- Follows hyperbolic metric

Flat-Band Lattice

- Frustrated Magnet

New Lattices for Photon-Mediated Interactions

AJK et al. Nature 571 (2019)
Bienias, AJK et al. arXiv:2105.06490 (2021)

Flat-Band Lattice

- Frustrated Magnet

Raman-Coupled Spin Models

Raman-Coupled Spin Models

- Microwave-activated coupling

Raman-Coupled Spin Models

- Microwave-activated coupling
- Two relevant detunings

Raman-Coupled Spin Models

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

Raman-Coupled Spin Models

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

$$
H_{\text {Raman }}=\hbar \frac{g^{2} \Omega^{2}}{\Delta^{2} \delta} \sigma_{1}^{+} \sigma_{2}^{-}+h . c .
$$

Raman-Coupled Spin Models

1D-Photonic Crystal + Single Drive

- Exponentially localized interaction

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

$$
H_{\text {Raman }}=\hbar \frac{g^{2} \Omega^{2}}{\Delta^{2} \delta} \sigma_{1}^{+} \sigma_{2}^{-}+h . c .
$$

Raman-Coupled Spin Models

1D-Photonic Crystal + Multiple Drives

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

$$
H_{\text {Raman }}=\hbar \frac{g^{2} \Omega^{2}}{\Delta^{2} \delta} \sigma_{1}^{+} \sigma_{2}^{-}+h . c .
$$

Raman-Coupled Spin Models

1D-Photonic Crystal + Single Drive

- Exponentially localized interaction

1D-Photonic Crystal + Multiple Drives

- Superposition of exponentials
- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

$$
H_{\text {Raman }}=\hbar \frac{g^{2} \Omega^{2}}{\Delta^{2} \delta} \sigma_{1}^{+} \sigma_{2}^{-}+h . c .
$$

Raman-Coupled Spin Models

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

$$
H_{R a m a n}=\hbar \frac{g^{2} \Omega^{2}}{\Delta^{2} \delta} \sigma_{1}^{+} \sigma_{2}^{-}+h . c .
$$

1D-Photonic Crystal + Single Drive

- Exponentially localized interaction

1D-Photonic Crystal + Multiple Drives

- Superposition of exponentials
- Approximate power-law interaction

Raman-Coupled Spin Models

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

$$
H_{\text {Raman }}=\hbar \frac{g^{2} \Omega^{2}}{\Delta^{2} \delta} \sigma_{1}^{+} \sigma_{2}^{-}+h . c .
$$

1D-Photonic Crystal + Single Drive

- Exponentially localized interaction

1D-Photonic Crystal + Multiple Drives

- Superposition of exponentials
- Approximate power-law interaction

Need 3-level qubit

Raman Transitions in Fluxonium

Rabi oscillation

- Gaussian pulse off-resonant of plasmon
- Vacuum Rabi rate of fluxon

Raman Transitions in Fluxonium

Rabi oscillation

- Gaussian pulse off-resonant of plasmon
- Vacuum Rabi rate of fluxon

Raman Pulse

Raman Transitions in Fluxonium

Rabi oscillation

- Gaussian pulse off-resonant of plasmon
- Vacuum Rabi rate of fluxon

Second-Generation Raman Device

Redesigned Device

- 3-cavities
- Separate resonators allow
- Optimized readout
- Parallel readout and coupling

Second-Generation Raman Device

Redesigned Device

- 3-cavities
- Separate resonators allow
- Optimized readout
- Parallel readout and coupling

Second-Generation Raman Device

Redesigned Device

- 3-cavities
- Separate resonators allow
- Optimized readout
- Parallel readout and coupling

Raman In

Flux 1

Full-Wave Flat-Band States

Hyperbolic Lattices and Curvature

Hyperbolic Lattices and Curvature

Hyperbolic Lattices and Curvature

Gaussian Curvature

$$
K=-\frac{1}{R^{2}}
$$

Hyperbolic Lattices and Curvature

Tiling Polygon (n)	Lattice Constant	Medial Lattice Constant
7	0.566	0.492
8	0.727	0.633
9	0.819	0.714
10	0.879	0.767
11	0.921	0.804
12	0.952	0.831

Hyperbolic Numerics

Hyperbolic Numerics

Subdivision Graphs: Flat Bands at 0

Subdivision Graphs and Optimally Gapped Flat Bands

Subdivision Graphs and Optimally Gapped Flat Bands

Subdivision Graphs and Optimally Gapped Flat Bands

$L(\$(X))$

Subdivision Graphs and Optimally Gapped Flat Bands

Tight Binding

(a)

Full-Wave

$$
\psi_{i}=+1 \stackrel{t_{i, j}<0}{\psi_{j}=+1}
$$

(c)

$$
\begin{array}{ll}
\text { Half-Wave } & \text { (d) }
\end{array}
$$

(b)
φ
Φ

$$
\psi_{i}=+1 \stackrel{t_{i, j}>0}{ } \psi_{j}=+1
$$

Half-Wave

$$
\psi_{i}=+1
$$

$$
t_{i, j}<0 \quad \psi_{j}=-1
$$

$$
\psi_{i}=+1 \stackrel{\text { Half-Wave }}{\stackrel{t_{i, j}>0}{ }} \psi_{j}=-1
$$

S-Wave and P-Wave On-Site Wave Functions

$$
\mathcal{H}=\sum_{\substack{\text { coupling } \\ \text { capacitors }}} \omega C_{c} \Phi^{+} \Phi^{-}
$$

S-Wave and P-Wave On-Site Wave Functions

$$
\mathcal{H}=\sum_{\substack{\text { coupling } \\ \text { copacitors }}} \omega C_{c} \Phi^{+} \Phi^{-}
$$

S-Wave and P-Wave On-Site Wave Functions

$$
\mathcal{H}=\sum_{\substack{\text { coupling } \\ \text { capacitors }}} \omega C_{c} \Phi^{+} \Phi^{-}
$$

Full-wave

S-Wave and P-Wave On-Site Wave Functions

$$
\mathcal{H}=\sum_{\substack{\text { coupling } \\ \text { capacitors }}} \omega C_{c} \Phi^{+} \Phi^{-}
$$

Full-wave

S-Wave and P-Wave On-Site Wave Functions

$$
\mathcal{H}=\sum_{\substack{\text { coupling } \\ \text { capacitors }}} \omega C_{c} \Phi^{+} \Phi^{-}
$$

Full-wave

S-Wave and P-Wave On-Site Wave Functions

$$
\mathcal{H}=\sum_{\substack{\text { coupling } \\ \text { capacitors }}} \omega C_{c} \Phi^{+} \Phi^{-}
$$

Full-wave

S-Wave and P-Wave On-Site Wave Functions

$$
\mathcal{H}=\sum_{\substack{\text { coupling } \\ \text { capacitors }}} \omega C_{c} \Phi^{+} \Phi^{-}
$$

Full-wave

Half-wave

S-Wave and P-Wave On-Site Wave Functions

$$
\mathcal{H}=\sum_{\substack{\text { coupling } \\ \text { capacitors }}} \omega C_{c} \Phi^{+} \Phi^{-}
$$

Full-wave

Half-wave

Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $L(X)$
- Mixed positive and negative hopping

$$
\bar{H}_{a}(X) \neq H_{L(X)}
$$

Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $L(X)$
- Mixed positive and negative hopping

$$
\bar{H}_{a}(X) \neq H_{L(X)}
$$

Incidence Operator

- From X to L(X)
$N: \ell^{2}(X) \rightarrow \ell^{2}(L(X))$

Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $L(X)$
- Mixed positive and negative hopping

$$
\bar{H}_{a}(X) \neq H_{L(X)}
$$

Incidence Operator

- From X to L(X)

$$
N: \ell^{2}(X) \rightarrow \ell^{2}(L(X))
$$

$$
N(v, e)= \begin{cases}1, & \text { if } e^{+}=v \\ -1 & \text { if } e^{-}=v \\ 0 & \text { otherwise }\end{cases}
$$

Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on L(X)
- Mixed positive and negative hopping

$$
\bar{H}_{a}(X) \neq H_{L(X)}
$$

Incidence Operator

- From X to L(X)

$$
N: \ell^{2}(X) \rightarrow \ell^{2}(L(X))
$$

$$
N(v, e)= \begin{cases}1, & \text { if } e^{+}=v \\ -1 & \text { if } e^{-}=v \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& N^{t} N=D_{X}-H_{X} \\
& N N^{t}=2 I+\bar{H}_{a}(X)
\end{aligned}
$$

Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $L(X)$
- Mixed positive and negative hopping

$$
\begin{array}{ll}
\bar{H}_{a}(X) \neq H_{L(X)} & N^{t} N=D_{X}-H_{X} \\
& N N^{t}=2 I+\bar{H}_{a}(X)
\end{array}
$$

Incidence Operator

- From X to $L(X)$

$$
N: \ell^{2}(X) \rightarrow \ell^{2}(L(X))
$$

$$
N(v, e)= \begin{cases}1, & \text { if } e^{+}=v \\ -1 & \text { if } e^{-}=v \\ 0 & \text { otherwise }\end{cases}
$$

$$
D_{X}-H_{X} \simeq 2 I+\bar{H}_{a}(X)
$$

Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $L(X)$
- Mixed positive and negative hopping

$$
\begin{array}{ll}
\bar{H}_{a}(X) \neq H_{L(X)} & N^{t} N=D_{X}-H_{X} \\
& N N^{t}=2 I+\bar{H}_{a}(X)
\end{array}
$$

Incidence Operator

- From X to $L(X)$

$$
N: \ell^{2}(X) \rightarrow \ell^{2}(L(X))
$$

$$
N(v, e)= \begin{cases}1, & \text { if } e^{+}=v \\ -1 & \text { if } e^{-}=v \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{gathered}
D_{X}-H_{X} \simeq 2 I+\bar{H}_{a}(X) \\
E_{\bar{H}_{a}}=\left\{\begin{array}{l}
d-2-E_{H_{X}} \\
-2
\end{array}\right.
\end{gathered}
$$

Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $L(X)$
- Mixed positive and negative hopping

Incidence Operator

- From X to $L(X)$

$$
N: \ell^{2}(X) \rightarrow \ell^{2}(L(X))
$$

$$
N(v, e)= \begin{cases}1, & \text { if } e^{+}=v \\ -1 & \text { if } e^{-}=v \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{array}{ll}
\bar{H}_{a}(X) \neq H_{L(X)} & N^{t} N=D_{X}-H_{X} \\
& N N^{t}=2 I+\bar{H}_{a}(X)
\end{array}
$$

$$
D_{X}-H_{X} \simeq 2 I+\bar{H}_{a}(X)
$$

$$
E_{\bar{H}_{a}}=\left\{\begin{array}{lc}
d-2-E_{H_{X}} & \bullet \text { Identical on bipartite graphs } \\
-2 & \text { Kollár et al. in preparation }
\end{array}\right.
$$

Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $L(X)$
- Mixed positive and negative hopping

Incidence Operator

- From X to $L(X)$

$$
N: \ell^{2}(X) \rightarrow \ell^{2}(L(X))
$$

$$
N(v, e)= \begin{cases}1, & \text { if } e^{+}=v \\ -1 & \text { if } e^{-}=v \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{array}{ll}
\bar{H}_{a}(X) \neq H_{L(X)} & N^{t} N=D_{X}-H_{X} \\
& N N^{t}=2 I+\bar{H}_{a}(X)
\end{array}
$$

$$
D_{X}-H_{X} \simeq 2 I+\bar{H}_{a}(X)
$$

$$
E_{\bar{H}_{a}}=\left\{\begin{array}{lc}
d-2-E_{H_{X}} & \bullet \text { Identical on bipartite graphs } \\
-2 & \bullet \text { Inverted otherwise } \\
\text { Kollár et al. in preparation }
\end{array}\right.
$$

Full-Wave v Half-Wave Flat Band States

FW

Full-Wave v Half-Wave Flat Band States

FW

HW

Full-Wave v Half-Wave Flat Band States

FW

HW

FW

Full-Wave v Half-Wave Flat Band States

Full-Wave v Half-Wave Flat Band States

- Full-wave has localized states on only even cycles of the layout.

Full-Wave v Half-Wave Flat Band States

- Full-wave has localized states on only even cycles of the layout.
- Half-wave has localized states on any cycle of the layout.

Full-Wave Half-Wave Correspondence

FW

Real-Space Topology

