

Updates on background measurements and JUNO background control

Monica Sisti INFN Milano-Bicocca

JUNO-Italia Meeting, Milano 5-6 maggio 2022

- Acrylic mass production control and surface cleaning
- Noble gases inside acrylic panels
- Liquid scintillator laboratory radiopurity measurement

(see Massimiliano's talk)

• JUNO Detector filling scheme

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

Acrylic mass production control

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

Small cylinders: mass ~7g

- Samples from panels: S0801, S0807, S0901, S0905.
- Irradiated and measured together in the irradiation campaign of September 28, 2021.
- 2 cylinders per panel, from positions B and E
- Total measuring time ~30 days

Delivery #4

Delivery of July 2021

• ⁴⁰K contamination was present on all samples (most likely on the surface)

Sample	Mass [g]	40K [ppt]	238U [ppt]	232Th [ppt]
4 cylinders: S0801E, S0807E, S0901B, S0905B,	28.2	13.1 ± 0.2		
8 cylinders: S0801(B/E), S0807(B/E), S0901(B/E), S0905(B/E)	56.4	10.6 ± 0.2	< 0.36	< 0.39

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

Delivery of July 2021

It is mandatory to understand what went wrong with the cleaning of these samples

Delivery of December 2021

- Samples from panels: S0701, S0707, S0601, S0607, S0613, S0501, S0505, S0509, S0513.
- Irradiation campaign postponed to February 14, 2022 (several issues at the reactor).
- Measured two panels, S0505 and S0701, 3 cylinders each.

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

Delivery #5

Delivery of December 2021

- by mass removal on the flat surfaces of the cylinders).
- Surface cleaning protocols must be revised.

Sample	Mass [g]	4οκ [ppt]	Mass [g]	40K [ppt]	Mass [g]	₄₀₭ [ppt]
3 cylinders: S0701-A, S0701-D, S0701-F	21.37	11.03 ± 0.13				
1 cylinder: S0701-A	7.11	7.98 ± 0.25	6.70*	1.17 ± 0.19	6.39*	0.60 ± 0.04
3 cylinders: S0505-E, S0505-B, S0505-D	21.30	3.69 ± 0.10				
1 cylinder: S0505-E	7.12	2.27 ± 0.08	6.75*	< 0.05		

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

• ⁴⁰K contamination is present on all surfaces (not uniformly distributed); it is located in the first 0.5-1 mm (calculated

• ²³⁸U and ²³²U are compliant with JUNO requirements

Sample	Mass [g]	40K [ppt]	238U [ppt]	232Th [ppt]
4 cylinders: S0505-B, S0505-D, S0701-D, S0701-F	28.44	see previous slide	< 0.24	< 0.38
2 cylinders: S0505-E, S0701-A (after surface removal)	13.14	see previous slide	< 0.49	< 0.97

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

Acrylic screening by NAA

Delivery of December 2021

Delivery of April 2022

Delivery #6

- Irradiation campaign on April 27, 2022.
- each.

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

• Samples from panels S0701 and S0505 (same of previous delivery) with modified surface cleaning: only sanding + washing with DI water (no detergent); no polishing. Two different sanding meshes were used: 2000 and 3000.

• Measured panels S0701-2000 and S0701-3000, 3 cylinders

Delivery of April 2022

- ⁴⁰K contamination is within JUNO requirements.
- Acrylic transparency must be checked.
- ²³⁸U and ²³²Th measurement is ongoing.

Sample	Mass [g]	40K [ppt]	Mass [g]	40K [ppt]
1 cylinder: S0701-2000-A	8.91	0.19 ± 0.02	8.84*	< 0.02
3 cylinders: S0701-3000-A, -D, -F	26.76	< 0.08		

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

*removed ~ 95 μ m

1	1
1	н

Noble gases in acrylic

Noble gases inside acrylic samples 🙌

- the solar neutrino channel: they are present in the atmosphere. $^{39}Ar\left(T_{\frac{1}{2}}=269\ yr\right)$
- be measured by gamma spectroscopy:

$$\begin{array}{l} {}^{40}_{18}Ar \rightarrow {}^{41}_{18}Ar \left(T_{\frac{1}{2}} = 109.34 \, m \right) \\ \\ {}^{\mathbf{E}_{v}} = 1293.6 \, \, \mathrm{keV} \end{array}$$

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

• ³⁹Ar (cosmogenic) and ⁸⁵Kr (nuclear tests) are a dangerous background source for our experiment, in particular for

85
Kr $\left(T_{\frac{1}{2}} = 10.756 \ yr\right)$

• Argon and Kripton stable nuclides are present in the air. After neutron irradiation, their activation products can

$${}^{84}_{36}Kr \rightarrow {}^{85m}_{36}Kr \left(T_{\frac{1}{2}} = 4.48 \, h \right)$$

$E_{\nu} = 151.2 \text{ keV}$

Noble gases inside acrylic samples

and demonstrated that it is indeed Kripton!

• We detected also Xenon activated isotopes:

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

• We measured the decay constant of the line at 151 keV

 $^{132}_{54}Xe \rightarrow ^{133}_{54}Xe \left(T_{\frac{1}{2}} = 5.243 \ d \right)$ $^{124}_{54}Xe \rightarrow ^{125}_{54}Xe \left(T_{\frac{1}{2}} = 16.9 h\right)$

Noble gases inside acrylic samples

Delivery of December 2021

subsequent diffusion (?) inside the acrylic.

Sample	Mass [g]	Argon [10 ⁻⁶ g/g]	Kripton [10 ⁻⁹ g/g]	Xenon [10 ⁻¹⁰ g/g]
3 cylinders: S0701-A, S0701-D, S0701-F	21.37	2.27 ± 0.09	1.69 ± 0.36	5.25 ± 0.67*
3 cylinders: S0505-E, S0505-B, S0505-D	21.30	2.06 ± 0.08	1.56 ± 0.22	5.72 ± 0.73*

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

• Noble gases can be measured by NAA. We were able to detect the presence of Ar, Kr, Xe in our samples, following their concentration in the atmosphere and

> * values calculated on a different set of samples

Noble gases inside acrylic samples

What can we say about the measured noble gas concentrations?

For Xenon we did not find suitable data (Solubility and Diffusion constant) in the literature yet (we are working on it...)

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

Atmospheric concentration of noble gases: Argon -> 9340 ppmv (M=39.95) • Kripton -> 1.099 ppmv (M=83.80) Xenon -> 0.087 ppmv (M=131.30)

Assuming the atmospheric concentration of Xenon inside the acrylic cylinder (i.e. acrylic saturated with Xenon at production), we expect:

 $C_{Xe} = 4.6 \times 10^{-10} \text{ g/g}$

(measured: ~ 5.5×10^{-10} g/g)

What can we say about the measured noble gas concentrations?

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

Noble gases inside acrylic samples

Assuming Fick's diffusion inside the acrylic cylinder, the expected Argon concentration is: 1 year exposure $\rightarrow 1.5 \times 10^{-6}$ g/g 2 year exposure $\rightarrow 2.1 \times 10^{-6} \text{ g/g}$ 4 year exposure $\rightarrow 2.9 \times 10^{-6} \text{ g/g}$ • 10 year exposure \rightarrow 4.6×10⁻⁶ g/g (measured: $\sim 2.2 \times 10^{-6} \text{ g/g}$)

Assuming the atmospheric concentration of Argon inside the acrylic cylinder (i.e. acrylic saturated with Argon at production), we expect:

 $C_{Ar} = 1.5 \times 10^{-5} \text{ g/g}$

What can we say about the measured noble gas concentrations?

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

Noble gases inside acrylic samples

Assuming Fick's diffusion inside the acrylic cylinder, the expected Kripton concentration is: 1 year exposure $\rightarrow 5.0 \times 10^{-9}$ g/g 2 year exposure $\rightarrow 7.1 \times 10^{-9} \text{ g/g}$ 4 year exposure $\rightarrow 1.0 \times 10^{-8} \text{ g/g}$ • 10 year exposure $\rightarrow 1.6 \times 10^{-8} \text{ g/g}$ (measured: ~ 1.6×10^{-9} g/g)

Assuming the atmospheric concentration of Kripton inside the acrylic cylinder (i.e. acrylic saturated with Kripton at production), we expect:

 $C_{kr} = 3.7 \times 10^{-9} q/q$

What can we say about the measured noble gas concentrations?

- the 2 ends on another HPGe.
- Preliminary results:

Centre: 1.1×10⁴ counts/g Ends: 1.0×10⁴ counts/g (error ~5%)

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

Noble gases inside acrylic samples

• Given the predicted diffusion inside the acrylic cylinder, we made another irradiation campaign and cut the sample afterwards:

Noble gases inside acrylic samples 🧼

What 's next?

- Donchamp (not from JUNO batch) should be arriving soon.
- Confirm previous measurements on additional samples.
- Evaluate impact on JUNO background in different scenarios.

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

• Measurement of a freshly produced acrylic sample provided by

JUNO detector filling scheme

JUNO Liquid Scintillator

Radiopurity requirements

	²³⁸ U	²³² Th	²²⁶ Ra	⁴⁰ K	²¹⁰ Pb(²²² Rn)	⁸⁵ Kr/ ³⁹
Requirement in LS	10 ⁻¹⁷ g/g 0.1 μBq/m ³	10 ⁻¹⁷ g/g 0.04 μBq/m ³	$5 \times 10^{-24} \text{ g/g}$ 0.1 µBq/m ³	10 ⁻¹⁸ g/g 0.2 μBq/m ³	10 ⁻²⁴ g/g 2.4 μBq/m ³ (5 mBq/m ³)	50 μBq
Contamination sources	Dust, water	Dust, water	Dust, water	Dust, water	Dust, Air/nitrogen, water	Air/nitı

These requirements are crucial for our solar neutrino program and for future double beta decay searches. No feasible way to reprocess the LS once it is inside the Acrylic Vessel: we should plan everything very carefully.

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

The detector filling

Two alternative choices

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

- Two filling schemes were both written in CDR. FDR/Tests on CD prototype/manufacturing were based on water exchange.
- Water exchange:
 - Firstly fill water into CD and water pool at the same time: 2 months
 - Then fill in LS from top and drain out water from bottom : 6 months
- N₂ exchange:
 - Firstly fill N₂ into CD with 10 20 volumes: ~ 24 days for 400 m³/h or ~ 80 days for 200 m³/h
 - Then fill LS in to CD from bottom meanwhile fill water into water pool: 6 months

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

The detector filling

Results of previous reviews

In JUNO CDR, both water exchange and nitrogen exchange schemes for CD filling were proposed. The water exchange scheme is considered be safer both for people and equipment, and were adopted by Borexino and SNO. The FDR review based on water exchange was finished in January 2020

2.

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

Past decisions

In January 2022, the decision was taken to switch to gas exchange, mainly because of the not clear partition factors between water and LS when they are in contact during the filling.

Results of previous reviews

	Water exchange	Gas exchange 🗸
Background	2~3 orders too higher Ra Unknown Pb 2~5 times too higher Kr	Need to control Rn and Kr to the level of 1 mBq/m ³ and 50 µBq/m ³ , feasible
Time	2 months water filling + 6 months LS filling	1 month gas exchange (400 m³/h) + 6 months LS filling
Upgrade	Yes	Yes
Safety	Safe	Risk to person

Conclusion of previous review

• From background risk, gas exchange is better than water exchange

Last ISC meeting

- Suggested by Stefen: hold discussions with SNO+ and KamLAND 0

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

Past decisions

 On March 17 and 28, we held meetings with SNO+(Mark Chen) and KamLAND (Kunio Inoue, Gando, and Kengo)

SNO+ and KamLAND meetings

- Very interesting discussions
- Most of the problems of both experiments come from Rn leaks into the pipes and the detector
- Partition factors between water and LAB experienced by SNO+ are much better than assumed in our previous calculations
- Both experiments experienced ²¹⁰Pb and ²¹⁰Po contaminations coming from the scintillator purification plant pipes

Held in March 2022

Issues from the CD group

EB meeting - April 8, 2022

Risk Items	Worst Possible Results	Water Exchanging	Nitrogen Exchanging
Temperature field non- uniform and difficult to measure	Acrylic breaking	For 2 months when filling water, Need to control the big difference of temperature. For 6 months when filling LS, Water and LS have similar temperature about 21 °C.	More dangerous For about 1+6 months when filling N ₂ + filling LS and water, rock and PMT heat generation need to be balanced.
Pressure field non-uniform	Acrylic breaking	Less N ₂ flush above LS	More dangerous
Testify LS quality	To answer when CD will be able to testify the LS quality	 Filling LS after water shielding formed → 50 tons of LS can be tested Okay or not, which is independent of OSIRIS Pump out method is easy if LS is not good. Draining the LS from the top chimney while filling water from bottom chimney 	 More dangerous Filling LS and water same time, so no water shielding above the upper CD→ Over thousands of LS filled with LS self shielding may be able to test LS quality (Or it may not because of the high PMT firing rate) Too late to pump out Pump out method is with risks also. Pipes begins from CD bottom chimney, then go through water pool gate with feedthrough, then with ISO tanks shipped out to above ground
Tests on prototype	If no control & safety testified→ • Unknown results • long term delay	2 round tests on prototype, half year spent → Function tests were done two years ago	 Last minute changes, No prototype tests→ Control system & safety interlock are difficult to test in real huge system within limited time, including pumps/valves/sensors/PLC program, very complicated
Bacteria in water	 Transparency of water Transparency of acrylic (CD and PMT cover) 	Fill N ₂ into water pool while filling water \rightarrow Danger for 2 months	More dangerous Fill N₂ into water pool while filling water and LS → Danger for 6 months, <u>temperature / pressure /</u> <u>bacteria risks will be mixed. If anyone has problems</u> , our experiment will lose.

JUNO-Italia,

The final decision

			Effects on physics (partition factor 10 ⁻¹ (U/Th/Pb) and			
	Radiopurity in water	Risk in LS	IBD	Solar (5y)	Ονββ	
²³⁸ U	10 ⁻¹⁵ g/g	0-1 orders too high	No	Be7: 0.2% (ideal) \rightarrow 0.4%	2% bkg more	
²³² Th	10 ⁻¹⁵ g/g	0-1 orders too high		CNO: 4% (ideal) \rightarrow 7%	20% bkg more	
²²⁶ Ra	40~1000 uBq/m ³	0~2 orders too high		_	2%~20% bkg moi	
²¹⁰ Pb	10 ⁻²¹ ~10 ⁻²² g/g	0~2 orders too high		For 2 orders Be7: 0.2% (ideal) \rightarrow 1.1% Pep: 4% (ideal) \rightarrow 5% CNO: 10% (ideal) \rightarrow 17%	No	
⁸⁵ Kr	300 uBq/m ³	< 1 order		Be7: 0.2% → 0.7%		

JUNO-Italia, 06.05.22 - Monica Sisti Background Report

EB meeting - April 8, 2022

• Back to water exchange scheme!

New background estimates (work in progress)

Thanks for your allention!