
Rate and bandwidth 
measurements

Antonio Bergnoli, Riccardo Brugnera, Vanessa Cerrone, Alberto Coppi, 
Alberto Garfagnini, Marco Grassi, Beatrice Jelmini, Ivano Lippi, 

Andrea Serafini, Andrea Triossi, Riccardo Triozzi, Katharina von Sturm

6 May 2022



Overview

2

1. IPbus and its implementation implementation

2. Data acquisition performances for a single GCU

3. Parallel acquisition with multiple GCUs



The IPbus suite
JUNO challenge: acquire and transfer data in parallel to the remote monitoring and control of the electronics.

IPbus suite of software and firmware implements a reliable high-performance control link specifically suited 
for particle physics electronics.

IPbus is a hardware and firmware solution that communicates over Ethernet using UDP/IP and consists of:

(i) A firmware module implementing the IPbus protocol within end-user hardware (e.g. JUNO's Kintex-7 and 
Spartan-6 FPGAs)

(ii) A micro Hardware Access Library (uHAL) providing an end-user C++/Python library for read/write 
operations on IPbus.

(iii) A software application called ControlHub, which mediates simultaneous hardware access from multiple 
uHAL clients. 

While the UDP protocol does not include any native reliability mechanism, the use of ControlHub assures the 
duplication and re-ordering of any lost IPbus UDP packet, providing a reliability mechanism at software level.

3



Data
acquisition

Slow 
control

Firmware 
updates

DAQ script 
IPbus uHAL client

Slow control 
scripts 

IPbus uHAL client

Xilinx Vivado Suite

Spartan-6

JTAG

GCU

Kintex-7

IPbus 
Controller

Flash 
memory

Server

Xilinx Virtual Cable 
server

IPbus uHAL client

FIFO
IPbus DAQ slave

IPbus implementation

L1 cache 

IPbus slave

Ethernet
interface

IPbus ControlHub

XVC

TCP/IP

TCP/IP

UDP/IP

4



DAQ script 
IPbus uHAL client

Slow control 
scripts 

IPbus uHAL client

Xilinx Vivado Suite

Spartan-6

JTAG

GCU

Kintex-7

IPbus 
Controller

Flash 
memory

Server

Xilinx Virtual Cable 
server

IPbus uHAL client

FIFO
IPbus DAQ slave

IPbus implementation

L1 cache 

IPbus slave

Ethernet
interface

IPbus ControlHub

XVC

TCP/IP

TCP/IP

UDP/IP

Data
acquisition

Slow 
control

Firmware 
updates

My talk at Jan 2022 Collaboration Meeting (DocDB 7827)

Simplified scheme of server-FPGA connec�on

Xilinx 
VIVADO

Kunshan server

XVC
server

Spartan6
(configurator)

IPBus

Kintex7
(main logic)

Flash
memory

GCU

ControlHUBTCP TCP

JTAGIPBus

Each GCU is equipped with a second smaller FPGA (Spartan6) with 
the purpose of ensuring a fail-safe reconfigura�on of the main 
Kintex7 FPGA.

Spartan 6 FPGA implements:
- a gigabit HUB providing ethernet access to the Kintex7
- the JTAG access to the Kintex7 via XVC (Xilinx Virtual Cable) 

proprietary protocol and IPBus;

The XVC server bridges vendor tools (via XVC-tcp protocol) to the IPBUS ( via the TCP link with the ControlHUB)
18/01/2022 A. Serafini - Firmware flashing update 3

Flashing Procedure for a single GCU 

Vola�le flashing

• An instance of Vivado (Xilinx) 
connects to the Kintex7 through a 
virtual cable running on ethernet 
(XVC -> TCP -> IPBus -> JTAG).

• A temporary firmware called 
“programmer” is flashed on the 
vola�le memory of the Kintex7 FPGA 
via Vivado. The programmer is 
accessible via a sta�c and hardcoded 
IP address.

Permanent flashing

• The FPGA_prog u�lity is then used to 
write the desired firmware on the 
permanent flash memory of the 
Kintex7.

• The Kintex7 automa�cally reboots, 
loading the updated firmware from its 
flash memory.

• The Spartan6 FPGA provides the 
Kintex7 its sta�c IP based on its 
GCU_ID number.

18/01/2022 A. Serafini - Firmware flashing update 4

For each GCU, a “vola�le” job is submi�ed to a FIFO queue. 
N workers are ini�alized. Whenever a worker is available, it runs the first job of the 
queue. As soon as the worker ends the flashing of the programmer, it launches the 
permanent flashing of the GCU in background and moves on to the next job.

The solu�on: workers and jobs queueing

Jobs FIFO queue Vola�le flashing
Vivado (Xilinx)

Permanent flashing
FPGA_prog

1

2

…N

N workers

18/01/2022 A. Serafini - Firmware flashing update 8

Op�miza�on of allocated resources

18/01/2022 11

Logging the CPU usage confirmed our guess: CPU starts to saturate for >25 workers.
Counter-intui�vely, for >25 workers the total �me needed to flash 250 GCUs returns to increase.

Best configura�on
Total: 250 GCUs

N. workers 
[#]

Dura�on
[mm:ss]

5 53:40

10 27:10

15 23:10

20 18:50

25 16:10

30 19:30

35 26:30

5

https://juno.ihep.ac.cn/Dev_DocDB/0078/007827/001/2022_01_18_parallel_flashing.pdf


DAQ script 
IPbus uHAL client

Slow control 
scripts 

IPbus uHAL client

Xilinx Vivado Suite

Spartan-6

JTAG

GCU

Kintex-7

IPbus 
Controller

Flash 
memory

Server

Xilinx Virtual Cable 
server

IPbus uHAL client

FIFO
IPbus DAQ slave

IPbus implementation

L1 cache 

IPbus slave

Ethernet
interface

IPbus ControlHub

XVC

TCP/IP

TCP/IP

UDP/IP

Data
acquisition

Slow 
control

Firmware 
updates

Beatrice’s talk at Jan 2022 Collaboration Meeting (DocDB 7829)

6

https://juno.ihep.ac.cn/Dev_DocDB/0078/007829/001/Kunshan%20data%20analysis%20status%20-%20JUNO%2019th%20collaboration%20meeting%20.pdf


DAQ script 
IPbus uHAL client

Slow control 
scripts 

IPbus uHAL client

Xilinx Vivado Suite

Spartan-6

JTAG

GCU

Kintex-7

IPbus 
Controller

Flash 
memory

Server

Xilinx Virtual Cable 
server

IPbus uHAL client

FIFO
IPbus DAQ slave

IPbus implementation

L1 cache 

IPbus slave

Ethernet
interface

IPbus ControlHub

XVC

TCP/IP

TCP/IP

UDP/IP

Data
acquisition

Slow 
control

Firmware 
updates

Today’s talk!!!!

7



The structure of a waveform data packet
A waveform data packet is composed of a header, a trailer and the actual waveform data.
Each waveform contains 1 μs of data sampled with 1GHz frequency, for a total of 1000 samples.

Header TrailerWaveform data
Fixed header start
Channel number (0,1,2)
Trigger window
Trigger count
Timestamp

Fixed trailer starting sequence
GCU ID
Fixed trailer end

1000 ADC samples

1 waveform packet = 16 header bytes + 16 trailer bytes + 1 μs x 1000 ADC/μs x 2 bytes/ADC = 2032 bytes
The FIFO has a dimension of 8192 bytes and can therefore contain ∼4 waveforms.

Data packet

8



Maximum transferrable bandwidth for 1 GCU
Via IPbus it is possible to specify the “blocksize” with which read the waveform data from the GCU.

Higher blocksize  less data packets  higher bandwidth

We performed a scan of the transferrable bandwidth
as a function of the blocksize.

We logged both the network bandwidth (single) and the
bandwidth used by valid waveform data (data).

• For large payloads it is possible to reach ∼0.5 Gbit/s 
maximum permitted by IPbus protocol

• “single” bandwidth and “data” bandwidth correspond
 all transferred packets are waveform data packets

9



Maximum transferrable bandwidth for 1 GCU
Blocksize determines the maximum transferrable bandwidth for a GCU. 
When bandwidth saturates, we are not able to transfer all waveforms (wf) collected by the GCU.

survival fr. =
# wf transferred
# wf generated

10



Managing several GCUs in parallel
At Kunshan we have a CentOS server having an Intel Xeon Gold 6226 CPU @ 2.70GHz for a total of 
24 cores (48 threads). We can test up to 344 GCUs in parallel.

We logged the transferred bandwidth as a 
function of the number of GCUs read in
parallel for a blocksize of 2048.

• Server resources saturate for ∼30 GCUs. 
Afterward, transferred bandwidth slowly
continue to grow.

• Most resources are used by the ControlHub.

• Looking at the bandwidth transferred per 
GCU (total bandwidth/ # GCUs), it is still
possible to manage a 1kHz trigger rate
with 90-100 GCUs.

11



Reducing CPU usage with Jumbo Frames
Standard ethernet packets are designed to carry 1500 bytes of payload. This payload is also 
called Maximum Transferrable Unit (MTU).

Most modern network interfaces can support MTUs up to 9000 bytes. Suck ethernet packets are 
usually referred to as Jumbo Frames.

12

The rationale:
higher payloads  less packets  lower CPU utilization

DATA FLOW

PAYLOAD
OVERHEAD

STANDARD FRAME (1500 MTU)

DATA FLOW

PAYLOAD
OVERHEAD

JUMBO FRAME (9000 MTU)



Testing Jumbo Frames @ LNL 

13



Testing Jumbo Frames @ Kunshan

14

Jumbo Frames permit to lower 
ControlHub’s CPU utilization by 20%

As a consequence, it is now possible 
to manage a 1kHz trigger rate
with 150 GCUs!

A rough estimate for JUNO setup:

17612 L-PMTs
 17612/3 = 5871 GCUs
 5871/150 = 40 servers

Needs to be carefully checked!
Needs additional measurements!!



Final remarks

15

• At GCU level we can manage trigger rates up to 10 kHz.

• When dealing with multiple GCUs, the bottleneck is represented by the CPU usage 
of the ControlHub. However, keep in mind that ControlHub is crucial to permit the 
simultaneous access to data and slow control parameters.

• Jumbo Frames can help in reducing ControlHub’s CPU usage. It is possible to sustain 
a trigger rate of 1kHz when managing 150 GCUs in parallel.

We are condensing all our tests and 
measurements in an article under preparation!



16



17


	Rate and bandwidth measurements
	Overview
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	The structure of a waveform data packet
	Maximum transferrable bandwidth for 1 GCU
	Maximum transferrable bandwidth for 1 GCU
	Managing several GCUs in parallel
	Reducing CPU usage with Jumbo Frames
	Testing Jumbo Frames @ LNL 
	Testing Jumbo Frames @ Kunshan
	Final remarks
	Slide Number 16
	Slide Number 17

