$D^{\star}\mu$ update: towards *b*-cross section

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

November 25, 2010 (Genova group meeting)

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi $D^*\mu$ update: towards *b*-cross section

Introduction

Progress since last month

- ► theoretical predictions for σ(b → D^{*}μ) have been studied and prepared using MC@NLO (some technical problems with POWHEG until now...)!
- ▶ main ingredients for differential $\sigma(b \rightarrow D^*\mu)$ measurement on data are ready
- understand trigger efficiency and behaviour is the main challenge at the moment: the results shown in this presentation simply want to illustrate our strategy, they will be updated as soon as we will converge on trigger efficiency understanding

Theoretical estimates from MC@NLO

- NLO parton level event generation: MC@NLO 4.0 (newest version)
- showering and hadronization: HERWIG 6.520
- ▶ parameters: $\sqrt{s} = 7$ TeV, CTEQ6m, $m_b = 4.75$ GeV $\Rightarrow \sigma_{b\bar{b}} = 238\mu b$
- basic uncertainty depends on the parameters choice (e.g. m_b, see Leonid's talk on June 18th): in progress
- ► generated 2M $b\bar{b}$ events $\rightarrow N_{D^{\star}\mu} \simeq 115$ k $\Rightarrow f(B \rightarrow D^{\star}\mu X) \simeq 2.87\% \Rightarrow \sigma(B \rightarrow D^{\star}\mu X) \simeq 6.83\mu$ b
- from PDG: $f(B \to D^* \mu X) = 2.75 \pm 0.19\%$

▶ inside the kinematical region:

$$|\eta_{D^{\star}}| < 2.1, |\eta_{\mu}| < 2.5, p_{T_{D^{\star}}} > 4.5 \text{ GeV}, p_{T_{\mu}} > 4 \text{ GeV}$$

 $\rightarrow N_{D^{\star}\mu} \simeq 1800$

イロト イポト イヨト イヨト

Additional data

Periods: A, B, C, D, E; L=1.2 *pb*⁻¹ GRL: Muon+*b*-tagging

 D^{\star} selection cuts:

- ▶ 5 silicon SPs, at least one of them in pixel for kaon, pion, soft pion
- $p_T > 1$ GeV for kaon and pion

•
$$M(K\pi) - M(D_{PDG}^0) < 40 \, MeV$$

•
$$p_T(D^*) > 4.5$$
 GeV, $|\eta(D^*)| < 2.1$

 $D^*\mu$ selection cuts:

- STACO muon
- $p_T(\mu) > 4 GeV$, $|\eta(\mu)| < 2.5$
- ▶ M(D^{*}µ) > 2.5 GeV

Trigger selection:

► EF_mu4

$D^{\star}\mu$ sample

イロト イヨト イヨト イヨト

$D^{\star}\mu$ sample composition

Use *bbmu4X* and *ccmu4X* (combine events taking into account cross sections).

$D^*\mu$ signal in different $p_T(D^*\mu)$ bins

 $D^{\star} \mu$ update: towards *b*-cross section

Efficiency vs $p_T(D^*\mu)$

▶ reconstruction efficiency ϵ_r (MC sample $cb \rightarrow \mu 2.5$ Hadr):

$$\epsilon_r = \frac{D^*\mu \text{ rec}}{D^*\mu \text{ true from } b \ddagger}$$

†
$$|η_{D^{\star}}| < 2.1, |η_{\mu}| < 2.5, p_{T}(\mu) > 4 GeV, p_{T}(D^{\star}) > 4.5 GeV$$

	9-12 GeV	12-15 GeV	15-20 GeV	20-30 GeV	30-45 GeV	45-80 GeV
εr	0.19 ± 0.04	0.26 ± 0.02	0.36 ± 0.02	0.47 ± 0.04	0.42 ± 0.09	0.5 ± 0.25

- ▶ EF_mu4 trigger efficiency included in ϵ_r (MC based) \Rightarrow not reliable
- need to separately evaluate ε_{μ4} on data, and decide a correct p_T(μ) cut to avoid the trigger turn-on efficiency curve (more details following)

イロト イヨト イヨト イヨト

Trigger strategy for the future

Muon trigger evolution and efficiency

- ▶ our $D^{\star}\mu$ sample up to period E $(\mathcal{L} \sim 1.2 \text{ pb}^{-1})$ with EF_mu4 trigger
- ► muon trigger not very stable up to period E3 (RPC timing updates in period E3) ⇒ large part of our sample is included in this non stable periods
- efficiencies showed at Amsterdam Trigger Workshop (tag and probe method on J/\u03c6):

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

 $D^{\star} \mu$ update: towards *b*-cross section

Trigger strategy for the future

Muon trigger evolution and efficiency

- EF_mu4 requires a cut p_{T_μ} > 6 GeV to reach the plateau, the same requested by EF_mu6
- EF_mu6 is quite completely not prescaled in period F \Rightarrow we could add $\sim 2 \text{ pb}^{-1}$ to our sample w.r.t. EF_mu4
- our plan: period E+F, EF_mu6 trigger, $p_{T_{\mu}} > 6 \text{ GeV} (\sim 3 \text{ pb}^{-1})$
- contact MuonTrigger group to have efficiencies parametrizations on data

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Differential $B \rightarrow D^* \mu X$ cross section from data

$$\frac{d\sigma(B \to D^* \mu X)}{d\rho_T (D^* \mu)} = \frac{f_b N^{D^* \mu}|_{\Delta \rho_T}}{2\mathcal{BL}\Delta \rho_T}$$

- -

ATLAS luminosity has an 11% uncertainty at the moment:

$${\cal L} = 1.20 \pm 0.13~{
m pb}^{-1}$$

Number of observed $D^*\mu$ pairs in the different p_T bins

Sample composition:

$$f_b = f(b o D^{\star} \mu) = 0.895 \pm 0.011$$

Total Branching Ratio B (values from PDG):

$$\mathcal{B} = BR(D^{\star} \rightarrow D_0\pi) \cdot BR(D_0 \rightarrow K\pi) = (2.63 \pm 0.04) \cdot 10^{-2}$$

Differential $B \rightarrow D^* \mu X$ cross section

kinematical region: $|\eta_{D^{\star}}|$ < 2.1, $|\eta_{\mu}|$ < 2.5, $p_{T_{D^{\star}}}$ > 4.5 GeV, $p_{T_{\mu}}$ > 4 GeV

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

 $D^{\star} \mu$ update: towards *b*-cross section

Unfolding

• we have a measured distribution vs $p_T(D^*\mu) \rightarrow$ we need to unfold the observed $p_T(B)$ distribution on MC basis:

$$w_{ij} = rac{N([B]_i
ightarrow [D^*\mu]_j)}{N([D^*\mu]_j)}$$

where $N([B]_i \rightarrow [D^*\mu]_j)$ is the number of *b* hadrons in a $p_T(B)$ bin *i* decaying to $D^*\mu$ in $p_T(D^*\mu)$ bin *j*

unfolding:

$$N_i^B = \sum_{j=1}^N w_{ij} N_j^{D^*\mu}$$

	9-12 GeV	12-15 GeV	15-20 GeV	20-30 GeV	30-45 GeV	45-80 GeV
N ^{D*µ} †	3722	2646	1717	869	228	55
N ^B	1838	2421	2712	1672	537	109

 \dagger weighted with the efficiency ϵ_r of the previous slide

Summary and plans

- D^{*}µ sample up to period E (L ~ 1.2 pb⁻¹) ⇒ with EF_mu4 (EF_mu6 already available in our ntuples)
- ▶ plan to extend our sample to period F with EF_mu6
- ► method to evaluate dσ(B → D^{*}µX)/dp_T in our kinematical range is ready
- muon trigger efficiency has to be correctly taken into account
- theoretical comparison with MC@NLO ready! as soon as possible comparisons with POWHEG will be added!
- ► as soon as the data cross section will be understood in our kinematical range ⇒ extrapolation to the full kinematical region using MC@NLO (and POWHEG) comparison
- once we have $d\sigma(B \to D^*\mu X)/dp_T$ in the full kinematical region:

$$d\sigma(B)/dp_T = rac{d\sigma(B o D^* \mu X)/dp_T}{\mathcal{B}(b o D^* \mu)}$$

・ロト ・聞 ト ・ ヨト ・ ヨト