The top-quark couplings at the LHC and beyond

Retreat della Sezione INFN di Roma

14th June 2022

Víctor Miralles

Based on [1907.10619], [2006.14631], [2107.13917] and [2205.02140]

Beyond the Standard Model

The SM has been extremely successful but many phenomena require for a better understanding:

- Matter-antimatter asymmetry
- Neutrino masses
- Dark matter
- Strong CP-problem
- Flavour puzzle
- Origin of charged quantisation
- •

Many extensions of the SM have been proposed → Why not using a **model independent** framework?

- The SM is not complete, it is just an EFT
- The complete theory is unknown → Follow a bottom-up approach
- Assuming invariance under the same gauge symmetries as in the SM → SMEFT

The SM Effective Field Theory

• The SMEFT Lagrangian is build with the particle content of the SM and with the operators invariant under $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{d=5}^{\infty} \sum_{j} \frac{C_{j}^{(d)}}{\Lambda^{d-4}} \mathscr{O}_{j}^{(d)}$$

- Any heavy NP field, invariant under the same gauge group, can be integrated out, translating its effects on physical observables in terms of the Wilson coefficients ($C_j^{(d)}$)
- The operators of odd dimension generate baryon and lepton number violation and will not be considered
- The leading even-dimensional contribution will be the one of d=6
- At d = 6 the total number of 2499 operators is overwhelming
- In this work we will only consider the subset of operators related to top-quark physics

Why the top-quark?

- Being the heaviest particle of the SM the top-quark is a good candidate for searching for new physics
- As the top-quark was not produced in LEP its EW sector could not be precisely measured until now
- The LHC data allows, finally, for precise measurements of this sector
- Here we present results of a global fit to the new physics couplings of the top-quark
- We used the most recent available data from the LHC (ATLAS and CMS), and also from LEP and Tevatron
- ullet We study the effects of the HL-LHC and e^+e^- future colliders like ILC, CLIC, CEPC, FCC-ee
- The fits have been performed using HEPfit [1910.14012]

Data treatment

- The general goal is to know if the new physics extensions are compatible with data
- Need to find constraints on their parameter space
- \bullet Huge amounts of data \to efficient tool for dealing with data \to HEPfit [1910.14012]

HEPfit:

- Flexible open-source C++ code
- Based on BAT (bayesian statistical framework)
- Markov Chain Monte Carlo procedure
- Useful for SM, new physics models or EFTs
- Flavour, electroweak and Higgs observables

SMEFT operators relevant for the top-quark

Observables from current colliders (LEP/SLC, Tevatron, LHC run 1 & 2) • Here we show the observables included that have been measured in

the actual colliders

Process	Observable	\sqrt{s}	$\int \mathcal{L}$	Experiment
$pp ightarrow t \overline{t}$	$d\sigma/dm_{t\bar{t}}$ (15+3 bins)	13 TeV	$140 \; { m fb^{-1}}$	CMS
$pp ightarrow t \overline{t}$	$dA_C/dm_{t\bar{t}}$ (4+2 bins)	13 TeV	$140 \; { m fb^{-1}}$	ATLAS
$pp ightarrow t \bar{t} Z$	$d\sigma/dp_T^Z$ (7 bins)	13 TeV	$140 \; { m fb^{-1}}$	ATLAS
$ ho ho ightarrow tar{t}\gamma$	$d\sigma/dp_T^\gamma$ (11 bins)	13 TeV	$140~{ m fb^{-1}}$	ATLAS
$pp \rightarrow t\bar{t}H + tHq$	σ	13 TeV	$140~{ m fb^{-1}}$	ATLAS
pp ightarrow tZq	σ	13 TeV	$77.4~{ m fb^{-1}}$	CMS
$pp ightarrow t \gamma q$	σ	13 TeV	$36 \; { m fb^{-1}}$	CMS
$pp \rightarrow t \overline{t} W$	σ	13 TeV	$36 \; { m fb^{-1}}$	CMS
$p p ightarrow t ar{b} \; (extsf{s-ch})$	σ	8 TeV	$20 \; { m fb^{-1}}$	LHC
$pp \rightarrow tW$	σ	8 TeV	$20 \; { m fb^{-1}}$	LHC
pp ightarrow tq (t-ch)	σ	8 TeV	$20 \; { m fb^{-1}}$	LHC
t o Wb	F_0, F_L	8 TeV	$20 \; { m fb^{-1}}$	LHC
$ hoar{p} ightarrow tar{b}$ (s-ch)	σ	1.96 TeV	$9.7 \; { m fb^{-1}}$	Tevatron
$e^-e^+ o bar{b}$	R_b , A_{FBLR}^{bb}	\sim 91 GeV	$202.1~{ m pb}^{-1}$	LEP/SLD

LEP/SLC, Tevatron, LHC run 1 & 2 results

Prospects for Measurements at HL-LHC

Theoretical Uncertainties \longrightarrow scale with 1/2

 $\left\{ \begin{array}{ccc} \operatorname{Modelling} & \longrightarrow & \operatorname{scale} \ \operatorname{with} \ 1/2 \\ \\ \operatorname{Systematic} & \longrightarrow & \operatorname{scale} \ \operatorname{with} \ 1/\sqrt{\mathscr{L}} \\ \\ \operatorname{Statistical} & \longrightarrow & \operatorname{scale} \ \operatorname{with} \ 1/\sqrt{\mathscr{L}} \end{array} \right.$

HL-LHC results

Future e^+e^- colliders

- International Linear Collider (ILC)
 - Linear collider with three stages (250 GeV, 500 GeV and 1 TeV)
 - Length between 20 and 50 km
 - Would be built in Japan
- Compact Linear Collider (CLIC)
 - Linear collider with three stages (380 GeV, 1.5 GeV and 3 TeV)
 - Length between 11 and 50 km
 - Would be built in CERN
- Future Circular Collider with e^+e^- stage (FCC-ee)
 - Circular collider three stages (Z-pole, 240 GeV and 365 GeV)
 - Length of circumference between 80 and 100 km
 - Would be built in CERN
- Circular electron positron collider (CEPC)
 - Circular collider three stages (Z-pole, 240 GeV and 360 GeV)
 - Length of circumference around 100 km
 - Would be built in China

Measurements at e^+e^- colliders

Machine	Machine Polarisation		Luminosity
	P(+ -) (200/ +000/)	250 GeV	$2~{ m ab}^{-1}$
ILC	$P(e^+, e^-): (-30\%, +80\%)$	500(550) GeV	4 ab^{-1}
	P(e ⁺ , e ⁻):(+30%, -80%)	1 TeV	$8~{ m ab}^{-1}$
	D(-+) (00/ +000/)	380 GeV	$2~{ m ab}^{-1}$
CLIC	$P(e^+, e^-):(0\%, +80\%)$	1.5 TeV	$2.5 { m ab}^{-1}$
	P(e ⁺ , e ⁻):(0%, −80%)	3 TeV	5 ab ⁻¹
		Z-pole	57.5/150 ab ⁻¹
CEPC/FCC- <i>ee</i>	Unpolarised	240 GeV	$20/5 \text{ ab}^{-1}$
CLI C/I CC-86	Ulipolarised	350 GeV	$0.2 \; { m ab}^{-1}$
		360/365 GeV	$1/1.5 \; { m ab}^{-1}$

- ullet In all the configurations it would be measure $e^+e^- o bar b~(\sigma_{bar b},~A_{\sf FB}^{bar b})$
- For energies above $t\bar{t}$ -threshold (\sim 350 GeV) $e^+e^- \to t\bar{t}$ (optimal observables)
- ullet For energies above tar tH-threshold (\sim 500 GeV) $e^+e^- o tar tH$ ($\sigma_{tar tH}$)

Comparison of future colliders

Summary

- Current data is compatible with the SM within a 95% probability
- HL-LHC expected to improve the bounds by roughly a factor 3 w.r.t. current state-of-the-art LHC run 2 + Tevatron + LEP/SLC
- An e^+e^- collider can significantly improve bounds on bottom-quark operators, and on top-quark operators if operated above the $t\bar{t}$ threshold
- Circular colliders (FCC-ee and CECP) operated at and slightly above the $t\bar{t}$ threshold can improve bottom- and top- operators by factor 5 and 2 for 2-fermion operators.
- Power to constrain 4-fermion operators limited by energy reach
- Linear colliders (ILC & CLIC) operated at 2 center-of-mass energies above the $t\bar{t}$ -threshold provide tight bounds on all operators, with 4F bounds gaining from the energy-growing sensitivity
- The operation of the linear colliders above the *ttH*-thresholds allows for strong constraints on the top-quark Yukawa

Thank you!

Back up

Sensitivity

Future Colliders - Complementarity on e^+e^- Colliders

Good complementarity between $b\bar{b}$ (LEP) and $t\bar{t}$ (future e^+e^- collider) if we reach $\sqrt{s}>2\,m_t$

$$\delta g_L^t = -(C_{\varphi Q}^1 - C_{\varphi Q}^3)m_t^2/\Lambda^2$$

$$\delta g_L^b = -(C_{\varphi Q}^1 + C_{\varphi Q}^3) m_t^2/\Lambda^2$$

Results - Differential Cross Section Effect

Results - Complementarity Between Observables

- Very good complementarity between the observables
- The data set is diverse enough to avoid the existence of blind directions

Dependencies [1910.03606]

parameter	$t\bar{t}$	single t	tW	tZ	t decay	$t\bar{t}Z$	$t\bar{t}W$
$C_{Qq}^{1,8}$	Λ^{-2}	-	-	-	-	Λ^{-2}	Λ^{-2}
$C_{Qq}^{3,8}$	Λ^{-2}	$\Lambda^{-4}~[\Lambda^{-2}]$	-	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4}~[\Lambda^{-2}]$	Λ^{-2}	Λ^{-2}
C_{tu}^8 , C_{td}^8	Λ^{-2}	-	-	-	-	Λ^{-2}	-
$C_{Qq}^{1,1}$	$\Lambda^{-4} \ [\Lambda^{-2}]$	-	-	-	-	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4} \ [\Lambda^{-2}]$
$C_{Qq}^{3,1}$	$\Lambda^{-4} \ [\Lambda^{-2}]$	Λ^{-2}	-	Λ^{-2}	Λ^{-2}	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4} \ [\Lambda^{-2}]$
C^1_{tu},C^1_{td}	$\Lambda^{-4} \ [\Lambda^{-2}]$	-	-	-	-	$\Lambda^{-4}~[\Lambda^{-2}]$	-
C_{Qu}^{8}, C_{Qd}^{8}	Λ^{-2}	-	-	_	-	Λ^{-2}	_
C_{tq}^8	Λ^{-2}	-	-	-	-	Λ^{-2}	Λ^{-2}
C^1_{Qu}, C^1_{Qd}	$\Lambda^{-4} \ [\Lambda^{-2}]$	-	-	-	-	$\Lambda^{-4}~[\Lambda^{-2}]$	-
C^1_{tq}	$\Lambda^{-4} \ [\Lambda^{-2}]$	-	-	-	-	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4} \ [\Lambda^{-2}]$
$C_{\phi Q}^-$	-	-	-	Λ^{-2}	-	Λ^{-2}	_
$C_{\phi Q}^3$	-	Λ^{-2}	Λ^{-2}	Λ^{-2}	Λ^{-2}	-	-
$C_{\phi t}$	-	-	-	Λ^{-2}	-	Λ^{-2}	-
$C_{\phi tb}$	-	Λ^{-4}	Λ^{-4}	Λ^{-4}	Λ^{-4}	-	-
C_{tZ}	_	-	_	Λ^{-2}	-	Λ^{-2}	-
C_{tW}	_	Λ^{-2}	Λ^{-2}	Λ^{-2}	Λ^{-2}	-	-
C_{bW}	_	Λ^{-4}	Λ^{-4}	Λ^{-4}	Λ^{-4}	_	_
C_{tG}	Λ^{-2}	$[\Lambda^{-2}]$	Λ^{-2}	-	$[\Lambda^{-2}]$	Λ^{-2}	Λ^{-2}

Table 1. Wilson coefficients in our analysis and their contributions to top-quark observables via SM-interference (Λ^{-2}) and via dimension-6 squared terms only (Λ^{-4}). A square bracket indicates that the Wilson coefficient contributes via SM-interference at NLO QCD. All quark masses except m_t are assumed to be zero. Single t^* stands for s— and t—channel electroweak top production.

Relevant Operators

• We use an EFT description to parametrise deviations from the SM

Relevant Operators							
Coefficient	Operator	Coefficient	Operator				
$C_{\varphi Q}^1$	$(\bar{Q}\gamma^{\mu}Q)\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi\right)$	$C_{\varphi Q}^3$	$(\bar{Q} au^{\prime}\gamma^{\mu}Q)\Big(oldsymbol{arphi}i\overleftrightarrow{D}^{\prime}_{\mu}oldsymbol{arphi}\Big)$				
$C_{\varphi t}$	$(\overline{t}\gamma^{\mu}t)\left(\overrightarrow{\varphi}^{\dagger}i\overrightarrow{D}_{\mu}\overrightarrow{\varphi}\right)$	$C_{\varphi b}$	$(\bar{b}\gamma^{\mu}b)\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi\right)$				
$C_{t\phi}$	$(\bar{Q}t)(\hat{\epsilon}\varphi^*\varphi^{\dagger}\varphi)$	C_{tG}	$(\bar{t}\sigma^{\mu\nu}T^{A}\dot{t})(\varepsilon\varphi^{*}G_{\mu\nu}^{A})$				
C_{tW}	$\left(\bar{Q}\tau^{I}\sigma^{\mu\nu}t\right)\left(\varepsilon\varphi^{*}W_{\mu\nu}^{I}\right)$	C_{tB}	$(\bar{Q}\sigma^{\mu\nu}t)(\varepsilon\varphi^*B_{\mu\nu})$				
$C_{qq}^{1(ijkl)}$	$(\bar{q}_i \gamma^\mu q_j)(\bar{q}_k \gamma_\mu q_l)$	$C_{qq}^{3(ijkl)}$	$(\bar{q}_i \tau^I \gamma^\mu q_j)(\bar{q}_k \tau^I \gamma_\mu q_I)$				
$C_{uu}^{(ijkl)}$	$(\bar{u}_i \gamma^{\mu} u_j)(\bar{u}_k \gamma_{\mu} u_l)$	$C_{ud}^{8(ijkl)}$	$(\bar{u}_i \gamma^{\mu} T^A u_j)(\bar{d}_k \gamma_{\mu} T^A d_l)$				
$C_{qu}^{8(ijkl)}$	$(\bar{q}_i \gamma^{\mu} T^A q_j)(\bar{u}_k \gamma_{\mu} T^A u_I)$	C_{ud}^{ud} $C_{qd}^{8(ijkl)}$	$(\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{d}_k \gamma_{\mu} T^A d_l)$				
C_{IQ}^1	$(\bar{Q}\gamma_{\mu}Q)(\bar{I}\gamma^{\mu}I)$	C_{IQ}^3	$(\bar{Q} au^I\gamma_\muQ)(\bar{I} au^I\gamma^\muI)$				
C_{It}	$(\bar{t}\gamma_{\mu}t)(\bar{l}\gamma^{\mu}l)$	C _{Ib}	$(\bar{b}\gamma_{\mu}b)(\bar{l}\gamma^{\mu}l)$				
C_{eQ}	$(\bar{Q}\gamma_{\mu}Q)(\bar{e}\gamma^{\mu}e)$	Cet	$(\bar{t}\gamma_{\mu}t)(\bar{e}\gamma^{\mu}e)$				
C_{eb}	$(\bar{b}\gamma_{\mu}b)(\bar{e}\gamma^{\mu}e)$	_	_				

Theoretical Framework

• The Wilson coefficients are fitted are:

Coefficients Fitted							
2	C_{tG}	$C_{\varphi Q}^3$	$C_{\varphi Q}^{-}=C_{\varphi Q}^{1}-C_{\varphi Q}^{3} \ C_{tZ}=c_{W}C_{tW}-s_{W}C_{tB}$				
2-quark	$C_{\varphi t}$	$C_{\varphi b} = C_{t \varphi}$	$C_{tZ} = c_W C_{tW} - s_W C_{tB}$ C_{tW}				
	(:22:)						
	$C_{tu}^{8} = \sum_{i=1,2} 2C_{uu}^{(i33i)}$	$C_{td}^8 = \sum_{i=1,2,3} C_{ud}^{8(33ii)}$	$C_{Qq}^{1,8} = \sum_{i=1,2} C_{qq}^{1(i33i)} + 3C_{qq}^{3(i33i)}$				
4-quark	$C_{Qu}^{8} = \sum_{i=1,2}^{3} C_{qu}^{8(33ii)}$	$C_{Qd}^{8} = \sum_{i=1,2,3}^{1,2,3} C_{qd}^{8(33ii)}$	$C_{Qq}^{3,8} = \sum_{i=1,2}^{1,3} C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}$				
	_		$C_{tq}^{8} = \sum_{i=1,2} C_{uq}^{8(ii33)}$				
ماسمىيىد	C_{eb}	C_{et}	$C_{IO}^{+} = C_{IO}^{1} + C_{IO}^{3}$				
2-quark 2-lepton	C_{lb}	C_{It}	$C_{IQ}^{+} = C_{IQ}^{1} + C_{IQ}^{3} \ C_{IQ}^{-} = C_{IQ}^{1} - C_{IQ}^{3} \ C_{eQ}$				
2 Tepton	_	_	C_{eQ}				

Prospects for Measurements at HL-LHC

Inclusive cross sections and helicities

			LHC Unc.					HL	HL-LHC Unc.			
Process	Measured (fb)	SM (fb)	theo.		ex	p.		theo	theo exp			
			tileo.	stat.	sys.	mod.	tot.	Lineo.	stat.	sys.	mod.	tot.
$pp \rightarrow t\bar{t}H + tHq$	640	664.3	41.7	90	40	70.7	121.2	20.9	19.4	8.6	35.4	41.3
$pp \rightarrow t\bar{t}Z$	990	810.9	85.8	51.5	48.9	67.3	97.8	42.9	11.1	10.6	33.6	37.0
$pp \rightarrow t\bar{t}\gamma$	39.6	38.5	1.76	0.8	1.25	2.16	2.62	0.88	0.17	0.27	1.08	1.13
$pp \rightarrow tZq$	111	102	3.5	13.0	6.1	6.2	15.7	1.75	2.09	0.98	3.1	3.87
$pp \rightarrow t \gamma q$	115.7	81	4	17.1	21.1	21.1	34.4	2	1.9	2.3	10.6	11.0
$pp \rightarrow t\bar{t}W + EW$	770	647.5	76.1	120	59.6	73.0	152.6	38.1	13.1	6.5	36.5	39.4
$pp \rightarrow t\bar{b} \text{ (s-ch)}$	4900	5610	220	784	936	790	1454	110	35	42	395	399
$pp \rightarrow tW$	23100	22370	1570	1086	2000	2773	3587	785	49	89	1386	1390
$pp \rightarrow tq \text{ (t-ch)}$	87700	84200	250	1140	3128	4766	5810	125	51	140	2383	2390
F ₀	0.693	0.687	0.005	0.009	0.006	0.009	0.014	0.003	0.0004	0.0003	0.004	0.004
F _L	0.315	0.311	0.005	0.006	0.003	0.008	0.011	0.003	0.0003	0.0002	0.004	0.004

HL-LHC and ILC results

V. Miralles

The top-quark couplings at the LHC and beyond

Measurements at e^+e^- colliders: $b\bar{b}$ production

Machine	Polarisation	Energy	Luminosity	Observable
	D(-+)/ 200/ +000/)	250 GeV	2 ab^{-1}	σ-
ILC	P(e+, e-):(-30%, +80%)	500 GeV	4 ab ⁻¹	$\sigma_{bar{b}} \ A_{FB}^{bar{b}}$
	P(e ⁺ , e ⁻):(+30%, -80%)	1 TeV	$8~{ m ab}^{-1}$	A _{FB}
	P(e ⁺ , e ⁻):(0%, +80%)	380 GeV	2 ab^{-1}	σ. .
CLIC	' ' ' ' '	1.5 TeV	$2.5 \; { m ab}^{-1}$	$\sigma_{bar{b}} \ A_{ extsf{FB}}^{bar{b}}$
	P(e+, e-):(0%, -80%)	3 TeV	5 ab ⁻¹	A _{FB}
		Z-pole	$57.5/150~{ m ab}^{-1}$	σ -
CEPC/FCC- ee	Unpolarised	240 GeV	20/5 ab ⁻¹	$\sigma_{bar{b}} \ A^{bar{b}}_{FB}$
		360/365 GeV	$1/1.5~{ m ab}^{-1}$	A _{FB}

- These observables set constraints on the EW precision observables $C_{\varphi Q}^+ = C_{\varphi Q}^1 + C_{\varphi Q}^3$ and $C_{\varphi b}$
- ullet Also relevant for 2-quark 2-lepton operators \mathcal{C}^+_{IQ} , \mathcal{C}_{Ib} and \mathcal{C}_{eb}
- The higher-energy measurement are more relevant for the 2-quark 2-lepton operators

Measurements at e^+e^- colliders: $t\bar{t}$ production

Machine	Polarisation	Energy	Luminosity	Observable		
ILC	P(e ⁺ , e ⁻):(-30%, +80%)	500 GeV	$4~{ m ab}^{-1}$	Optimal		
	P(e ⁺ , e ⁻):(+30%, -80%)	1 TeV	$8~{ m ab^{-1}}$			
	P(e ⁺ , e ⁻):(0%, +80%)	380 GeV	$2~{ m ab}^{-1}$	Ontimal		
CLIC	P(e+, e-):(0%, +80%) P(e+, e-):(0%, -80%)	1 5 TeV	2.5 ab ⁻¹			
	P(e', e'):(0%, -80%)	3 TeV	5 ab ⁻¹	Observables		
CEPC/FCC-ee	Unpolarised	350 GeV	0.2 ab ⁻¹	Optimal		
CEPC/FCC-ee	Unpolarised	365 GeV	$1/1.5~{ m ab}^{-1}$			

- Optimal observables maximally exploit the information in the fully differential $e^+e^- \to t\bar{t} \to bW^+\bar{b}W^-$ distribution [1807.02121]
- ullet These constrain the 2-fermion operators $C_{\sigma Q}^-,\ C_{\sigma t},\ C_{tW}$ and C_{tZ}
- ullet Also the 2-quark 2-lepton operators $C_{IQ}^-,\ C_{It},\ C_{et}$ and C_{eQ}
- ullet With these we eliminate blind directions in the $C_{arphi Q}^{(1)} C_{arphi Q}^{(3)}$ plane
- Two different energies above the $t\bar{t}$ threshold are need to constrain all the 2- and 4-fermion operators

Measurements at e^+e^- colliders: $t\bar{t}H$ production

Machine	Polarisation	Energy	Luminosity	Observable
ILC	P(e+, e-):(-30%, +80%)	500/550 GeV		
ILC	P(e+, e-):(+30%, -80%)	1 TeV	$8~{ m ab}^{-1}$	cross section
CLIC	P(e+, e-):(0%, +80%)	380 GeV	$2 \mathrm{~ab^{-1}}$	Inclusive
CLIC	P(e+, e-):(0%, -80%)	1.5 TeV	2.5 ab ⁻¹	cross section

- Essential measurement in order to improve the limits on the top-quark Yukawa
- The effect of a ILC run at 550 GeV is studied
- At 550 GeV the production cross section increases by a large factor and boosts the statistical sensitivity by a factor two