Single microwave photon detection with superconducting quantum circuits

Emanuele Albertinale

Quantronics group, SPEC, CEA Paris-Saclay

03.10.2022

Agence Nationale de la Recherche

Detection of microwave photons

Search for dark matter candidates (axions)

Photon-detection-based quantum information

What we need

- Low thermal photon number
- Minimum amplification-added noise
- Probing-system coupled to mw field
- Engineered photon-detector interaction

Superconducting circuits

Superconducting circuits

Coplanar waveguide geometry

Coplanar waveguide geometry

Coplanar waveguide geometry

LC resonator

• kT << hv

Superconducting qubits

How to build a two-levels system?

Non-linear element

[↑]energy

superconductor - insulator - superconductor

Artificial atom

Artificial atom

Single microwave photon detection

Prototypes of microwave photon-detectors

K. Inomata *et al.,* Nat. Comm. 7, 12303 (2016)

Kono, S, et al. Nature Physics 14.6 (2018)

J.-C. Besse *et al.,* PRX 8, 021003 (2018)

Opremcak, A., et al., Science 361.6408 (2018)

Irreversible Qubit-Photon Coupling for the Detection of Itinerant Microwave Photons

Raphaël Lescanne, Samuel Deleglise, Emanuele Albertinale, Ulysse Reglade, Thibault Capelle, Edouard Ivanov, Thibaut Jacqmin, Zaki Leghtas, and Emmanuel Flurin

Physical Review X 10.2 (2020): 021038.

Irreversible mapping of the field state on a qubit

 ω_{photon}

 ω_{qubit}

Irreversible mapping of the field state on a qubit

Unitary evolution is reversible

$$\widehat{H} = g \cdot (\widehat{a}\widehat{\sigma}^+ + \widehat{a}^+\widehat{\sigma})$$

Unitary evolution

Unitary evolution is reversible

$$\widehat{H} = g \cdot (\widehat{a}\widehat{\sigma}^+ + \widehat{a}^+\widehat{\sigma})$$

Unitary evolution is reversible

$$\widehat{H} = g \cdot (\widehat{a}\widehat{\sigma}^+ + \widehat{a}^+\widehat{\sigma})$$

Master equation: non unitary evolution

$$\partial_t \hat{\rho} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}] + \hat{L} \hat{\rho} \hat{L}^{\dagger} - \frac{1}{2} \hat{L}^{\dagger} \hat{L} \hat{\rho} - \frac{1}{2} \hat{\rho} \hat{L}^{\dagger} \hat{L}$$

unitary
evolution dissipative
evolution

can be used to engineer a dissipative dynamics

> Leghtas et al. Science (2015) Lescanne et al. Nature Physics (2020)

Engineered bath for irreversible evolution

$$\hat{L} = \hat{a}\hat{\sigma}^+$$

Non unitary evolution

Engineered bath for irreversible evolution

$$\hat{L} = \hat{a}\hat{\sigma}^+$$

Non unitary evolution

R. Lescanne et al., PRX (2020)

Adding a bath

R. Lescanne et al., PRX (2020)
Adding a bath

Adding a bath

4-wave mixing element

Frequency matching / energy conservation

$$\boldsymbol{\omega}_a + \boldsymbol{\omega}_p = \boldsymbol{\omega}_q + \boldsymbol{\omega}_b$$

Adding a bath

Engineered bath for irreversible evolution

Engineered bath for irreversible evolution

Built-in detector reset

$$\boldsymbol{\omega}_q + \boldsymbol{\omega}_b = \boldsymbol{\omega}_a + \boldsymbol{\omega}_p$$

$$\widehat{H} = g_4 \cdot (\xi \widehat{\phi}^+ \widehat{b}^+ + \xi^* \widehat{a}^+ \widehat{\sigma} \widehat{b})$$

Circuit layout

Circuit layout

Tuning the detector

$$\boldsymbol{\omega}_a + \boldsymbol{\omega}_p = \boldsymbol{\omega}_q + \boldsymbol{\omega}_b$$

Tuning the detector

$$\boldsymbol{\omega}_a + \boldsymbol{\omega}_p = \boldsymbol{\omega}_q + \boldsymbol{\omega}_b$$

Tuning the detector

Dead time

Dead time

Dead time

Dead time – reset calibration

Dead time – reset calibration

Figures of merit: banwidth

Figures of merit: banwidth

 $\eta_{duty} = 0.43$

Detecting spins by their fluorescence with a microwave photon counter

Emanuele Albertinale, Léo Balembois, Eric Billaud, Vishal Ranjan, Daniel Flanigan, Thomas Schenkel, Daniel Estève, Denis Vion, Patrice Bertet, and Emmanuel Flurin

Nature 600, 434-438 (2021).

Spin detection

Chemistry

Molecular Biology

Food Control

Archaeology

Condensed-Matter Physics

Quantum Computing

Spin detection

Spin detection

Spin Purcell radiative relaxation rate:

$$\Gamma_{\rm p} = \frac{4g_0^2}{\kappa}$$

Purcell, Edward Mills. "Spontaneous emission probabilities at radio frequencies." Confined Electrons and Photons. Springer, Boston, MA, 1995. 839-839.

Bienfait, Audrey, et al. "Controlling spin relaxation with a cavity." Nature 531.7592 (2016): 74-77.

$$\langle X_{\rm e} \rangle = N_{\rm s} \sqrt{\frac{\Gamma_{\rm p}}{2\Gamma_2^*}}$$

Bienfait, A., et al, Nature nanotechnology 11.3 (2016): 253-257.

Bienfait, A., et al, Nature nanotechnology 11.3 (2016): 253-257.

Bienfait, A., et al, Nature nanotechnology 11.3 (2016): 253-257.

A novel method:

microwave spin fluorescence

 $SNR = \frac{\eta N_{spins}}{\sqrt{N_{dark} + \eta (1 - \eta) N_{spins}}}$

$$\mathrm{SNR} = \frac{\eta N_{\mathrm{spins}}}{\sqrt{N_{\mathrm{dark}} + \eta (1 - \eta) N_{\mathrm{spins}}}}$$

Unbounded when $\eta \to 1, N_{\text{dark}} \to 0$

20 mK

Detecting spin fluorescence

10⁵ detection cycles

seconds

First application of an SMPD to quantum sensing

Fluorescence SNR

Fluorescence SNR

For one repetition of the experiment

	Quadrature detection of Hahn echo	SMPD detection of fluorescence
Signal	$N_{\rm s} \sqrt{\frac{\Gamma_{\rm p}}{2\Gamma_2^*}} < \sqrt{N_{\rm s}}$	$N_{ m s}$
Fluctuations		
SNR		

For one repetition of the experiment

	Quadrature detection of Hahn echo	SMPD detection of fluorescence
Signal	$N_{\rm s} \sqrt{\frac{\Gamma_{\rm p}}{2\Gamma_2^*}} < \sqrt{N_{\rm s}}$	$N_{ m s}$
Fluctuations	$\frac{1}{2}$	$\sqrt{\frac{v_{dc}}{\Gamma_p}}$
SNR		

For one repetition of the experiment

For one repetition of the experiment

Spectroscopy

Fluorescence-detected Rabi oscillations

Perspectives on photodetection

\blacktriangleright Improve total efficiency η

Collection efficiency Bandwidth tunability

Reduce dark counts

Increase qubit T1 Improve thermalization

Ongoing work:

- ESR on non-testbench samples
- Single spin detection

Single spin fluorescence detection

Thank you!

