Pierre Auger Observatory: The scientific achievements

Antonella Castellina Istituto Nazionale di Astrofisica & INFN Torino - Italy

CUIA-CONICET Workshop 9 May 2022

The challenge: what are we looking for?

The challenge: energy losses

Cosmic microwave background: a relic from the Big Bang

- Predicted in 1948 to be ~5°K [Alpher, Herman]
- Measured in 1964 : (3.5±1)⁰K [Penzias and Wilson]
- COBE mission (1989-96) and many others

1966: The GZK effect (Greisen, Zatsepin, Kuzmin) Protons (or nuclei) lose energy in collisions with the cosmic microwave background above an energy of ~10²⁰ eV.

PHYSICAL REVIEW LETTERS Volume 16, Number 17 25 April 1966

END TO THE COSMIC-RAY SPECTRUM?

The GZK cutoff

the vast majority of protons above ~60 EeV come from distances D< 200 Mpc (~600 million light years) the contribution of distant sources is thus eliminated: the higher the energy, the smaller the size of the collection region

[Note: 6 10¹⁹ eV ~9 Joule in one proton (~9 10¹⁶ m radius !)]

The challenge: magnetic fields

Galactic and Extragalactic magnetic fields effect on charged particles

Deflections proportional to Z/E: less deviation for lower mass and higher energy

Astrophysics: the quest for the sources of UHECRS

The Pierre Auger Observatory

Particle physics above LHC range

Beyond the standard model...

Atmospheric physics

Energy calibration

The energy spectrum

✓ UNPRECEDENTED EXPOSURE ! Clearly established suppression above 10^{19.5} eV

Propagation or exhaustion of sources? Need data on mass composition in suppression region
Smoking gun : we expect anisotropy as particles with ultra-high energies should come from nearby sources

Light or heavy? Measuring the mass composition

Air shower+hadronic interaction models required to convert the info from the X_{max} distributions to $\,A$

Model uncertainty = maximum contribution to systematics Need to extrapolate what we know from accelerators to much higher energy and different projectile-target

Light or heavy ?

A VERY UNEXPECTED RESULT ! The composition is mixed and evolving with energy

- ✓ Suppression due to energy exhaustion in sources (\propto E/Z) or to propagation effects (\propto E/A) ?
- ✓ Would then anisotropy searches be feasible? Important for upgrades and future experiments !
- ✓ Explore the characteristics of the sources by comparing expected and measured spectrum and composition at Earth: two extragalactic contributions plus possibly a secondary Galactic one
- ✓ Important hints on the end of the Galactic contribution: secondary contribution medium composition

The arrival directions

charged CRs

arrival directions and energy are measurable further complications : magnetic fields deflections, heavier nuclei

VERY difficult, as a deep and strong control of the experimental conditions is required (we search for tiny anisotropies, need to avoid spurious effects)

The arrival directions

Are there any neutral messengers?

UHE neutrinos

- ✓ Astrophysical : produced in the sources (AGN, GRB) or in the source environment (SBG, Galaxy clusters)
- ✓ Cosmogenic: produced during propagation

UHE photons

- \checkmark Astrophysical produced in the sources
- Cosmogenic: produced during propagation
- ✓ From top-down models

Both can be discriminated from hadrons thanks to the different shower characteristics

UHE Photons and Neutrinos?

The detection of even one UHE neutrino or photon would 'per se' be a great discovery ! BUT... even a non-detection is full of information

No cosmogenic photons found

- ✓ Top-down models ruled out
- Models with production of light elements only ruled out
- Constraints on super-heavy dark matter

No cosmogenic neutrinos found

- different models of cosmogenic and astrophysical neutrino production are excluded, other are disfavoured
- Energy range complementary to that of IceCube and Antares for point-like sources

UHE Photons and Neutrinos? Some example

No UHE neutrino candidate found in coincidence with gravitational wave emission during Neutron stars or black holes merging

- ✓ Upper limits to the flux of neutrinos in the merger at UHE
- \checkmark Constraints on models of merging

Photon sources

- ✓ no significant excess
- constrains on the allowed parameter space for the allows the extrapolation of the HESS flux

ANTARES ho

iger FoV (Earth-sl

✓ upper limit on cut-off at ~ 2 EeV

Particle physics

The hadronic interaction models underestimate the number of muons at UHE

Fluctuations in the Muon number probe the first interactions at UHE

 $\langle X_{\max} \rangle = \langle X_{\max} \rangle_{\rm p} + f_E \langle \ln A \rangle$ $\sigma^2(X_{\max}) = \langle \sigma_{\rm sh}^2 \rangle + f_E^2 \sigma^2(\ln A)$

✓ <In A> and $\sigma^2(\ln A)$ vary depending on hadronic interaction models

✓QGSJET-II.04 predicts shower-to-shower fluctuations larger than mass range considered: X_{max} distributions not well predicted, leading to unphysical results.

Beyond the standard model

What are the ELVES?

ELVES : *Emissions of Light and Very low frequency perturbations due to Electromagnetic pulse Sources.*

Predicted in the early 1990s [1] and discovered one year later [2], ELVES are transient luminous events (TLEs) occuring at an altitude $H_{emis} \approx 90$ km when an intense electromagnetic pulse (EMP) emitted during the development of lightning reaches the base of the ionosphere. ELVES were observed for the first time in Auger data in 2005 [4]. A dedicated online trigger algorithm was developed in the following years [5].

Atmospheric physics

1,598 elves, from 2014 to 2016, recorded with unprecedented time resolution (100 ns) on 10⁶ km² Auger is the only facility on Earth that measures elves with year-round operation and full horizon coverage

information on the dynamics of plasma accelerators on our planet

Public Data Release

The Pierre Auger 2021 Open Data is the public release of 10% of the Pierre Auger Observatory cosmic-ray data presented at the 36th International Cosmic Ray Conference held in 2019 in Madison, USA, following the Auger Collaboration Open Data Policy. The release also includes 100% of weather and space-weather data collected until 31 December 2020.

This website hosts the datasets for download. A brief overview of the Pierre Auger Observatory and of the Auger Open Data is set out below. An online event display to explore the released cosmic-ray events, and example analysis codes are provided. An outreach section dedicated to the general public is also available.

The future

New opportunities

- up to 2030: upgrades of the present Observatories (AugerPrime, TAx4):
 - increasing the statistics
 - add composition-sensitive observables
 - exploit complementary techniques (Radio)
- next decade: new and complementary projects from ground and space
- ▶ p+O runs at LHC
- new data on GMF + models

The next challenges

- measure the light nuclei fraction in the suppression region
- reduce the systematics due to hadronic interaction models
- understand the origin of the flux suppression
- increase the knowledge of magnetic fields
- analysis methods involving all observables (improved combined fits, machine learning)

Backup slides

Extensive Air Showers

Full efficiency SD1500 : >3 10¹⁸ eV SD750 >3 10¹⁷ eV

SD

SD annual exposure, $\theta~<~60^\circ$

T3 rate T5 events/yr, E > 3 EeV T5 events/yr, E > 10 EeV Reconstruction accuracy (S_{1000}) Angular resolution

Energy resolution

FD

On-time Rate per building Rate per HEAT

Hybrid

Core resolution	50 m
Angular resolution	0.6 °
Energy resolution (FD)	8%
X _{max} resolution	$< 20 \text{ g/cm}^2$

 \sim 5500 km² sr yr

0.1 Hz ~14,500 ~1500 22% (low *E*) to 12% (high *E*) 1.6° (3 stations) 0.9° (> 5 stations) 16% (low *E*) to 12% (high *E*)

~15% 0.012 Hz 0.026 Hz

