

3DT: Utilizing Noble Liquid Detection to **Improve** Positron Emission Tomography

Link to recording

https://drive.google.com/file/d/1WTyIEJzoXuuG-rcW00OXE-IpEG-8IX5O/view? usp=sharing

Outline

- 1. Background and Context
- 2. Project Introduction
- 3. White Paper Status
- 4. Current Results
- 5. Ongoing work
- 6. Hardware

1 – Background and Context

1 - Background on PET

- Positron Emission Tomography (PET) is a medical imaging technique used to observe metabolic activity in cells and tissue
- •Used to locate tumors and diagnose patients.
- •Monitor patient's response to therapy
- •Developed in the mid to late 20th century

Credit: Bonsecours/Positron Emission Tomography

Credit: http://www.nucradshare.com/Neuro.html

1 – Traditional Method of Detection

- •Current scanners use a crystal scintillator with a photosensor
 - Photomultiplier tube (PMT)
 - LYSO crystal
 - Push for Silicon Photomultipliers (SiPMs) to replace PMTs
 - Single sided
 - Usually, one layer of crystals and sensors in a ring

Material	Peak Emission(nm)	Light Yield (ph/MeV)	Energy Res. @ 661.7 keV	Decay Time (ns)
BGO	480	8000-10000	9.7-16%	300
LYSO Credit: <u>10.3390</u>	420 <u>)/s19183828</u>	30000-3300 0	8-20%	45

Credit:

http://www.people.vcu.edu/~mhcrosthwait/PETW/petinstr umentation.html

1 - Research Motivations (PET Limitations)

- •Scanners can only survey sections of patients. (~20-30 cm)
- •Small sensitivity for gamma detection.
- •Unable to image and observe activity of multiple body parts simultaneously
- Increasing dosage raises sensitivity but produces more gamma scattering. Leads to false coincidences

Credit: http://tech.snmjournals.org/content/42/ 2/101/F1.expansion.html

Random coincidence

- More than one annihilation
- Photons from different annihilations are detected simultaneously
- Artefactual line of response calculated

2 – Project Introduction

2 - 3-Dimensional Positron Identification (3DPi)

- A full body, Time of Flight PET scanner
 - Using SiPMs instead of PMTs
 - Liquid Argon scintillation
 - Multiple layers
- Geometry:
 - 9 annulus detection rings
 - Each ring has Liquid Argon sandwiched between two layers of SiPMs
 - PTFE supporting structure
 - 2 m in length

2 - Time of Flight (TOF)

- Using TOF info of annihilation photons to improve image quality
- Use SiPMs
- Improves signal to noise ratio (SNR)

$$\Delta x = c \frac{\Delta t}{2} \qquad \Delta t = t_2 - t_1$$

Delta x is the distance from the center of the rings to annihilation vertex

https://www.semanticscholar.org/paper/Recent-developments-in-time-of-flight-PET.-Vandenberghe-Mikhaylova/47b546d92f8633d3602553d8e0335092964e351e

2 – Full Body

- A scanner that covers entire patient significantly increases sensitivity
- Easier 3-D annihilation vertex reconstruction and imaging.
- Image entire body at once and observe responses from multiple body parts
- Scanner configuration allows for custom tradeoffs

Explorer Scanner (UC Davis Health)

2 – Xenon Doped LAr

- The Triplet light component of LAr is too slow
- Alternative is xenon doped liquid argon (LAr + Xe)
 - Possible concentrations up to 1000 ppm
 - Suppresses long decay component from 1 μs to ~90 ns around 100 ppm and beyond
 - Increase in light yield from xenon doping

Credit: arXiv:1906.00836

Property	Argon	Xenon
Fast decay time (ns)	7	4.3
Slow decay time (ns)	1600	22
Light yield (photons/keV)	40	42
Wavelength (nm)	128	175
Density at boiling temperature at 1 atm (g/cm ³)	1.40	2.94
Cost (US\$/kg)	~2	~2000

Credit: <u>arXiv:1403.0525</u>

3 – White Paper Status

3 – White Paper Status

- Updating references
- Include EXPLORER scanner and others to show comparisons
- Tailor paper to medical physics journal instead of physics one
 - Formatting
 - Structuring sections
- Updated NEMA guide reference (NU-2018)
 - Updated phantom geometries
- Updating plots
- Aim for End of July Early August for draft

4 – Current Results

4 - Geant4 Simulations

- Simulations based off the Geant4 from DarkSide
 - Optical properties of LAr Scintillation light
 - Real DarkSide-50 detector data used
- 9 double sided layers of SiPM panels
 - SiPMs assumed a 60 ps intrinsic timing resolution
 - Each SiPM layer has ~20 mm LAr thickness
 - Titanium cryostat assumes a thickness of 6mm
 - Simulation TOF resolution of ~100 ps
 - Most current TOF-PET systems have resolutions of ~500-600 ps

4 - NEMA Tests

- The National Electrical Manufacturers Association (NEMA) has a guide to characterize PET performance
- Use these tests to compare with other scanners
- Used the guide NEMA NU 2-2012
- Conducted the tests
 - Spatial Resolution
 - Image Quality
 - Sensitivity
 - Scatter Fraction

- 4 radioactive sources with 2 water sources arranged in a ring
- Each source varies in size and activity

Crystal Scintillator (EXPLORER)

~1.06 x 10⁹ Annihilations 10 min scan

10⁹ Annihilations 15 - 30 second scan

4 - Scatter fraction, count losses, and randoms

Our Total-Body TOF-PET: 230 kcps/MBq

EXPLORER Total-Body PET/CT Scanner: 147 kcps/MBq

4 - Spatial and Sensitivity Comparison

The

ValuesLAr + TPBLAr + XeGE Signa PET/MRGE Discovery 710 PET/CTExplorer (Full body TOF-PET)Center Position (1 cm) σ_{-} tangential (mm)7.44.44.74.72.9Off-center Position (20 cm) σ_{-} radial (mm)4.64.44.44.93.2Off-center Position (20 cm) σ_{-} radial (mm)5.34.48.45.34.8Off-center Position (20 cm) σ_{-} radial (mm)17.55.75.24.84.6 σ_{-} axial (mm)17.55.75.24.84.63.4 σ_{-} axial (mm)17.35.63.4Sensitivity (kcps/MBq)-23023.35.5~147Timing Res. (ps) $\sim 1 \cdots$ ~ 400 - ~ 490			and the second second				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Values	LAr + TPB	LAr + Xe	GE Signa PET/MR	GE Discovery 710 PET/CT	Explorer (Full body TOF-PET)
(1 cm) σ_radial (mm) 4.6 4.4 4.4 4.9 3.2 Off-center σ_radial (mm) 5.3 4.4 8.4 5.3 4.8 Position σ_tangential (mm) 17.5 5.7 5.2 4.8 4.6 (20 cm) σ_axial (mm) - - 7.3 5.6 3.4 Sensitivity - 230 23.3 5.5 ~147 Timing Res. (ps) ~100 ~400 - ~490	Center Position (1 cm) Off-center Position (20 cm)	σ_tangential (mm)	7.4	4.4	4.7	4.7	2.9
Off-center Position (20 cm) \$\alpha_{.17.5}\$ \$4.4\$ \$8.4\$ \$5.3\$ \$4.8\$ \$\alpha_{.17.5}\$ \$5.7\$ \$5.2\$ \$4.8\$ \$4.6\$ \$\alpha_{.axial}(mm)\$ \$-\$\$ \$7.3\$ \$5.6\$ \$3.4\$ \$\begin{tabular}{lllllllllllllllllllllllllllllllllll		σ_radial (mm)	4.6	4.4	4.4	4.9	3.2
$\begin{array}{llllllllllllllllllllllllllllllllllll$		σ_radial (mm)	5.3	4.4	8.4	5.3	4.8
$ \begin{array}{ c c c c c c } \hline \sigma_a xial (mm) & - & - & 7.3 & 5.6 & 3.4 \\ \hline Sensitivity \\ (kcps/MBq) & - & 230 & 23.3 & 5.5 & ^147 \\ \hline Timing Res. (ps) & & & & & & & & & & & & & & & & & & &$		σ_tangential (mm)	17.5	5.7	5.2	4.8	4.6
Sensitivity (kcps/MBq)-23023.35.5~147Timing Res. (ps)~100~400-~490		σ_axial (mm)	-	-	7.3	5.6	3.4
Timing Res. (ps) ~100 ~400 - ~490		Sensitivity (kcps/MBq)	-	230	23.3	5.5	~147
		Timing Res. (ps)	~10	00	~ 400	-	~490

3DPi General Meeting May 13th

5 – Ongoing Work

5 – Next Steps

- FBP does not account for noise
 - Use an iterative reconstruction algorithm
- Optimize processing code, more streamlined
- Simulation needs to be more realistic
 - Incorporate realistic geometry, human phantom
- Geometry needs to be optimized
 - Remove layers to simplify geometry, adjust LAr thickness?
- Can ML be implemented to produce better images?
- Add in electronics layers

5 – Simulations

- Geant4 code has been updated include F18 energy spectrum
- Cherenkov light implemented
- Updated NEMA phantom geometries from updated NEMA guide 2018
 - New Image quality phantom from NEMA 2018
 - New sensitivity phantom offset
- Resubmit simulations to reflect changes

6 – Hardware

6 – Ongoing activities

- Setup at INFN Cagliari, to test Coincidence
 Time Resolution in the liquid argon-xenon
 mixture
- Setup at Princeton to test stability of the Xe-doped LAr
- Agreement with Fondazione Bruno Kessler to test custom developed SiPM, tile size 3x3 mm²
- Scaling up to 10x10 mm² would reduce the amount of channels
- Testing of the ALCOR chip at cryogenic temperature

6 – Next step

- Need to develop the electronics for the scanner
- Front-end electronics requirements:
 - → 1 milion channels to read
 - → Optimized for timing measurements
 - → Low power consumption (5 mW/channel)
 - → High event rate (50 MHz)

Advantages of 3DPi (Summary)

- Large scanner yields higher sensitivity
- LAr + Xe + SiPMs allows for fast scintillation
 - Better Timing Resolution
 - Better Spatial Resolution
- LAr cryogenics reduces SiPM Dark counts
- Monolithic scintillator
- LAr lower optical density than crystal scintillators

Thank You

Backup

Other scanners SF

35 30 25 25 52 25 Count Rate (kcps) -Total prompts -Trues ----Randoms ----Scatter 20 20 15 Scatter -----NECR ----Scatter fraction Activity Concentration (kBq/mL)

CareMiBrain PET

GE SIGNA PET/MR system

