

PMT analysis - ...previously...

Outcome:

Ok, it works.

Next step:

Let's apply this to LIME data.

```
File opened: test_histograms_Rum0M441.root
Corrections opened: MANGO_X742Table_750MHz_gr@_cell.txt
Corrections opened: MANGO_X742Table_16Hz_gr@_cell.txt
Corrections opened: MANGO_X742Table_2.50Hz_gr@_cell.txt
Corrections opened: MANGO_X742Table_5CHz_gr@_cell.txt
Channel: @

*** RNS seems to big... Check please. ***
Start index cell found: 184 ...with an RMS of: 25.8476

*** RNS seems to big... Check please. ***
Start index cell found: 184 ...with an RMS of: 25.5263

*** RNS seems to big... Check please. ***
The RMS of the wf initial is: 23.4892
```

Tested all the *frequencies*, "channels", "groups", and all the capacitors.

-> Always find <u>higher RMS</u> that the original one == <u>corrections not working.</u>

What could be the issue?

- Maybe digitizers were <u>swapped</u> (LNGS <-> Frascati)
 - a. So I don't have the *correct* correction tables
 - b. It's not so easy to get them now because they are performing software upgrades and not all the libraries are properly working.
- 2. But now all the digitizers are working properly, why not during last summer?
 - a. Maybe there was some miscalibration.
 - b. It could mean the data might never be correctable...

What now?

- → Carry on the analysis nonetheless. Maybe it's better to prepare the analysis for when better data arrives.
- → If the data seems too much broken, try to manually fix it:
 - ♦ With a man-made correction table (?)

Bringing back the initial study with the moving average (?)

Outcome:

Ok, it works.

Next st

They fixed unground library issues (to some degree)

- Got a batch of new correction tables. \rightarrow
- \rightarrow These also don't work.. Supports Giorgio's idea of some miscalibration happening last summer

working.

What could be the issue?

- Maybe digitizers were **swapped** (LNGS <-> Frascati)
 - So I don't have the *correct* correction tables
 - It's not so easy to get them now because they are performing software upgrades and not all the libraries are properly working.
- But now all the digitizers are working properly, why not during last summer?
 - Maybe there was some miscalibration.
 - It could mean the data might never be correctable...

What now?

- Carry on the analysis nonetheless. Maybe it's better to prepare the analysis for when better data arrives.
- If the data seems too much broken, try to manually fix it:
 - With a man-made correction table (?)

Bringing back the initial study with the moving average (?)

PMT analysis - ...previously...

Outcome:

Ok, it works.

Next st

They fixed unground library issues (to some degree)

- Got a batch of new correction tables. \rightarrow
- \rightarrow These also don't work.. Supports Giorgio's idea of some miscalibration happening last summer

working.

What could be the issue?

- Maybe digitizers were **swapped** (LNGS <-> Frascati)
 - So I don't have the *correct* correction tables
 - It's not so easy to get them now because they are performing software upgrades and not all the libraries are properly working.
- But now all the digitizers are working properly, why not during last summer?
 - Maybe there was some miscalibration.
 - It could mean the data might never be correctable...

What now?

Carry on the analysis no

Followed this idea and created a *self-correcting script*

etter data arrives.

- If the data seems too much broken, try to manually fix it:
 - With a man-made correction table (?)

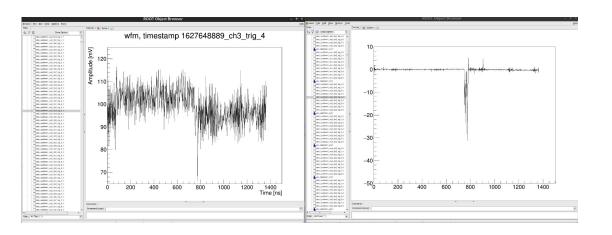
Bringing back the initial study with the moving average (?)

PMT analysis - Correction script - Rational

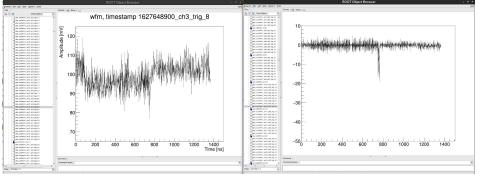
- 1. Find ~20 empty waveforms for each channel
- 2. Read and save them into vector.
- 3. Input given to be corrected waveform.
- **4.** Test all the 20 empty waveforms into this **to be corrected waveform**.
 - **a.** This means find the *start_index_cell (SIC)* and respective RMS got after correcting
- **5.** Choose the best waveforms (meaning the ones which output an RMS lower than X).
- **6.** With these, create an average correction waveform
 - **a.** Why not just use the best of the 20 empty waveforms?
 - i. To avoid the creation of artifacts in the data, since the correction is just a point-by-point subtraction.
- 7. Correct the to be corrected waveform.
- **8.** Write the new waveform into a root file, following the same scheme as the normal data.
- **9.** Repeat for all the waveforms.

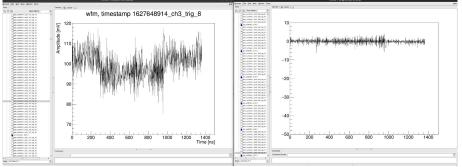
★ To do:

• Find some empty waveforms -> The more the better -> Finalise code to correct all channels

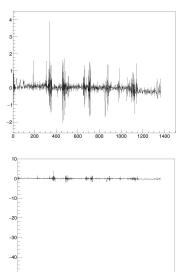

Bonus:

- Empty waveforms can be used between different runs (the capacitors are always the same)
- Automatically removes trigger 9, for which all the graphs were empty. (and the weird folders)

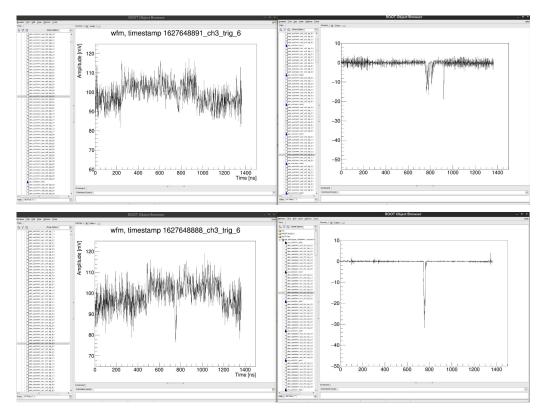

PMT analysis - Correction script - Examples



- the different Noting RMSs, you can see that sometimes works better than others..
- Good enough (?)!



PMT analysis - Correction script - Examples



- Sometimes there weird features..
- Irrelevant once a threshold is given (~10 mV)

Hard to identify signals become evident

