Overview on particle detectors trends

General Trends: Large size for large experiments

General Trends: miniaturising for novel performance

WD = 14.3 mm EHT = 10.00 kV Mag = 250 X Signal A = SE2

Chamber = 6.14e-004 Pa Stage at T = 50.0 ° Fraunhofer IZM

Scintillating Materials: Quantum Dots

Plastic Scintillators

Energy band gap (E₃) varies with quantum dot size

Conduction band

Scintillating Materials: Perov

ABX₃

Crystals with **tunable** optoelectronics performance" that can be

Scintillating Materials: TOPS project

The SBAI-group, in collaboration with colleagues from **Chemistry**, are developing and testing of new fluorophores for the production of fast and easy to manipulate new plastic scintillators

Scintillating Materials: Dual Emission for dual readout

- Different fibers for different signals

Micro Pattern Gaseous Detectors

collaboration;

New readout approach: **optical**

MPGD: Optical readout

Increase the **light** signal by **accelerating** electrons in gas after the multiplication

Gain demonstrated in atmospheric pressure He/CF4/SF6

E. Baracchini et al., CYGNO INITIUM, ERC No 818744

NI Optical TPC

50 Torr CF₄ + 5.9 Torr CS₂, **σ ~ 150 um** D. Loomba, UNM

low mass DM searches

E = 0 kV/cm

Electric field (kV/cm)

MPGD: Optical readout

QImaging Retiga R6, Thorlabs 8 MP Scientific CCD Cameras

CCD cameras

- Moderate QE, higher read noise
- Low rate (≈tens Hz)

Exemplary specifications

- 6 MP sensor (2688 x 2200)
- 4.54x4.54µm² pixels size
- 5.7 e- read noise

Hamamatsu ORCA-Fusion, Andor Zyla

sCMOS cameras

- Low read noise
- ≈100 Hz frame rate

Exemplary specifications

- 5.3 MP sensor (2304 x 2304)
- 6.5x6.5µm² pixels size
- 0.7 e- read noise

Hamamatsu ImageEM X2, ams technologies iXon

EMCCD cameras

- Limited resolution
- Internal gain, very high sensitivity

Exemplary specifications

- 1 MP sensor (1024x1024)
- 16x16µm² pixels size
- <1 e- read noise

Sequence of images displaying alpha track segments in gaseous TPC recorded at 700 kHz.

Phantom v2512

- 1 megapixel CMOS sensor
- 25 kfps at 1280 x 800
- 1 Mfps at 128x32
- Higher read noise

Linearly Graded Silicon Photomultipliers (LG-SiPMs)

- Current split in four outputs to calculate x and y coordinates from current signals
- Position resolution down to order of size of microcells (30µm)
- Fast response time of tens of ns

MPGD: GEMPix

GEM + Timepix ASIC

- Four naked Timepix read out with FPGA-based FITPix
- **Dose distribution imaging**, beam profile measurements for hadron therapy and micro dosimetry are potential applications
- Limited in area $(2.8 \times 2.8 \text{ cm})$ by Timepix ASICs -> tiling with Timepix4 feasible

3D dose distribution **profile**

35 keV X-rays mask tomography

MPGD: GridPix

Francesco Renga is studying this device to readout a TCP for a possible application to the study of the electric dipole moment of the muon

Micromegas on Timepix ASIC

- Bump-bond pads used for charge collection CMOS-ASIC designed by the Medipix
- collaboration
- CridDiv bood on Ti
- GridPix based on Timepix 3:
- 256 \times 256 pixels with 55 \times 55 μm^2 per pixel
- Charge (ToT) and time (ToA) information with 1.56ns time resolution

chips for **space** or bio/chemioluminescence applications

Other Micro Patterns: Carbon nano-structures

DM

Reduce, re-use, re-cycle

Thanks to **recirculation** emission already **reduced** by > 90%

800 BGO crystals recovered from L3 for DREAM

Crucial is the **collaboration** with non-particle physicists: **solid matter**, **chemistry** To **share** competences and knowledges, we should find:

Time

Foresee thematic workshops on experimental and technological challenges (low energy measurements, low radioactive detectors, high rate environment);

Space

Some of these activities took place at Segre Laboratories;

grounding, network) with room assigned on demand to active groups.

- Wide spectrum of interests and cutting edges activities (I'm sure I forgot big part of them, sorry);

- We have the opportunity to transform it in a functional lab (not a storage place), with services (gas,

