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Disclaimer

• Un talk sulla “Tecnologia” (brivido lungo la schiena....)
• Per fortuna molti topics correlati (almeno dal punto di 

vista applicativo) in altri talks
• In questa sessione due contributi alle nostre tecnologie di 

basso livello (Criogenia e Detector) di interesse per CSN5 
e in generale per INFN
• Criogenia (A. Cruciani)
• Rivelatori innovativi (D. Pinci)

• Mi mettero’ nella mia comfort zone e ovviamente non 
copriro’ tutto lo spettro delle tecnologie del calcolo 
(promettenti e meno) e dell’infrastruttura correlata. 
Evitero’ di fare un elenco sterile di tutte (e sono tante) le 
attivita’ di ricerca tecnologica della sezione.

• Provero’ a darvi un mio punto di vista (parziale) su alcune 
evoluzioni di interesse a breve e medio termine utili per 
le nostre ricerche
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Specializzazione, eterogeneità e convergenza
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• Sistema eterogeneo modulare (Low level Computer 
continuum...)
• Aggregazione di moduli diversi ognuno specializzato per task 

computazionali differenti
• Puo’ valere ad ogni scala di sistema 

• In particolare MSA Modular Supercomputer Architeture
• Ingredienti base CPU, acceleratori computazionali (GPU, DPU, 

FPGA), network, componenti programmabili per implemetazione 
di acceleratori per specific task computazionali (FPGA/GPU/ASIC 
per ML o data analytics), programming models, OS integrato, real 
time schedulers, storage

• Target Data Centers i.e. cloud per HPC, Data analytics, IA ed in 
futuro QC?

• Open issues:
• Network: esiste one architecture fits for all???
• Interfaccia ai singoli moduli computazionali

• Eterogenea per definizione ma omogenea per garantire l’integrazione
• I diversi moduli hanno differente maturita’ tecnologica, 

differente complessita’, differente peculiarita’ dei dati, differente 
caratteristica delle interfacce (tipologia e timing) etc...

• Orchestrazione e modello di programmazione

Se l’obie)vo e’ il sistema integrato ad alta efficenza computazionale e low power siamo ancora lontani e serve ancora ricerca...



Panorama commerciale
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Nel fraNempo i (big) players commerciali si muovono:
• 2016: INTEL(CPU) acquisisce ALTERA(FPGA) per 17 B$!!! 

• realizzare “convergenza CPU+FPGA” i.e. integrazione di FPGA (componen< 
programmabili) e CPU a “die” level

• stato ongoing dal punto di vista hardware 
• release di un framework integrato di programmazione (almeno per FPGA 

SoC+CPU per GPU annunciato) INTEL oneAPI basato su linguaggio DPC++ (Data 
Parallel C++) 

• e’ open à supporto per GPU in progress
• Release di Ponte Vecchio XE-based GPU orientata a HPC/AI 

hSps://www.nextplaVorm.com/2021/08/24/intels-ponte-vecchio-gpu-beSer-
not-be-a-bridge-too-far/

• 2020: NVIDIA (GPU) acquisisce Mellanox (Infiniband Network per 
HPC) per 7 B$
• integrare GPU e Network per realizzare mesh scalabili di GPU a bassa latenza
• stato ongoing ma per adesso business units separate
• interessan< SoC eterogenei (ex BlueField) per accelerazione on the edge
• issues: non piu’ compe-tors indipenden- per re- interconnessione HPC

• 2022: AMD (CPU) acquisisce Xilinx (FPGA) per 35 B$ con 
• obie]vo simile a INTEL/Altera 
• meSere a sistema con CPU e GPU, le varie architeSure di SoC programmabili e 

specializzate per HPC, ML
• non piu’ compe-tori indipenden- providers di FPGA

https://www.nextplatform.com/2021/08/24/intels-ponte-vecchio-gpu-better-not-be-a-bridge-too-far/


Ingredien8: CPU low power (ARM)
Beyond the x86 mainstream: Architetture ARM
• e’ stato per lungo tempo produttore Europeo di CPU 

specializzate per processori embedded (leader di mercato)
• business model: vendono license non prodotti
• architetture a 32b/64b utilizzate per server e microserver, 

multi-core integrati in FPGA
• low power à alto numero di cores
• costi contenuti
• cavium, amcc alcuni esperimenti di integrazione
• ARM-64 based ma completamente customized

• APPLE M1-M1X- ULTRA CPU fino a 20 core (fino a 16 ad alte
prestazioni, 4 ad alta efficienza), una GPU fino a 64 core, un Neural
Engine (NPU) con 32 core e una memoria interna fino a 128GB. 

• Ampere (startup US per server ARM-based) multicore à 64-80
• progetti EU: Mont Blanc, EuroServer, ExaNeSt... 
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Ingredien8: CPU low power (RISC-V)
Beyond the x86 mainstream: RISC-V
• NON e’ un’architettura di CPU MA un insieme di istruzioni “open 

source” 
• ridurre la complessita’ HW del core e il suo power consumption e aumentarne 

l’efficenza computazionale

• Una lunga storia (Berkeley 1981à)
• Oggi 5th generazione supportato da una fondazione RISC-V 

international (https://riscv.org/) a cui aderiscono i principali produttori 
di CPU 
• 2K+ PARTNERS, tra cui IBM, Intel, Google, Samsung, Nvidia...

• Supporto per CPU, many-cores acceleratori, ML, uControllori, HPC,...
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Terminology

...

...

CUDA (Nvidia) OpenCL (AMD / 
Nvidia)

Processor Processing Element

CUDA Core SIMD Unit

Streaming 
Multiprocessor

Compute Unit

GPU Device GPU Device

Ingredien8: GPU 
• In origine processori specializza: per la grafica
• GPU sono altamente mul:threaded e fanno uso

intensivo del parallelismo per oBenere alte
prestazioni (molte istruzioni SIMD) 
• esecuzione di molS threads (fino a 103...) in parallelo

distribuiS su molS cores elementary (103) di calcolo
• non necessaria la cache per mascherare la latenza di 

accesso alla memoria à molto compuSng meno
memoria

• Uso di graphic memory “larga“ (102 bit) e “veloce” 
(N∗Ghz per bit line

• Tanta tecnologia allo stato dell’arte:
• Linguaggi di programmazione standard (DirectX, 

OpenGL, OpenCL) o proprietary (NVidia Compute 
Unified Device Architecture (CUDA))

• Evoluzione verso sistemi scalabili oSmizza: (anche) 
per AI
• Sistemi a scala estrema HGX essenzialmente dedicaS al 

training efficenS di reS deep 
• Integrazione CPU+GPU (Grace)
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GPU: tecnologie allo stato dell’arte
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Tensor core con supporto per daO 
a precisione ridoPa/oQmizzata

Network integrata per connessione peer-to-peer 
ad alta banda e bassa latenza

Network integrata per connessione peer-to-peer 
ad alta banda e bassa latenza



GPU: non solo NVidia
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• INTEL Ponte Vecchio (release in 2022)



Ingredien8: FPGA
FPGA: componente programmabile per flessibilita’ ed 
efficenza energecca e riduzione del “cme-to-market”
• dalle PAL/GAL agli aNuali system-on-chip da miliardi di gates
• Un esempio: Xilinx Ultrascale+

à 14nm/16nm FinFET node (prossima generazione 7nm) diverse 
10x Btransistors

à MulZple (4->8) ARM Cores (a53/57) @1.5GHz 
à 128 transceiver 32-56 Gbps per interconnessione chip-to-chip o 

via backplane
à 9M system logic cells (up to 1GHz) 
à Up to 16GB in-package HBM DRAM (~500GB/s) e 500Mb 

memory
à molZ standard industriali implementaZ come IP core hardware:

ETH100g o 200g, PCIExpress gen3/4 x16... 
à 38 TOPs (22 TeraMACs) DSP compuZng performance 
à IP specializzate per ML inference
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FPGA Programming
• in origine sintesi a mano... poi strumenti di disegno “grafico” dello schema 

(Schematic design) e sintetizzatori che mappano disegno di alto livello in 
una netlist hardware (dipendente dal particolare componente)

• con l’aumento della complessita’ à linguaggi astratti di descrizione 
circuitale HDL Hardware Description Language (VHDL, Verilog) + 
compilatori + sintesi
• ostici per softwaristi, astratti dall’HW ma non troppo

• necessita’ di rendere ancora piu’ astratto il design à HLS (High Level 
Synthesis) dal C++ (o simili)
• Modello ”task parallelism” che sfrutta il parallelismo intrinseco della 

FPGA
• Tools di sviluppo Xilinx VITIS HLS, INTEL oneAPI (FPGA HLS),...

• Grazie a questi higher-level programming tools à “democratizzazione” 
dell’uso delle FPGA
• ridotto time–to-design (dalla descrizione in linguaggio standard di alto 

livello al firmware di programmazione della FPGA)
• non e’ necessaria conoscenza profonda dell’HW e dell’architettura del 

componente; un “semplice” application specialist puo’ realizzare un 
design FPGA ottimizzato per quella particolare applicazione 

• implementazione di nuovi strumenti di alto livello per mapping 
automatico e specializzato
• OmPSS- FPGA (BSC) per programmare sistemi paralleli basati su 

FPGA partendo da applicazioni MPI-based
• HLS4ML (CERN) generazione automatica di firmware FPGA per 

task di ML
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Figure 18: Vitis HLS Design Flow
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C, C++

Vitis HLS inputs include:

• C functions written in C and C++11/C++14. This is the primary input to Vitis HLS. The
function can contain a hierarchy of sub-functions.

• C functions with RTL blackbox content as described in Adding RTL Blackbox Functions.

• Design Constraints that specify the clock period, clock uncertainty, and the device target.

• Directives are optional and direct the synthesis process to implement a specific behavior or
optimization.

• C test bench and any associated files needed to simulate the C function prior to synthesis, and
to verify the RTL output using C/RTL Co-simulation.

You can add the C input files, directives, and constraints to a project using the Vitis HLS graphical
user interface (GUI), or using Tcl commands from the command prompt, as described in Running
Vitis HLS from the Command Line. You can also create a Tcl script, and execute the commands in
batch mode.

The following are Vitis HLS outputs:

Section I: Getting Started with Vitis HLS
Chapter 6: Creating a New Vitis HLS Project

UG1399 (v2022.1) May 25, 2022  www.xilinx.com
Vitis HLS User Guide  66

The following diagrams illustrate different overlapping executions for a simple example of 4
consecutive tasks (i.e., C/C++ functions) A, B, C, and D, where A produces data for B and C, in
two different arrays, and D consumes data from two different arrays produced by B and C. Let us
assume that this “diamond” communication pattern is to be run twice (two invocations) and that
these two runs are independent.

void diamond(data_t vecIn[N], data_t vecOut[N])
{
   data_t c1[N], c2[N], c3[N], c4[N];
   #pragma HLS dataflow
   A(vecIn, c1, c2);
   B(c1, c3);
   C(c2, c4);
   D(c3, c4, vecOut);
}

The code example above shows the C/C++ source snippet for how these functions are invoked.
Note that tasks B and C have no mutual data dependencies. A fully-sequential execution
corresponds to the figure below where the black circles represent some form of synchronization
used to implement the serialization.

Figure 5: Sequential Execution - Two Runs

In the diamond example, B and C are fully-independent. They do not communicate nor do they
access any shared memory resource, and so if no sharing of computation resource is required,
they can be executed in parallel. This leads to the diagram in the figure below, with a form of
fork-join parallelism within a run. B and C are executed in parallel after A ends while D waits for
both B and C, but the next run is still executed in series.

Figure 6: Task Parallelism within a Run

Section I: Getting Started with Vitis HLS
Chapter 2: Design Principles for Software Programmers
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Such an execution can be summarized as (A; (B || C); D); (A; (B || C); D) where “;” represents
serialization and “||” represents full parallelism. This form of nested fork-join parallelism
corresponds to a subclass of dependent tasks, namely series-parallel task graphs. More generally,
any DAG (directed acyclic graph) of dependent tasks can be implemented with separate fork-and-
join-type synchronization. Also, it is important to note that this is exactly like how a
multithreaded program would run on a CPU with multiple threads and using shared memory.

On FPGAs, you can explore what other forms of parallelism are available. The previous execution
pattern exploited task-level parallelism within an invocation. What about overlapping successive
runs? If they are truly independent, but if each function (i.e., A, B, C, or D) reuses the same
computation hardware as for its previous run, we may still want to execute, for example, the
second invocation of A in parallel with the first invocations of B and C. This is a form of task-level
pipelining across invocations, leading to a diagram as depicted in the following figure. The
throughput is now improved because it is limited by the maximum latency among all tasks, rather
than by the sum of their latencies. The latency of each run is unchanged but the overall latency
for multiple runs is reduced.

Figure 7: Task Parallelism with Pipelining

Now, however, when the first run of B reads from the memory where A placed its first result, the
second run of A is possibly already writing in the same memory. To avoid overwriting the data
before it is consumed, you can rely on a form of memory expansion, namely double buffering or
PIPOs to allow for this interleaving. This is represented by the black circles between the tasks.

An efficient technique to improve throughput and reuse computational resources is to pipeline
operators, loops, and/or functions. If each task can now overlap with itself, you can achieve
simultaneously task parallelism within a run and task pipelining across runs, both of which are
examples of macro-level parallelism. Pipelining within the tasks is an example of micro-level
parallelism. The overall throughput of a run is further improved because it now depends on the
minimum throughput among the tasks, rather than their maximum latency. Finally, depending on
how the communicated data are synchronized, only after all are produced (PIPOs) or in a more
element-wise manner (FIFOs), some additional overlapping within a run can be expected. For
example, in the following figure, both B and C start earlier and are executed in a pipelined fashion
with respect to A, while D is assumed to still have to wait for the completion of B and C. This last

Section I: Getting Started with Vitis HLS
Chapter 2: Design Principles for Software Programmers

UG1399 (v2022.1) May 25, 2022  www.xilinx.com
Vitis HLS User Guide  23



FPGA Programming (per ML): HLS4ML
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M. Pierini (WS AI INFN 2022) https://agenda.infn.it/event/29907/contributions/163448/attachments/90265/121584/AI%40INFN.pdf

๏HLS4ML aims to be this automatic tool 

๏reads as input models trained on standard DeepLearning libraries 

๏comes with implementation of common ingredients (layers, activation functions, etc) 

๏Uses HLS softwares to provide a firmware implementation of a given network 

๏Could also be used to create co-processing kernels for HLT environments

HLS4ML: the idea

4ML @ L1T - Sioni Summers29/4/2022

high level synthesis for machine learning

4

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

�����������
�����

������
���������"�

#������

$

� ��������� ������
�����������

�� �����������

�����
�������

�����
���!������

��������������������

� ���������"����
������

�����


� ���	���
����"����"������"

hls  4  ml

hls4ml

HLS  4  ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.
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https://fastmachinelearning.org/hls4ml/

hls4ml: a user-friendly, open-source tool to develop and optimize FPGA firmware for 
Machine Learning inference: 
• input models trained with standard ML libraries like (Q)Keras, PyTorch, (Q)ONNX 
• Python package for conversion, configuration and optimization 
• uses HLS software: rapid design space exploration + more accessible to non-FPGA-experts 
• comes with implementation of common ingredients - layer types, activation functions 
• and novel ingredients for fast, efficient inference - low-precision NNs, network optimisations 

https://arxiv.org/abs/1804.06913

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
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Catapult
Coming Soon

Catapult
Coming Soon

• Supporto (a vari livelli di maturita’) per
• pruning
• compression
• quan.zzazione
• parallelizzazione
• Graph Nets
• “Knowledge dis.lla.on” (teacher-student model)

HLS4ML: the implementation
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hls4ml - NN implementation
• Dataflow architecture: each layer is an independent compute unit 

- With tunable parallelism and quantization 

• Fully on-chip: NN must fit within available FPGA resources (pynq-z2 floorplan shown) 

- Example: small CNN trained on MNIST
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๏Dataflow architecture: each layer is an independent compute unit 

๏With tunable parallelism and quantization  

๏Fully on-chip: NN must fit within available FPGA resources (pynq-z2 floorplan shown) 

๏Example: small CNN trained on MNIST 

Fast CNN inference on FPGAs

however, pruning negatively impacts the model performance. The accuracy is constant down to four bit precision, with
marginal accuracy loss down to three bits. Statistical uncertainty due to the choice of training set is also small: less
than 1%, for bit widths down to three. Using ternary quantization, the model accuracy drops to 87–88% and has a
higher statistical uncertainty. When quantizing down to binary precision, the model accuracy is reduced to 72% for
the unpruned model and 64% for the pruned model. The significant reduction in accuracy due to pruning for binary
networks is due to too little information being available in the network to accurately classify unseen data. A large
spread in model accuracy for the binary network across the 10 folds is observed, indicating that the model is less robust
to fluctuations in the training dataset. As demonstrated in Ref. [8], this can be mitigated by increasing the model size
(more filters and neurons per layer). The AQ models obtain a slightly lower accuracy than the baselines, but uses, as
will be demonstrated in Section 8, significantly fewer resources.

8 FPGA porting

The models described above are translated into firmware using hls4ml version 0.5.0, and then synthesized with Vivado
HLS 2020.1, targeting a Xilinx Virtex UltraScale+ VU9P (xcvu9pflgb2104-2L) FPGA with a clock frequency of
200 MHz. For the QKERAS quantized models, the sign is not accounted for when setting the bit width per layer during
QAT, so layers quantized with total bit width b in QKERAS are therefore implemented as fixed-point numbers with total
bit width b+ 1 in hls4ml. We compare the model accuracy, latency, and on-chip resource consumption. The accuracy
after translating the model into C/C++ code with hls4ml (solid line) for the different models, is shown in Figure 12
and compared to the accuracy evaluated using KERAS. No pre-synthesis results are shown for the BF and BP models,
as these are quantized during synthesis. Nearly perfect agreement in evaluated accuracy before and after synthesis is
observed for the Q and QP models and the translation into fixed-point precision is lossless.
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Figure 12: Model accuracy as a function of bit width for the Baseline Floating-point (BF), Baseline Pruned (BP),
QKeras (Q) and QKeras Pruned (QP) models. The heterogeneously quantized models AutoQ (AQ) and AutoQ Pruned
(AQP) are shown in the sidebar.

While the accuracy of the Q and QP models trained via QAT remains high down to a bit width of three, the accuracy
of the PTQ models fall off sharply with decreasing bit width and have almost no discrimination power for bit widths
smaller than 14. PTQ has a higher negative impact on the unpruned models, indicating that rounding errors are the
biggest cause for accuracy degradation (there are no rounding errors for zeroes, which comprise 50% of the pruned
model weights). The heterogeneously quantized models AQ and AQP have slightly lower accuracy than the baseline
h16, 6i model.

We then study the resource consumption and latency of the different models after logic-synthesis. The resources
available on the FPGA are digital signal processors (DSPs), lookup tables (LUTs), BRAMs, and flip-flops (FFs). In
Fig. 13, the resource consumption relative to the total available resources is shown. Here, a fully parallel implementation
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significantly fewer LUT resources than the unpruned equivalent. The point where most multiplications are moved from
DSPs to LUTs is marked by a steep drop in DSP consumption starting at a bit width of 10.

The heterogeneously quantized models, AQ and AQP, consume very little FPGA resources, comparable to that of the
Q and QP models quantized to a bit width of three. All models use very few FFs, below 4% of the total budget. The
BRAM consumption is also small and below 4% for all models. For the Q and QP models, the same amount of BRAMs
is used down to a bit width of four, and then is further reduced. For the BF and BP models, BRAM consumption falls
off steadily with bit width. Some dependence on bit width can be traced back to how operations are mapped to the
appropriate resources through internal optimizations in HLS. Depending on the length and the bit width of the FIFO
buffers used for the convolutional layer sliding window, HLS will decide whether to place the operation on BRAMs or
LUTs and migration between the two is expected. Most of the BRAMs, are spent on channels, the output of different
layers.

The latency and II for all models is shown in Figure 14. A total latency of about 5µs is observed for all models, similar
to the II. The latency is independent of bit width when running at a fixed clock period. We leave it for future studies to
explore running the board at higher clock frequencies.
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Figure 14: The model latency (left) and initiation interval (right) as a function of bit width for the Baseline Floating-point
(BF), Baseline Pruned (BP), QKeras (Q), and QKeras Pruned (QP) models. The heterogeneously quantized AutoQ
(AQ) and AutoQ Pruned (AQP) models are displayed in the right sub-plot.

A summary of the accuracy, resource consumption and latency for the Baseline Floating-point (BF) and Baseline
Pruned (BP) models quantized to a bit width of 14, the QKeras (Q) and QKeras Pruned (QP) models quantized to a
bit width of 7 and the heterogeneously quantized AutoQ (AQ) and AutoQ Pruned (AQP) models, is shown in Table 3.
Resource utilization is quoted as a fraction of the total available resources on the FPGA, and the absolute number of
resources used is quoted in parenthesis. The accuracy of the post-training quantized BF and BP models drops below
50% for bit widths narrower than 14 and can not be used for inference. The QAT models, Q and QP, quantized to a
bit width of 7 maintain a high accuracy despite using only a fraction of the available FPGA resources. The models
using the fewest resources are the AQ and AQP heterogeneously quantized models, reducing the DSP consumption by
99% while maintaining a relatively high accuracy. Finding the best trade-off between model size and accuracy in an
application-specific way can be done using AUTOQKERAS, as demonstrated in Sec. 7.

To further reduce the resource consumption, the reuse factor R can be increased. This comes at the cost of higher
latency. The model latency and resource consumption as a function of bit width and for different reuse factors for the
QP models are shown in Figure 15. The latency and II increase with R, while the DSP consumption goes down. The
LUT consumption is minimally affected by the reuse factor, consistent with the results reported in Ref. [1]. The BRAM
consumption is the same for all reuse factors, around 3%, and therefore not plotted. The corresponding study for the BF,
BP and Q models can be found in Appendix A.

15

Execution time reduced to 5 μsec to basically no 
accuracy loss down to 6 bits
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Proposal for EuroHPC JU -
The 5 pillars of activity

Pillar 1: Infrastructure
■ Exascale and post exascale supercomputers, National 

supercomputers, Industrial-grade supercomputers
■ Quantum Computers (standalone or in hybridisation)

Pillar 3 and 4: Technologies & Applications
■ R&D on new HPC technologies and architectures and their 

integration in supercomputing systems 
■ Advanced industrial, scientific and public sector applications

Pillar 5: Leadership in use and Skills
■ Wide use mainly for civilian applications + for EU strategic 

initiatives (Destination Earth, digital human, etc.)
■ HPC Skills  Education, Training

Pillar 2: Federation of supercomputing services
■ Interconnecting all supercomputers and the Union's common 

European data spaces via terabit networks [CEF]
■ Federation and secure service provisioning of supercomputing 

service and data infrastructures [DEP]

HE

CEF & DEP

DEP

HE & DEP

DEP
■ The common European Data Spaces

(rollout of common European data spaces  in crucial economic sectors and domains of public interest, 
looking at data governance and practical arrangements - for AI purposes and applications)

■ AI and Cybersecurity
■ The Quantum Technologies Flagship (Horizon-Europe)

(link to quantum computing)
■ Joint Undertaking on Key Digital Technologies 

(for edge computing, AI/neuromorphic chips, processor technologies)
■ The European Open Science Cloud (EOSC, Horizon-Europe)
■ Destination Earth initiative (Digital Europe and Horizon-Europe)

(digital twin of the Earth for climate modelling and crisis management) 

Potential synergy with other major initiatives

Infrastructure Investment Plan for 2021-2027

Aim: Provide a world-class supercomputing and data infrastructure for the EU

2019 & 2020 2021 2022 2023 2024 2025 2026 2027

HPC 
Infrastructure

3 pre-exascale 

and 5 petascale

HPC systems

Several pre-exascale systems and 

2 exascale HPC systems

One or more exascale 

and post-exascale HPC 

systems

Quantum 
Infrastructure

Quantum 

simulators 

interfacing with 

HPC systems

First generation 

of quantum 

computers 

Quantum 

simulators 

interfacing with 

HPC systems

Second generation of 

quantum computers 

More than 1.5 B€ of investments (EU budget)

22 March 2022
EU HPC Ecosystem | EHPCSW22 | Paris, France17

Technologies

+ Quantum 
Computing

Core
Technologies

Exascale HW SW
Building blocks

EuroHPC
Pilots
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KEY OBJECTIVE:
HIGH-END GPP AND ACCELERATORS FOR 
EXASCALE

Copyright © European Processor Initiative 2022.     EU HPC ecosystem workshop / E.Walter / EUHPCSW / 2022-03-22
3

SGA1: 
GPP & Accelerator test chips

SGA2: 
GPP  V1 Go to Market

Accelerator Demonstrator

Next project(s)
GPP  V2 Go to Market

Accelerator V1 Go to Market

Pre-Exascale Pilots

Exascale Systems

Centres of Excellence in HPC Applications

2019 – 2021 2022 - 2024 2025 -

• European Processor Ini/a/ve: EU (EuroHPC 
JU) funds per provare a chiudere il “gap” con 
US e Japan
• Invescmento pubblico/privato per un totale 

aspeNato a regime di circa 1-5 BEuro
• mulZ step project basato su ARM e poi RISC-V per 

CPU e acceleratori
• R&D accademico/industriale iniziale (SGA1 e SGA2 

~200MEuro) e trasferimento tecnologico (SiPearl)

• E’ sufficente questo inves/mento?
• NO per un prodoNo compeccvo in termini di 

mass produccon
• necessario per garancre una forma di presidio 

tecnologico e per permeNere lo sviluppo di 
nuove idee, architeNure, hardware e sohware, 
nuovi campi applicacvi

• Nel fraGempo...
• BSC partnership con INTEL per next gen 

processor (RISC-V)
• hgps://www.techradar.com/news/will-intel-

abandon-x86-for-risc-v-for-its-next-gen-
supercompu8ng-chips



EuroHPC JU R&D: progeMo RED-SEA (Network) (A.Biagioni, P. Vicini) 
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Project start: 01/04/2021
Project duration: 36 months
Project budget: 8 M€ (INFN 700k€) 
)

The four pillars of RED-SEA research

Architecture, co-design and 
performance

Optimizing the fit with the other EuroHPC projects and 
with the EPI processors

High-performance Ethernet Development of a high-performance, low-latency, 
seamless bridge with Ethernet

Efficient Network Resource 
management

Including congestion management and Quality-of-
Service targets while sharing the platform across 
application and users

Endpoint functions and reliability
End-to-end enhancements to network services - 
from programming models to reliability & security
and to in-network compute

END-POINT: INFN APEnetX

Integrazione della Network Interface (NI) con RISC-V e 
ARMv8 cores (EPI) , piattaforma EU di HPC Network 
(Atos BXI)e con acceleratori FPGA e GPU

• NEST (Spiking NN simulator) come 
benchmark e co-design applicaOon

• Sviluppo di network IP per 
oQmizzazione Spiking NN 
simulator

• APEnet+ network simulators a larga 
scala

• Funzioni di network rouOng assisOte 
da tecniche di ML



EuroHPC JU R&D: progeMo TextaRossa (A. Lonardo, P. Vicini)
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The TEXTAROSSA Project
▪ 6 M€ budget, co-funded project
– EuroHPC Joint Undertaking, H2020 

G.A. 956831 / MISE
▪ 36 months (April 2021 – March 

2024)
▪ The focus of the TEXTAROSSA 

project is the HW/SW co-design 
of heterogeneous processing 
nodes to boost energy 
efficiency in the execution of a 
set of relevant scientific codes, 
leveraging the best partitioning of 
the applications among the 
heterogeneous resources of the 
node to achieve the best trade-
off between Time-to-Solution 
and Energy-to-Solution.

3

11 partners from 5 countries: 
ENEA, Fraunhofer, INRIA, ATOS, E4, BSC, 
PSNC, INFN, CNR, IN QUATTRO, CINI 
(Politecnico di Milano, Università di 
Torino, Università di Pisa), 
LTP: Universitat Politecnica de Catalunya 
(UPC), Université de Bordeaux.

INFN in WP2: IPs for low-latency FPGA commun.

▪ Host Interface IP: Interface the 
FPGA logic with the host 
through the system bus.
– PCI Express Gen3 
→ Gen4

▪ Network IP: Network channels 
and Application-
dependent I/O
– APElink 32 Gbps
→ 64/100 Gbps

– UDP/IP over 10-25 GbE
→ 40/100 GbE

▪ Routing IP
– Routing of intra-node and inter-

node messages between 
processing tasks on FPGA.

23

▪ Implemented as incremental 
development on APEnet IPs over 
XILINX platforms.

▪ Deliverable D2.5
– Intermediate database at M18
– Deployed in the IDVs (WP5) at M30

INFN Contribution to WP2/WP4: APEIRON

• Goal: offer hardware and software support for 
the execution on a system of multiple 
interconnected FPGAs of applications 
developed according to a 
dataflow programming model

• Map the directed graph of tasks on the 
distributed FPGA system and offer runtime 
support for the execution.

• Allow users with no (or little) experience in 
hardware design tools to develop their 
applications on such distributed FPGA-based 
platforms
• Tasks are implemented in C++ using High 

Level Synthesis tools (Vitis).
• Simple Send/Receive C++ communication 

API.

21
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FPGA3
D,E

FPGA1
B

FPGA0
A

FPGA2
C

RAIDER Rings detection - Dense model on FPGA

Fully Connected
▪ Input: 64 hits per event
▪ Architecture: 3 fully connected layers
▪ Output: 4 classes (0, 1, 2, 3+ rings per 

event)
▪ Qkeras, quantization aware training:

– ~75% average accuracy with low 
resource usage: LUT 14%, DSP 2%, 
BRAM 0% (VCU118)

▪ Latency: 22 cycles @ 150MHz
▪ Initiation Interval (II): 8 cycles

30

Nest GPU (as NEST on GPU)

▪ As soon as the GPU-equipped is available, the simulation is ready to 
be benchmarked comparable with the same experiment on CPU-only 
engine (NEST).

▪ The specific KPI are:
– Time-to-solution: Simulated-milliseconds-per-second
– energy-to-solution: Synaptic UPdates per second (SUPs) per Watt

31

▪ The engine driving the neural simulations is 
the Nest GPU code which is C++ with CUDA 
extensions and is production-ready

▪ The Python script detailing the experimental 
protocol is ready – a 1000ms simulation of 
dynamics of one hemisphere of cortex of 
mouse brain with a realistic connectome 
inferred from data obtained with optical 
imaging methods on anesthetized mice – and 
will be run by the Nest GPU engine on the 
reference platform. 

▪ For simulation, reconstruction (i.e. the transformation of 
detector signals to physics objects), data analysis

▪ Initial focus will be on the reconstruction software of the CMS 
experiment
▪ Efforts are on-going to investigate parallelism and heterogeneous 

computing (CPU, GPU, possibly FPGA), based on TBB, CUDA, 
SYCL/OneAPI, Cupla/Alpaka, Vitis HLS, ...

▪ Some solutions are already in production, but investigation 
continues

▪ We have identified two software components, for particle 
tracking and calorimeter clustering

▪ Two directions of work
▪ Use of GPUs and FPGAs via SYCL
▪ Remote offloading of computation to specialized nodes

▪ Activity just started, due to delays in recruiting

High Energy Physics high-level software tools

32

Tensor Network Methods

33

Tensor network are state of the art 
methods for the simulation of many-body 
quantum systems, to understand 
complex quantum phenomena and to 
benchmark, verify and guide the 
developments of emerging quantum 
technologies (computers, simulations, 
sensors and communication).

Interpolation between mean field theory and 
exact description, faithful compression of the 
exponentially large many-body wave function.

ObieQvi principali
• Energy Efficiency
• Sustained Performance delle 

applicazioni
• Integrazione di acceleratori 

riconfigurabili (FPGA)
• Sviluppo di IP

• comunicazione, mixed 
precision AI, security, 
power monitoring,...

• Rilascio di nuove piaZaforme 
(IDV)



Calcolo eterogeneo e HEP/GW/Simulazioni SNN

• GPU necessarie per la tipologia di carico computazionale aspettato per il prossimo futuro
• SIMD (parallele), power effective, cost effective, ad alta densita’...
• Qualsiasi sistema HPC prevede acceleratori GPU-based

• Esistono varie applicazioni ad alte prestazioni in HEP che ne motivano l’uso ma la 
valutazione di integrazione nei sistemi di DAQ, EB e analisi e’ partita con un certo ritardo
• Event selection ma anche simulazione, ricostruzione etc

• In generale imparare ad usarle efficacemente e’ un’opportunita’ per agganciarsi al treno
del mainstream tecnologico dell’HPC e parassitizzare le risorse HPC dei data center

• Esempi di use cases (una lista parziale) :
• LHCB-HLT1
• CMS (Patatrak)
• ALICE O2
• NA62 (GPU-Rich)
• GPU in GWA
• GPU nel simulatore di HBP(Spiking Neural Network)

• FPGA usate principalmente per on-line low level trigger e DAQ
• Nuove applicazioni tipicamente legate al ML

14/06/22 Piero Vicini - Retreat 2022 17



GPU in HEP Use case: LHCB-HLT1
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Figure 1: CPU-only architecture of the Run 3 DAQ, including the Event Builder, the Event
Filter Farm and dedicated storage servers for the disk bu↵er. The network between the storage
servers and HLT1 servers (leftmost green line) is bidirectional, allowing the HLT1 servers to be
used for HLT2 processing when there are no LHC collisions happening. The label “200G IB”
refers to the Infiniband link between the detector and EB servers, while “100GbE” and “10GbE”
refer to Ethernet links of 100 Gb/s and 10 Gb/s, respectively.

servers. This allows HLT1 to reduce the data rate at the output of the EB by a factor of
30-60. This reduction in turn allows communication between the EB and EFF using a
lower bandwidth (and consequently cheaper) network and removes the need to buy and
install dedicated NICs in the EB and HLT1 EFF servers as they are already equipped
with on-board 10Gb interfaces. For the same reason a much smaller switch is required to
handle the data tra�c between HLT1 and the disk servers. HLT2 then runs similarly to
the CPU-only solution on the EFF.

1.2 Real Time Analysis

In Run 2, LHCb successfully adopted a real-time analysis model, which is documented
in detail in references [12,13]. The most important aspects relevant for the comparison
presented in this document are summarized here:

• To make optimal use of limited o✏ine resources, around three quarters of LHCb’s

4

Figure 2: Run 3 DAQ architecture in the case of the hybrid solution, with GPUs placed in the
EB servers to reduce the data rate. Labels are the same as in Figure 1.

physics programme is written to the TURBO stream [14], a reduced format, which
on one hand allows flexible event information to be added in a selective manner
and on the other hand can discard a user-specified fraction of both the raw and
reconstructed detector data.

• Consequently, HLT2 must be able to run the complete o✏ine-quality reconstruction.
Therefore HLT2 must use the highest quality alignment and calibration at all times.
A substantial disk bu↵er must therefore be purchased to allow events selected by
HLT1 to be temporarily saved while the full detector is aligned and calibrated in
real-time. This bu↵er must be big enough not only to cover the steady-state data
taking conditions but also to permit recovery from unforeseen operational issues in
a reasonable timescale without loss of data.

2 Assumptions and boundary conditions

Having described the overall design of LHCb’s Run 3 DAQ and HLT, as well as the
processing technologies under consideration, we will now describe the boundary conditions

5

CPU-only Hybrid (real-Ome analysis)

• ”lower” perfomance networks (EBàHLT1)
• no server dedicaO per HLT1 (HLT1 su GPU)
• Stessa physics efficency (forse meglio) à decisione su adozione puo’ basarsi SOLO su valutazioni di costo/densita’

Aaij, R., et al. A Comparison of CPU and GPU Implementa9ons for the LHCb Experiment Run 3 Trigger. Comput SoEw Big Sci 6, 1 (2022) 
hNps://cds.cern.ch/record/2766501/files/2105.04031.pdf

Item CPU-only hybrid Di↵erence

Event Builder nodes 1000 1000 0
HLT1 network 275 25 250
HLT1 compute 450 125 325
Storage for 1 MHz output 575 575 0
Sub-total 2300 1725 575
Storage add. cost 2 MHz output 575 575 0
Total 2875 2300 575

Table 4: Indicative overall cost of the HLT1 implementations including contingency in units of
the reference “Quanta” CPU server node used for the HLT during Run 2 datataking. Numbers
have been rounded to reflect inevitable order(10%) fluctuations in real-world costs depending on
the context of any given purchase.

6.2 Disk bu↵er simulation

Based on the boundary conditions outlined in Section 2, studies of the expected maximum
HLT1 output rate that can be processed within the budget envelope have been performed.
The studies are performed as follows:

1. Fill lengths and inter-fill gaps are randomly sampled from 2018 data, with three
machine development and technical stop periods and an average machine e�ciency
of 50%;

2. The fills and gaps are grouped into pairs before sampling to capture potential
correlations between them;

3. A thousand such toys are randomly generated, and are shown to have a residual
distribution compatible with that of the 2018 machine e�ciency and a width of
±1.7%;

4. The disk bu↵er required to ensure su�cient space for 95% of these 1000 toys is then
determined using as input an event size of 100 kB, a chosen HLT1 output rate, and
a chosen HLT2 throughput in and out of fill;

5. These values are scanned, generating 1000 toys per datapoint, over a range of HLT1
output rates and HLT2 throughput rates resulting in a 3 dimensional distribution
of required disk bu↵er as a function of HLT1 and HLT2 rates.

For each datapoint in the distribution, the cost of the HLT2 throughput and cost of the
disk bu↵er are determined. For combined costs greater than that of the overall budget in
the CPU-only and hybrid scenarios, the datapoint is rejected. This leaves a distribution of
valid points for which LHCb could purchase the necessary resources. The optimal working
point is the one which maximises the HLT1 output rate. The inputs to this procedure are
summarized in Tab. 6 and described in more detail in the following sections.

The simulation studies assume that in both the CPU-only and hybrid scenarios,
any remaining budget after attaining a 30 MHz throughput at HLT1 and a su�cient
bu↵er is used to buy CPU to provide additional HLT2 throughput. This corresponds to
an increased HLT1 output rate allowing more, or more e�cient selections at HLT1.

20
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GPU in HEP Use case: CMS Patatrack
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November 30th, 2020 A. Bocci  -  Towards a heterogeneous computing farm for the CMS High Level Trigger 8 / 30

High Luminosity LHC 

CMS Phase 2 upgrades
● high granularity endcap calorimeter

● new silicon tracker and muon detectors

● tracking and particle Bow at Level 1 
trigger

● improved electronics for barrel 
calorimeter

Run 4 (vs 2018)

● 2.5x LHC luminosity and pileup

●    5x CMS Level 1 Trigger rate

Run 5+ (vs 2018)

●  ~4x LHC luminosity and pileup

● 7.5x CMS Level 1 Trigger rate

November 30th, 2020 A. Bocci  -  Towards a heterogeneous computing farm for the CMS High Level Trigger 16 / 30

the Patatrack pixel reconstruction

 the overall approach
 reconstruct pixel-based tracks and vertices on the GPU

 leverage existing support for threads and on-demand reconstruction

 minimise data transfer

 the full workBow
 copy the raw data to the GPU

 run multiple kernels to perform the various steps
 decode the raw data

 cluster the pixel hits

 form hit doublets

 form hit ntuplets (triplets or quadruplets) with a Cellular Automaton algorithm

 clean up duplicates

 take advantage of the GPU computing power to improve the physics
 5t the track parameters (Riemann 5t, broken line 5t) and apply quality cuts

 reconstruct vertices

 copy only the 5nal results back to the host (optimised SoA format)
 convert to legacy format if requested

raw data raw data

digis

clusters

doublets

ntuplets

pixel tracks

pixel vertices

pixel tracks
(SoA)

pixel tracks
(legacy)

pixel vertices
(legacy)

pixel vertices
(SoA)

GPUCPU

A. Bocci 2020- h,ps://indico.hep.caltech.edu/event/883/a,achments/648/824/A._Bocci_-_Towards_a_heterogeneous_compuCng_farm_for_the_CMS_High_Level_Trigger.pdf



GPU in HEP Use case: ALICE O2
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D.Rohr @ CHEP2021 hNps://indico.cern.ch/event/948465/contribu9ons/4324179/aNachments/2245852/3808987/2021-05-18%20CHEP2021.pdf

18.5.2021 David Rohr, drohr@cern.ch

Run 3 data processing in a nutshell

• Synchronous processing while there is beam in the 
LHC and raw data is recorded.

• 99% of compute time spent for TPC.
• No trigger

– All data is compressed and stored on a disk buffer.
• Asynchronous reprocessing when the EPN farm is 

not fully used for synchronous processing (No beam, 
pp data taking, ...).

• More detectors with significant computing contribution.

• Following up 2 scenarios:

Data links from detectors

Disk buffer

EP
N

 C
om

pu
tin

g 
fa

rm

Synchronous processing
- Event / timeframe building
- Calibration / Compression

Asynchronous processing
- Reprocessing, full calibration
- Full reconstruction

Permanent storage

Compressed 
Raw DataReconstructed Data

D
ur

in
g

da
ta

-ta
ki

ng
D

ur
in

g
no

 b
ea

m

3.5 TB/s

< 100 GB/s

Readout nodes
600 GB/sFL

P

Baseline solution (available today):
- Mandatory for synchronous processing
- Most of sync. reco on GPU

Optimistic solution:
- Achieve best GPU usage in async phase
- Run most of tracking + X on GPU

3
18.5.2021 David Rohr, drohr@cern.ch

GPU Performance (standalone benchmark)

GPU Model Performance GPU Model Performance

NVIDIA RTX 2080 Ti 100.0% NVIDIA V100s 122.7%

NVIDIA Quadro RTX 6000 (active) 105.8% NVIDIA RTX 3090 187.3%

NVIDIA Quadro RTX 6000 (passive) 96.1% NVIDIA T4 59.3%

NVIDIA RTX 2080 83.5% AMD MI50 67.8%

NVIDIA GTX 1080 60.1% AMD Radeon 7 71,2%

• MI50 GPU replaces ~80 Rome cores in 
synchronous reconstruction.

• Includes TPC clusterization, which is not 
optimized for the CPU!

• ~55 CPU cores in asynchronous reconstruction
(more realistic comparison).

7

50 kHz Pb-Pb
time frame

Need
~1500
MI50

GPUs.

18.5.2021 David Rohr, drohr@cern.ch

• ALICE will record 50 kHz Pb-Pb minimum bias collision data in Run 3 without trigger.
• Continuous TPC readout, time frames of 10 – 20 ms instead of events.

• Full online data processing on GPUs.
• Computing farm consists of 250 servers, with 8 AMD MI50 GPUs, 2 32-core Rome CPUs, and 512 GB RAM each.
• Currently 230 servers are sufficient for processing 50 kHz Pb-Pb (peak load).
• MI50 GPU replaces ~55 CPU cores.

• All GPU software written in generic way, can run on different GPUs and on the CPU.

• Processing farm used for synchronous (online) and asynchronous (periods without beam) processing.
• Full baseline scenario with synchronous GPU processing ready.
• Planning to use GPUs as much as possible also in asynchronous processing.

– In the optimistic scenario, we will be able to offload ~95% of the workload to the GPU.

Summary

9



GPU in HEP Use case: NA62 GPU-RICH
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h<ps://apegate.roma1.infn.it/?page_id=821

NaNet: Design and implementation of a family of FPGA-
based PCIe Network Interface Cards :
q Bridging the front-end electronics and the software trigger 

computing nodes.
q Supporting multiple link technologies and network protocols.
q Enabling a low and stable communication latency.
q Having a high bandwidth.
q Processing data streams from detectors on the fly (data 

compression/decompression and re-formatting, coalescing of 
event fragments, …). 

q Optimizing data transfers with GPU accelerators.

FP7-ICT EURETILE
APEnet+ (2012)

CPU+GPU

UDP packets

GPU-RICH overviewNaNet-1 NaNet3 NaNet-10 NaNet-40

Year Q3 - 2013 Q1 - 2015 Q2 - 2016 Q3 - 2019

Device Family Altera 
Stratix IV

Altera
Stratix V

Altera
Stratix V

Altera
Stratix V

Channel Technology 1 GbE KM3link 10 GbE 40 GbE

Transmission Protocol UDP TDM UDP UDP

Number of Channel 1 4 4* 2

PCIe Gen2 x8 Gen2 x8 Gen3 x8** Gen3 x8

SoC NO NO NO NO

High Level Synthesis NO NO NO YES

nVIDIA GPUDirect
RDMA YES YES YES YES

Real-time
Processing Decomp. Decomp.

Decomp.
Merger

?

GPU-RICH generated primi4ves (late Oct 2018)

GPU 1 rings
Reco 2 rings

NaNet architecture

GPU 1 ring == Reco 1 ring



GPU in GW Use case: Con8nuous gravita8onal Waves (CWs)
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La Rosa, I.; Astone, et al “ConNnuous GravitaNonal-Wave Data Analysis with General Purpose CompuNng on Graphic Processing 
Units.” Universe 2021, 7, 218. h<ps://doi.org/10.3390/universe7070218pdf

• Implementazione su GPU di FrequencyHough transform
• Utilizzo di TensorFlow (non la parte dedicata all’AI) come framework di programmazione efficente per 

calcolo scientifico su GPU
• Un fattore 10 di speed-up rispetto ad una CPU multi-core di taglia comparabile



GPU in Human Brain Project Use case: NEST-GPU
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• EBRAIN: EU infrastructure per la comunita’ 
di neuroscienziati (HBP)
• NEST e’ “IL” simulator per spiking networks 

in HBP
• si focalizza sulla dinamica e sulla struttura di un 

sistema neurale (quasi) biologico senza 
descriverne l’esatta morfologia del neurone

• Configurabile per differenti modelli e scale 
della rete. Sviluppato in origine per CPU, poi 
CPU cluster.

• Simulazione di modelli ma in principio anche
NN engine per robotica

• Neuron-GPU (ora NEST-GPU) e’ una libreria 
GPU-MPI per simulazioni a larga scala di 
spiking networks
• circa 2 ordini di grandezza meglio a parita’ di 

network size per simulazioni real-time

Golosio,B et al Front. Comput. Neurosci., 17 February 2021 
| hPps://doi.org/10.3389/fncom.2021.627620

https://doi.org/10.3389/fncom.2021.627620


MACHINE LEARNING IN ONE SLIDE (credit S.Giagu)

• rough definiOon: a set of computaOonal methods able to learn how to solve specific problems based on the 
experience, e.g. based on a set of examples of the problem and, possibly, a set of inducOve priors 
(invariances of the problem, etc.) 

• can produce abstract and powerful representaOon of the input data (deep representaOon learning)

• highly flexible in learning the set of rules that map these representaOons to the target of the task (𝐲̂ = 𝑓
̂
𝐰(𝐱)(

• underlying mathemaOcal formulaOon closely Oed to staOsOcs, calculus of variaOons, approximaOon theory, 
and opOmal control theory 

• deep learning: based on differenOable neural networks 
trained through gradient-based opOmisaOon

• pervasive in AI applicaOons in the last decade, thanks 
to the availability of large data sets, advances in 
compuOng (GPUs), and ANN techniques …
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DEEP NEURAL NETWORK FOR REAL-TIME TRIGGERS IN HEP (credit S.Giagu)
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𝜇Goal: using FPGA to accurately reconstruct the momentum and angle of the muon 
track from the ATLAS RPC detector hit informaZon in less than 400ns (x1000 faster 
than fastest AI models on CPUs and GPUs)
Strategy: mulZ-stage AI model compression and simplificaZon based on aggressive 
quan8sa8on and knowledge transfer techniques to avoid degradaZon of physics 
performances

transfer knowledge learned by a larger neural network pre-
trained for the same task to a smaller and quantised (4-bits 

per activations and weights) model

Teacher
Student w/o teacher
Student w/ teacher

Inference time  
Xilinx Ultrascale+ XCV13P

- Teacher: 5 ms (V100 GPU)
- Student: 84 ns (FPGA)

S. Francescato, S.Giagu, F. Riti, G.Russo, L.Sabetta, F.Tortonesi, Eur. Phys. J. C (2021) 81:969 



ML-RELATED HEP ACTIVITIES IN ROME (credit S. Giagu)
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• several experimental ac<vi<es for offline (reconstruc<on/simula<on, analysis) and online (hw and sw triggers, detector readout, 
monitoring, …) 
• ATLAS: 
• ultra-fast CNN for the L0 RPC muon trigger at HL-LHC

• fast DNN on GPU/FPGA accelerators for the muon High Level Trigger of HL-LHC
• DNN for forward muon tracking with the NSW detector
• Graph Neural Networks and geometrical deep learning for tau iden<fica<on, par<cle flow, …
• Applica<ons of DNN for long lived par<cle iden<fica<on, cosmic and non collisional backgrounds, flavor tagging, analysis 

op<miza<on, ...
• CMS: applicazioni AI in ambito analisi da7
• FCCee/CepC: Dynamic Graph Neural Network for tau and jet iden7fica7on and par7cle flow with the IDEA dual readout 

calorimeter (S.Giagu, L.Torresi, M.Di Filippo)
• MEG-2: Drik chamber tracking with Graph Neural Networks 
• NA62: Par<al Par<cle ID with the NA62 RICH (use-case for the APEIRON project)   

• ac<vi<es more focused on interpreta<on/sta<s<c/theory aspects:
• The DNNLikelihood: enhancing likelihood distribu<on with Deep Learning (L. Silvestrini et al)

• ac<vi<es related to Quantum Compu<ng applica<ons in HEP:

• CERN-INFN-IBM QC_NPHEPGW: Quantum Machine Learning for Event Classifica<on and Simula<on in Nuclear Physics, High-
Energy Physics and Gravita<onal Wave experiments (P.Astone, C.Palomba, S.Giagu, S.Bordoni)



Inizia9va ML-INFN
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• Disseminazione del ML in 
ambito INFN

• InfrastruTura on cloud

• Hackaton, tutorial, raccolta 
e conservazione 
documentazione

• Roma is in...

May 2022 AI@INFN - Artificial Intelligence at INFN

The ML_INFN initiative

Lucio Anderlini     Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

Machine Learning Technologies for INFN

Most of the experiments and initiatives produce, analyse or 

process digital data.

2

LHC experiment data & simulation

Research on innovative imaging technologies

Raw radiation detector data
Gravitational wave detection

Theoretical computations on the lattice

Enthusiasm on the modern data processing technologies!

May 2022 AI@INFN - Artificial Intelligence at INFN

The ML_INFN initiative

Lucio Anderlini     Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

The potential barriers

Employing machine learning techniques often requires:

● specialized hardware and software setup

● specific training to identify tools and learning resources

● a community of experts providing support to research use cases

4

Lowering with ML_INFN

WP1: provide a centrally maintained cloud-based  infrastructure for interactive and batch ML fast prototyping, with access to modern GPU hardware and systems tuned for ML performance

WP2: organize national training events for INFN users

WP3: provide and organize example applications in a knowledge base 

 (Machine Learning hackathons)

May 2022 AI@INFN - Artificial Intelligence at INFN

The ML_INFN initiative

Lucio Anderlini     Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

Federated baremetal resources 

1⨉ SuperMicro + 1⨉ E4 servers:

● 1 TB RAM

● 64-128 CPU cores

● 36 TB local storage (NVMe)

● 8⨉ Tesla T4 GPUs

● 5⨉ RTX 5000  GPUs

● 1⨉ A30 GPU

● 10 GbE connection to CNAF resources

Federated to CNAF OpenStack and INFN Cloud

8

Storage from CERN experiments 
can be mounted with NFS from the 
Tier-1 storage

Hypervisors integrated to Ceph to 
manage persistent virtual volumes 
accessed from the VM with POSIX

Storage solutions

L. Anderlini (WS AI INFN 2022) 
hPps://agenda.infn.it/event/29907/contribuOons/163440/aPachments/90261/121581/ML_INFN%20iniOaOve%20-
%20AI%20Workshop%20Bologna%20%281%29.pdf

May 2022 AI@INFN - Artificial Intelligence at INFN

The ML_INFN initiative

Lucio Anderlini     Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

Hackathon use cases: 10 groups, one tutor per group

12

Jet b-tagging at CMS

Recurrent Neural 
Networks with LSTM

Higgs searches at CMS

Deep Neural Networks 
and Advanced Keras

Gravitational Waves 
with Virgo

Autoencoders, anomaly 
detection and compression

Segmentation of CT scans 

Convolutional Neural Networks
Handling 2D and 3D datasets



Spiking Neural Network on FPGA: IBM INC-300
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• haps://www.fronSersin.org/arScles/10.3389/fnins.2021.728460/full#B4

IBM Neural Supercomputer (Narayanan et al., 2020) (INC300)
• basato su FPGA Xilinx SoC (Zynq)
• struPura 3D di interconnessione tra i vari moduli con 

parOzione di circa 30 moduli per board e 20 moduli per rack
• Nets use case: 305 CN ognuno con circa 256 neuroni con 

4k syn per neurone
• Performance: 3700 cicli @150 MHz per 100uS di update fisico

à 4,5x real Ome biologico

https://www.frontiersin.org/articles/10.3389/fnins.2021.728460/full
https://www.frontiersin.org/articles/10.3389/fnins.2021.728460/full


ML Spiking Neural Network-based su FPGA (credit M. Mar>nelli – C. De Luca)
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FPGA

neuroni
connessioni all-to-all

Modello: rete ricorrente spiking allenata per riprodurre paZern spazio-temporali complessi [1]

Ipotesi di architeZura:
• diversi neuroni connessi all-to-all divisi in "bloccheQ" (testaa fino a 70 neuroni)
• Codice sviluppato in HLS su singola FPGA (Xilinx Alveo U200)
• Connessione HOST-DEVICE basata su BUS PCI (Core PCI Xilinx XDMA)

Ipotesi di scalabilità (next steps):
• diversi "bloccheQ" istanziaa su singola FPGA
• diverse FPGA connesse insieme
• sviluppo dell'infrastruZura di collegamento intra-FPGA e inter-FPGA (e.g. astrazione con 

dispatcher aggregator per semplificare la scalabilità)

[1] Muratore et al 2022, h2ps://doi.org/10.1371/journal.pone.0247014

https://doi.org/10.1371/journal.pone.0247014


Quantum Compu9ng for dummies....
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• Quantum computer (QC): una macchina che esegue calcoli sfruttando le leggi della meccanica quantistica (Principio di 
sovrapposizione e entanglement quantistico)

• Sulle spalle dei giganti…
• Feynman (1982) prima proposta di un calcolatore basato sulla meccanica quantistica
• Deutsch (1985) universalita’ dei circuiti quantistici (Quantum Turing Machine)
• Primi algoritmi quantistici per risoluzione di problemi  Shor (1994) fattorizzazione di grandi numeri in tempo polinomiale e Grover 

(1997): quantum search    
• Qbit (elemento minimo di informazione) rappresentabile con la sovrapposizione di due stati |0> and |1>. 

à |y> = a1|0> + a2|1> dove |a1 |2 +  | a2 |2  = 1
• Un possibile stato di un registro a 3 qbit

à |y> = 1/√8 |000> + … + 1/√8 |111> ed in generale un registro a N qubit codifica 2N stati “simultanemente”. 
Applicando la misura la sovrapposizione di stati collassa in uno degli stati classici in funzione dei valori delle ampiezza di probabilita’.

4/20/22
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Conventional Computer:
• 1 Bit: 0 or 1

Quantum Computer:
• 1 Qubit: 0 and 1 simultaneously

• Example: Schrödinger‘s Cat

1

5
Università degli Studi della Campagnia Luigi Vanvitelli

Superposition
How does a Quantum Computer work

https://de.wikipedia.org/wiki/Deutsche_Euromünzen

European Commission / Economic and Financial AffairsAffairs –

http://ec.europa.eu/economy_finance/images/pimage8369.htm,

PD-Amtliches Werk, https://de.wikipedia.org/w/index.php?curid=7987242 https://media.giphy.com/media/LGyeWkr2m3v7a/giphy.mp4

15

16

Applications of Quantum Computers
How to use a Quantum Computer

Università degli Studi della Campagnia Luigi Vanvitelli
https://www.amazon.de/dp/B075392B4T/ref=pe_3044161_189395811_TE_SCE_dp_1

Conventional Computer:

0000
0001
0002
0003
0004
0005
…

Max. 10.000 Steps

SuperMUC-NG:
26.900.000.000.000.000 Flop/s

Quantum Computer:

14 Qubits
214 = 16385 States

è 1 Step

Speedup: 10.000

16labs

Quantum Computing: Key Concepts

Superposition
Classical Physics Quantum Physics

Heads OR Tails Heads AND Tails

Entanglement

N Quantum Bits or Qubits =  2N States

1)

2)

3)

4)



Quantum Compu9ng for dummies....
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• QC Analogici: controllo colle0vo dei 
qbits
• HW: quantum simulator e quantum 

annealer (D-Wave)
• SW: evoluzione in tempo naturale del 

sistema quan:s:co preparato in uno 
stato noto

• QC digitali: controllo individuale del 
singolo qbit
• HW: sistema basato su gates 

quan:s:ci (IBM-Q, Google, AQT, ...)
• SW: sequenze di 1-qbit o 2-qbit gates 

ordinate a formare circui: quan:s:ci 



Quantum Compu9ng for dummies....
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• Quantum gates: simili ai gates classici ma devono 
essere reversibili 
• lo stato di input deve poter essere derivato dallo stato di 

output
• Hadamard gate per costruire la sovrapposizione di 

sta/ 

• Controlled NOT (C-Not): come lo Xor ma con bit 
ancillare per reversibilita’

• Controlled-controlled NOT (C–C-Not): operatore a 
tre qbits universale
• Se i due controls sono 1 à A’ = NOT(A)
• Se A = 1 à A’ = not(B*C) NAND

H
State                 
|0>

State   
|0> + |1>

H
State   
|1>



Tecnologia del Qbit
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• E’ difficile fare un’overview esaus.va, molte tecnologie a differente grado di 
maturita’ caraEeris.che d’integrazione scalabilita’ etc..
• Qubits stato solido supercondu@vi (con giunzioni Josephson)
• Trapped ION (transizioni atomiche controllate da campi eleMromagneNci)
• Atomi neutri in opNcal la@ce
• Quantum dots
• Nitrogen-Vacancy (N-V) in diamante
• Qubit topologici
• Fotoni

Quantum Information Processing (QIP)  45 
 

THE INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS: 2021 
COPYRIGHT © 2021 IEEE. ALL RIGHTS RESERVED. 

Table CEQIP-22 Gate-Based Quantum Computing Status Summary 

Qubit type Quantum 
volume [627] 

Qubit 
count 

Qubit 
connectivity 

2-qubit gate 
depth 

Quantum 
teleportation 

Qubit 
function 

System 
scalability 

Superconducting 64 53 3.25 667 yes fair fair 
Trapped ion 512 11 10 > 100 000 yes fair fair 
Quantum dot – 4 1 104 – poor–fair fair–good 
Photonic – 4   yes poor fair 

2-qubit gate depth: ratio of coherence time divided by 2-qubit gate time (T2*/t2q) 

 

4.3.3.1. SUPERCONDUCTING QUBITS AND DEVICES 
Superconducting qubits are artificial atoms of macroscopic size made from thin-film inductors, capacitors and Josephson 
junctions. There are many ways to implement, control, couple, and read out superconducting qubits [614, 628, 629]. Common 
materials used to build superconducting qubits are niobium, aluminum and aluminum oxide [630]. Controlling devices with 
voltages rather than currents has advantages in some cases and has motivated development of a voltage-tunable transmon qubit 
with graphene-based Josephson junctions, although the coherence time needs improvement [631]. Other voltage-controlled 
devices include the gatemon qubit [632] and a superconducting quantum bus [633]. For current status of superconducting qubits, 
see [634]. 

One- and two-qubits gates can be implemented in various ways. A common method applies microwave pulses tuned to specific 
frequencies for driving the needed actions [628, 635]. A general issue in the required control and readout processes are the 
decoherence effects on the qubit. Qubit decoherence is caused by interactions between the qubit and its surrounding environment 
[636, 637, 638]. To mitigate errors caused by various decoherence sources, including fluctuations of magnetic and electric fields, 
various low-level strategies such as optimum working points are applied, with the goal of reaching the error correction threshold. 

Error corrected superconducting qubit devices will allow systems with higher complexity, which is required for future quantum 
information processing architectures [536, 639, 640, 641, 642, 643, 644, 645]. 

System achievements include demonstration of quantum volume 64 [646]. 

Superconducting Devices: Superconducting quantum computing systems are built from modules containing qubits and other 
superconducting components or devices. In the circuit quantum electrodynamics (cQED) architecture pioneered in 2004 [647], 
the qubits, which are inherently nonlinear devices, are coupled to linear resonant structures, which can be used for coupling 
between qubits, as well as the measurement of qubits for transferring readout results to the outside classical world [648]. 
Commonly these linear resonators are formed from thin-film coplanar waveguide (CPW) resonators, which are straightforward 
to fabricate with quite low microwave losses [649], although to obtain the proper resonance frequencies for integrating with 
qubits, these CPW resonators must be rather long, typically several mm, posing a challenge for reducing device areas. Inserting 
a Josephson junction in such a CPW resonator allows one to tune or modulate its resonance frequency [650]. Alternatively, 
lumped-element linear resonators offer the ability to form significantly more compact structures for coupling and measuring 
qubits. However, fabricating lumped-element resonators with sufficiently low microwave loss can be challenging [651]. Fully 
superconducting indium-bump interconnects have been demonstrated that allow for the three-dimensional integration of quantum 
circuits without introducing lossy amorphous dielectrics [652]. Superconducting through-silicon vias (TSVs) enable higher levels 
of chip stacking and have been demonstrated using TiN [653].  

Measuring the state of a quantum system in general requires more care than detecting a classical bit due to subtleties of the 
fundamental quantum measurement process. For superconducting qubits in a cQED environment, measurement is typically done 
with extremely weak microwave signals that must then be amplified by another class of superconducting devices that work very 
close to the quantum limit [654]. This includes Josephson parametric converters [655], Josephson parametric amplifiers [656, 
657] and traveling wave amplifiers [658]. This amplifier-based measurement approach requires strong microwave pump tones 
for driving the parametric nonlinearity of the amplifier. In order to prevent these pump tones or other noise processes in the 
amplifier from perturbing the qubit, it is necessary to include significant amounts of non-reciprocal elements, such as microwave 
isolators or circulators, between the amplifiers and qubits and resonator circuits. Conventional cryogenic microwave isolators 
and circulators are bulky, magnetic, and difficult to thermalize at millikelvin temperatures, posing a challenge for scaling to large 
systems. Alternative approaches to forming non-reciprocal elements are currently being developed using superconducting 
circuitry and parametric active devices [659]. 

QC hardware technologies

Difficult to give an exhaustive overview over all technologies, therefore main points: 

● Multiple technologies in use
○ Might see in short and medium term some technologies best suited for specific applications

● TRL levels vary widely
○ superconducting loops, trapped ions and Rydberg / cold atoms seem to be dominant at the moment

● Difficult to make prediction about scalability
○ all current systeme are relatively small, most are not fault-tolerant yet

● The following points need to be resolved: 
○ Improve the qubit
○ Better error correction
○ Scalability 
○ Ease of use

6
Non-exhaustive technology examples from: Popkins, 2016, Science, DOI: 10.1126/science.354.6316.1090

Figure 32: DiVincenzo Criteria

This evaluation is somewhat subjective, but it serves to place these technologies on a common
footing to compare progress concerning one another. It indicates where each technology excels
and where improvements are needed.

The DiVincenzo criteria, which is, what is the minimum requirement for a particle or a system
to be used as a qubit? And among all of the elementary particles in the standard model, which
ones can or cannot be used and why? So, we believe, the DiVincenzo criteria specify what is
the minimum again, minimum requirement for a technology or modality to be considered for
quantum computing in a scalable sense. so there are many engineering problems beyond that
to actually truly scale to a large size. But the DiVincenzo criteria look, whatever technology
we have, it has to at least meet these requirements. so, for example, it has to be a uniquely
identifiable and addressable two-level system. we need to have a universal set of gates typically,
a handful of single and two-qubit gates. so, these were the DiVincenzo criteria. It has to have
a long coherence time, for example. so, any technology that we might imagine, we wonder if
this would be a good candidate to be used in quantum computing, would start with those five
criteria. Now, if we look at the elementary particles in the standard model. we think that we
can take out some examples of ones that would be good examples and one that would be a bad
example. So, first, a good example is the one that is currently being used, which is the electron
and its spin. So, the electron is a spin-1/2. whether this is an electron that arises from doping a
semiconductor, with phosphorus the phosphorus dopant has one extra electron and that electron
is then used as the quantum bit of information or whether that electron is, say starts out in
a two-dimensional electron gas and, through electrostatic gating, we either deplete most of the
electrons away and leave just one that is a depletion mode semiconductor quantum dot, or There
is another version, which is an accumulation mode, and we start with no electrons and then we
apply a positive voltage to a gate so, that we pull up one and only one electron however we
gather that electron or isolate that electron, it is a spin-1/2. It is been shown that these spin-1/2
electrons are controllable. We can address it with either electric or magnetic fields. So, the spin
is magnetic. But through spin-orbit coupling, for example, one can use an electric field to drive
a rotation of the spin. There are single-qubit gates. contemporary research now demonstrating
two-qubit gates with, doped silicon [151]. so, we think that the electron is a good example of an
elementary particle that would make a good qubit. Some other examples electron and helium
surface. People have done experiments where they try to isolate single electrons on the surface
with the helium. It is less mature. But that would be another example. So, what is an example
of a particle which may not be such a great qubit? And we can think of one off the top of my
head, which is a neutrino. So, a neutrino we might think, They do not interact with anything.
so, their coherence time is presumably infinite. true enough. But it is not enough to have a long

65

Figure 30: DiVincenzo Criteria

These criteria, known as the DiVincenzo Criteria, are, in many ways, adapted from the con-
ditions for classical operational computers and summarize the fundamental requirements qubit
technologies need to fulfill at a minimum to be a candidate quantum computing technology.

19 Qubit Coherence and Gate Time
In this section, we will discuss two types of errors that can occur in qubits energy relaxation and
decoherence and their corresponding characteristic lifetimes T1 and T2. We will also consider the
clock speed at which qubit operations can be performed [118].

The average number of operations that can be performed within a qubit lifetime is a proxy
for a more rigorous metric called gate fidelity. Implementing more operations before an error
occurs is good. As we will see in this section, longer coherence times do not necessarily translate
to more operations per gate time, as the gate operations themselves are generally slower in long-
lived qubit modalities. However, just as with classical computers, there is a distinct advantage
to faster clock speed, as that means we obtain results faster.

The DiVincenzo criteria articulated the requirements that a qubit technology must have to
be a viable candidate for the physical implementation of a quantum computer. In this section,
we will build on two of those criteria, related to qubit robustness and quantum gates, to define
metrics that will allow us to compare qubit modalities with one another. To do this, let us first
look, in more detail, at the qubit coherence time, the analog of the meantime to failure for a
transistor. Quantum computers, like classical computers, must be built from robust elements.
The coherence time is one metric that quantifies the robustness of a quantum bit. Essentially,
it is the amount of time, on average, that a qubit state is maintained before the quantum state
is lost. As an illustration, let us consider a qubit that we set into a quantum state psi, and
consider what happens to that qubit over time. At first, the state is well-defined, we just put it
in that state, we are confident that we did a good job, and so we know what the state is. Over
time, however, the qubit begins to interact with its environment. When it does so, the qubit
experiences noise that alters the qubit state in ways that we did not anticipate. Intuitively, we
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• Ad oggi loop superconduttivi, trapped ions and Rydberg atoms 
sembrano essere le tecnologie + mature 

• Difficile fare previsioni sulla scalabilita’: sistemi ancora
troppo piccoli (decine di qbits) e nessuno fault tolerant

• Alcuni challenges tecnologici futuri:
• Migliorare il qbit:

• setup veloce, tempi (molto) lunghi di coerenza, ridurre la 
sensibilita’ all’ambiente (noise tolerant)

• Migliorare error correc<on 
• Richiede numero grande di qbits à aumento sostanziale del 

tempo di coerenza colleIvo, etc
• Meccanismi per incrementare la scalabilita’ a grandi

numeri
• “Easy to use” 

• denso, funzionamento a Tambiente , form factor Lpico
dell’ele2ronica, low(er) cost,…



QC providers
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• Una pletora di inizia<ve industriali finalizzate alla 
costruzione di QC
• IBM Q
• INTEL
• Google
• D-Wave

• Ma anche un’esplosione di start-up QC-oriented
• Hardware e controllo, programming, 

applicazioni,...

24.03.22

7

Pasqal

IQM

HPC systems Quantum computers and simulators (QCS)hPps://quantumzeitgeist.com/interacOve-map-of-quantum-
compuOng-companies-from-around-the-globe/

4/20/22

6

Quantum Computing Companies around the Globe
https://quantumzeitgeist.com/interactive-map-of-quantum-computing-companies-from-around-the-globe/

Università degli Studi della Campagnia Luigi Vanvitelli 11

11

• LMU Munich and University Göttingen

• 1932 Nobel Prize in Physics, 
„for the creation of quantum mechanics, the application of which has, 
inter alia, led to the discovery of the allotropic forms of hydrogen.“
The Nobel Prize in Physics 1932. NobelPrize.org. Nobel Prize Outreach AB 2022. Sat. 19 Mar 2022. 
https://www.nobelprize.org/prizes/physics/1932/summary/

Remark:

• 1933 Nobel Prize in Physics for Erwin Schrödinger and Paul Adrien 
Maurice Dirac "for the discovery of new productive forms of atomic 
theory.", (Advancement of quantum mechanics)
The Nobel Prize in Physics 1933. NobelPrize.org. Nobel Prize Outreach AB 2022. Sat. 19 Mar 2022. 
https://www.nobelprize.org/prizes/physics/1933/summary/
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Werner Karl Heisenberg (5 Dez 1901 – 1 Feb 1976, geb. Würzburg, Bavaria)
The Origins of Quantum Mechanics

Università degli Studi della Campagnia Luigi Vanvitelli

By Bundesarchiv, Bild 183-R57262 / Unknown / 
CC-BY-SA 3.0, CC BY-SA 3.0 de

https://commons.wikimedia.org/w/index.php?curid=5436254

12



QC software stack e applicazioni
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Quantum Application 

hPps://quantumalgorithmzoo.org/

Classi specifiche di applicazioni che possono beneficiare del QC
• Hybrid Quantum Algorithms 

• Sezione classica e accelerazione quanasaca
• Specifici problem di oQmizzazione Es: Variaaonal Quantum Eigensolver (VQE) o 

Quantum Approximate Opamisaaon Algorithm (QAOA) 
• Quantum chemistry
• Problemi di oQmizzazione esprimibili con una funzione di costo che deve essere

minimizzata
• Quantum Machine Learning

• Stack sogwares sono proprietari dei
fornitori di QC
• C’e molto margine di miglioramento
• Dovrebbe convergere verso uno 

standard

https://quantumalgorithmzoo.org/


QC: possibile contributo INFN 
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• Ha senso per INFN puntare sull’hardware dei QC? Probabilmente no...
• MolS lo stanno gia’ facendo e il gap tecnologico e’ difficilmente recuperabile 

• INFN puo’ dare un contributo fondamentale alle tecnologie di base
• criogenia, misure di precisione in ambiente “noisy”, controllo fine di sistemi distribuiS, etc…
• Call temaSche CSN5

• Contribuire alla generazione di nuovi algoritmi e nuovi campi di applicazione
• HEP (almeno) e’ un campo applicaSvo di grande interesse per QC (ojmizzazione, ML, LQCD, many body…) 

e viceversa
• CERN openlab QTI, 
• TNM per LQCD (Montangero), 
• Superconduc_ng Quantum Materials and Systems Center (SQMS, INFN@Fermilab)...
• Inizia_va Quantum della CSN4 (hTps://web.infn.it/CSN4/IS/Linea4/QUANTUM/QUANTUM.html)

• Contribuire all’interfaccia tra QC e outer world
• Interfaccia con HPC per MSA: controllo e I/O di Sistema basato su FPGA
• Network scalabile per clustering di sistemi QC di piccolo taglia

• Ad oggi non e’ chiaro (i.e. non esiste) un percorso di sviluppo tecnologico che garan:sca la 
scalabilita’ di un QC ai 106 qbits
• Mantenere il presidio tecnologico cercando di operare su tuae le piaaaforme disponibili per essere pronS

ad uSlizzare efficentemente IL QC...

https://sqms.fnal.gov/people/leadership-team/
https://web.infn.it/CSN4/IS/Linea4/QUANTUM/QUANTUM.html


Accesso a sistemi QC
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• QC in cloud: IBM-Q o Google
• standard access e/o accesso prioritario a IBM-Q con accordo CERN-INFN

• Cineca: acquisizione di un sistema medio/piccolo trapped
ions (a disosizione del PNRR CN spoke quantum?)

• QCSC Padova (Quantum Computing and Simulation Center) 
nuova iniziativa con cofin INFN
• Scuole, formazione e accesso a testbed QC commerciali (1 anno)
• Acquisizione di un sistema a piccola/media scala (O(10-50) qbits) (2 anno 

à) per ricerca tecnologica e  algoritmica e produzione
• https://800anniunipd.it/event/padova-e-la-nuova-sfida-del-computer-

quantistico/

• Accordo Amazon INFN per uso computer BOREALIS XANADU 
in cloud (Amazon Bracket o Xanadu Cloud)
• fault tolerant processore fotonico programmabile a temperatura 

ambiente... 
• Madsen, L.S., Laudenbach, F., Askarani, M.F. et al. Quantum computational 

advantage with a programmable photonic processor. Nature 606, 75–81 
(2022).

• https://www.xanadu.ai/products/borealis
• Quantum Computing advantage...

• Spoke 10 del nuovo ISCS (PNRR)
• https://agenda.infn.it/event/30202/contributions/168463/attachments/91

484/124226/Bozzi_20220526_QC_CCR.pdf

LINES OF ACTIONS

1. Quantum Computation 
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Quantum Simulation

3. Quantum &  
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2. Quantum interfaces  

& Networks
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& Technological transfer 

5. Management &  
coordination

Infrastructure 

Support 
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MAX 1 MINUTO! 

Quantum Computing

CINECA plans to acquire a Quantum Computer

Initially the QC will be an experimental and 
dedicated system but the idea is to use QC as an 
accelerator of Leonardo

Some QC technologies are under investigation

It will be considered QC European technologies

Time frame: installation H2-2023

CINECA investments will be in the order of

10M

https://800anniunipd.it/event/padova-e-la-nuova-sfida-del-computer-quantistico/
https://www.xanadu.ai/products/borealis
https://agenda.infn.it/event/30202/contributions/168463/attachments/91484/124226/Bozzi_20220526_QC_CCR.pdf


Considerazioni finali
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• In generale ricerca tecnologica e’ (anche) fondazionale per la ricerca di base sperimentale
oltre a rappresentare un’opportunita’ di visibilita’, innovazione e finanziamento 
• Le risorse umane sono il vero valore aggiunto

• Non e’ sufficente essere fisici puri e avere competenze di analisi daS per costruire EsperimenS, 
Acceleratori, Detector

• esperienza trasversale in tecnologie di «basso» livello (elearonica, informaSca, sogware di sistema e 
applicaSvo, meccanica, etcc) e capacita’ di lavorare all’interfaccia tra la fisica e la tecnologia

• Non sono (piu’) competenze a cui abbiamo accesso facilmente e in abbondanza o che 
possiamo comprare sul mercato
• Bisogna prevedere occasioni di formazione e promozione specifiche all’interno dei nostri corsi di laurea
• Dobbiamo tornare ad essere compeSSvi con l’industria valorizzando le persone coinvolte

• INFN deve tornare ad essere un porto sicuro per chi vuole (con:nuare a) fare ricerca 
tecnologica. Il Management dovrebbe:
• riconoscere la fondamentale importanza di queste ajvita’ per le strategie dell’Ente
• studiare (collegialmente) ed implementare meccanismi correjvi prima che sia troppo tardi...
• migliorare il processo di comunicazione
• governarle con visione a lungo termine evitando la gesSone un po’ approssimaSva delle varie 

opportunita’ a breve termine (GRID, PNRR...) 
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BACKUP SLIDES



Intro: problemi aper8

• Alcuni problemi aper: per le aBuali tecnologie del 
calcolo 
• come massimizzare l’efficenza computazionale 

• non esiste una architeSura di calcolo “one fits for all”
• ogni applicazione o classe di applicazioni ha specificita’ differen< (fp 

vs int, compute bounded vs memory bounded...)
• Il corrente modello eterogeneo e accelerato “CPU+Acceleratore” 

(FPGA/GPU/???) e’ sufficentemente scalabile e prospe]camente 
sostenibile? 

• power: minimizzare il rapporto W/operazioni e incrementare la 
densita’ del sistema
• vale a tuSe le scale dal supercomputer dato il cap di potenza per 

sito (N*10MW) fino al sistema embedded alimetato a baSeria
• architeaura di memoria ad accesso a bassa latenza ma larga 

abbastanza e network a bassa latenza ed alto throughput...
• per non parlare di:

• sokware e modelii di programmazione scalabili
• resilienza e fault tolerance
• sostenibilita’ economica 
• ...
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CPU vs GPU

14/06/22 Piero Vicini - Retreat 2022 41
D. vom Bruch 39

GPU vs. CPU

http://wccftech.com/nvidia-gtx-1080-gp104-die-shot/http://images.anandtech.com/reviews/cpu/intel/SNBE/
Core_I7_LGA_2011_Die.jpg

D. vom Bruch 40

GPU vs. CPU: Speci�cations

Intel Core E7-8890 v3 GeForce GTX 1080

Core count 18 cores / 36 threads 20 SMs / 2560 cores

Frequency 2.5 GHz 1.6 GHz

Peak Compute 
Performance

1.8 GFLOPs 8873 GFLOPs

Memory bandwidth Max. 102 GB/s 320 GB/s

Memory capacity Max. 1.54 TB 8 GB

Technology 22 nm 16 nm

Die size 662 mm2 314 mm2

Transistor count 5.6 billion 7.2 billion

Model Minimize latency Hide latency through 
parallelism



Next Gen FPGA
Nuova tendenza per gesSre al meglio la complessità
• Da libreria di core IP e gates programmabili, struaure di I/O 

specializzate interconnesse da una matrice di connessioni à
un sistema di uP e IP hardware indipendenS interconnessi
da una network on chip (NoC) evoluta ad alte prestazioni
• Non si programma la matrice di interconnessione ma si costruisce

il sistema assemblando le IP (lego mode...)
• Struaure differenS (Scalar Engines, Adaptable Engines, 

Intelligent Engines) per implementazione efficente di blocchi
computazionali specializzaS per task computazionali diversi
(eterogenei)

• il tuao a 7nm di processo...
• Core market per questo Spo di FPGA:

• networks (sokware defined network)
• ML inference (per efficenza e specializzazione) con uso di AI 

Tensor Block specializza<
• Accelerazione computazionale per data analy<cs e calcolo

scien<fico
• Problema: 

• una struSura eterogenea complessa e configurabile va
programmata al meglio

• la complessita’ hardware/sokware/sistemis<ca deve essere
astraSa per permeSere all’utente (medio) di poterla sfruSare in 
maniera efficente
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System-Level Benefits of the Versal Platform

Vivado, Vitis, and Vitis AI for a Software 
Programmable Architecture

Versal's heterogeneous processing architecture enables developers to target workloads to the right 
types of processors to allow for optimal performance. To realize Versal system-level value, a set of 
tools and workflows are required.

Xilinx provides software development platforms to support this. Vitis and Vitis AI are specialized 
development platforms that remove the traditional barriers for software developers while Vivado 
ML offers a traditional flow for hardware developers. 
Developing for Versal ACAP requires a system design methodology. In an initial phase, the system 
architect makes key decisions about the application architecture by determining which software 
functions should be mapped to device kernels, how much parallelism is needed, and how it should 
be delivered. 

Choosing the right mapping for the application tasks allows users to create the ideal balance of 
bandwidth, throughput, and latency – maximizing system-level performance by mapping each task 
to the hardware that can most efficiently execute it. For example, complex algorithms and control 
are a good fit for scalar processing while irregular data structures requiring low and predictable 
latency are mapped onto the adaptable hardware. Then heavy regular computational tasks can be 
coded onto the vector SIMD processing units with native support for floating-point and complex 
numbers arithmetic. The transport of data between these functional blocks is facilitated via a 
dedicated routing backbone. See Figure 4.
X-Ref Target - Figure 4

Figure 4: Hardware Engines for Application Tasks
WP539_11_011922
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Programmable NoC (Network on Chip)

• Domain-specific parallelism
• Complex math, convolutions
• ML, video, imaging

• Irregular data structures
• Low latency, real-time
• Scalable sensor fusion

• Complex algorithms
• Decision making
• System-level control



Finanziamenti EU
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The EuroHPC Joint Undertaking today

The Joint Undertaking is located in Luxembourg
■ 32 Participating States (26 MS + 6 associated 

countries) + EU + 2 Private Members (ETP4HPC 
& BDVA)

■ Launched in October 2018
■ Budget from this MFF (2019-2020): ~1.5 B€  

• 536 M€ from EU
• Matching funds from MS for JU activities
• In-kind contributions from the Private Members

Mission: Establish an integrated world-class supercomputing 
& data infrastructure and support a highly competitive and 
innovative HPC and Big Data ecosystem https://eurohpc-ju.europa.eu/

3 Pre-exascale supercomputers 
(150 - 370 Petaflops) – Top 5

 Installation in 2021 in Kajaani (FI), Bologna (IT), Barcelona (ES) 

 EuroHPC JU is the owner, co-ownership with 17 Participating 
States (PS)

 Investment: ~€650 million, 50% EU - 50% PS

5 Petascale supercomputers 
(6-12 petaflops) – Top 50

 Under approval: installation end 2020 – early 2021 in Bissen
(LU), Ostrava (CZ), Maribor (SI), Guimarães (PT), Sofia (BG)

MS are the owners; EuroHPC JU owns 35%

 Investment: ~€180 million, 35% EU - 65% PS

World-class supercomputing Infrastructure: 
830 M€ investments

HPC ecosystem: 360 M€ R&I investments
■ Building a European processor technology (for 

HPC) and exascale pilot systems
■ 32 HPC competence centres promoting 

innovation and training activities in all PS
■ Innovative industrial applications
■ Actions for SMEs 

Map of the EuroHPC
supercomputers

EuroHPC JU: Investments in 2019-2020

EuroHPC JU in 2021-2027
New mission?

Mission

By 2027: develop, deploy, extend and maintain in the Union a world leading
federated, secure and hyper-connected supercomputing, quantum computing,
service and data infrastructure ecosystem; support the production of innovative
and competitive supercomputing systems based on a supply chain that will
ensure components, technologies and knowledge limiting the risk of disruptions
and the development of a wide range of applications optimized for these systems;
and, widen the use of this supercomputing infrastructure to a large number of
public and private users, and support the development of key skills for European
science and industry.

Expected Budget (EU, Participating States, Private Members):

EUR 8 billion [not in the Regulation], for the period 2021-2033

Proposal for EuroHPC JU – New mission – New 
budget – New duration

Budget of the EuroHPC JU 
2021-2027

EU contribution
 Horizon Europe: TBD 
 Digital Europe Programme: up to [2.4 B€]
 Connecting Europe-2  Facility : up to [200 M€]

Contributions from the PS
 At least equal to the Union contribution 

Contribution from the Private Members
 For R&I, mainly in kind: TBD

Administrative Costs
 Share of total costs: EU: 45%, PS: 45%, Private Partners: 10% (in cash)

+/-EUR 8 billion 


