JUNO unoscillated reactor spectrum: a proposal for the first year of data taking

Beatrice Jelmini

on behalf of the Padova group

Università degli Studi di Padova

JUNO Italia meeting 05/05/2022

Why a new reactor model?

- Model for 1st year of data taking, when TAO not yet available or with low statistics
- "Standard" Huber&Mueller model presents discrepancies wrt recent short-baseline experiments
- Current approach (sensitivity studies): Huber&Mueller + effective corrections from DYB

(A) × 10⁻⁴² 0.15 cm² / fission / MeV 0.1 0.05 bump RAA (B) Data / Prediction 0.8 (C) 1.04 6+8AD/6AD 1.02 0.98 3 Antineutrino Energy (MeV)

Why a new reactor model? - Outline

- New reactor model:
 - discrepancies are included
 - <u>based on data</u> from reactor antineutrino experiments
- 1. How to build the spectrum
- 2. Evolution with burnup
- 3. Uncertainties treatment
- 4. Spent Nuclear Fuel + Non-Equilibrium correction

JUNO-doc-8157

- Review of available spectra
- Vanilla vs DYB-based models
 - Our proposal

JUNO-doc-8235

- Mean cross section per fission
- Effect on antineutrino rate
- Effect on spectral shape

Unoscillated reactor model for JUNO

Reactor Antineutrino Spectrum

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Reactor isotopic spectra

1) Ab initio (or summation) method

 $\overline{\nu}_e$ spectra from sum of all individual beta branches relies on available nuclear data (fission yields,...)

2) Conversion method

measured β spectra converted to $\overline{\nu}_e$ spectra based on ILL measurements in 1980's

3) Reactor antineutrinos

 $\overline{\nu}_e$ spectrum directly measured from experiments at reactors

Summa	Vc Hu M	ogel: 1989 uber: 2011 ueller: 2011	Haag: 2014 EF: 2019 DVB: 2021	KI_corr: 2021 DYB+P: 2021		
	²³⁵ U	²³⁸ U	²³⁹ Pu	241p	u	Total
1) ab initio						
method	EF	EF, Mueller	EF	EF	:	/
2) conversion method	Huber, Mueller (ILL: 0-12 h), Haag+KI_corr	Haag (Garching 11-53 h), Haag+KI_corr	Huber, Mueller (ILL: 0-36 h)	Huber, N (ILL: 0-3	1ueller 36 h)	/
3) reactor antineutrino	DYB, DYB+PP, TAO?	TAO?	DYB DYB+PP, TAO?	(combo) TAC)?	DYB, TAO
parametric	HM_parametric, V_parametric	HM_parametric, V_parametric	HM_parametric, V_parametric	HM_para V_parar	metric <i>,</i> netric	/

Huber (H) spectra

Mueller (M) spectra

Estienne-Fallot (EF) spectra

Most updated calculations based on *ab initio* method

Most recent nuclear measurements are included

Theoretical calculations down to 0 MeV

Estienne, Fallot et al. (2019) arXiv:1904.09358v1

Ab initio method Range: 0-10.1 MeV Binning: 100 keV

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

DYB unfolded spectra - weighted by σ_{IBD}

f_{235}^{DYB} : f_{238}^{DYB} : f_{239}^{DYB} : $f_{241}^{\text{DYB}} = 0.564$: 0.076: 0.304: 0.056

DYB collaboration (2021) arXiv:2102.04614

From reactor antineutrinos Range: 1.8-9.8 MeV Binning: 250 keV

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Model 1: Vanilla reactor model

Build JUNO spectrum from single isotopic spectra with a standard approach

Estimated mean fission fractions for JUNO:

 $f_{235}: f_{238}: f_{239}: f_{241} = 0.58: 0.07: 0.30: 0.05$

<u>Vertical lines</u>: separation between interpolation and extrapolation regions. Exponential inter-/extrapolation is used.

$$S_{JUNO} = f_{235}S_{235} + f_{239}S_{239} + f_{238}S_{238} + f_{241}S_{241}$$

$$S_{JUNO} \text{ using } S_i \text{ from Huber&Mueller}$$

$$\int_{1.5}^{2.0} \int_{1.5}^{\sqrt{10^{-43}}} \int_{0.5}^{\sqrt{10^{-43}}} \int_{0.5}^{\sqrt$$

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Model 2: DYB-based reactor model

Build JUNO spectrum using Daya Bay unfolded spectra - with pu_combo:

 $S_{\text{JUNO}} = S_{\text{total}} + \Delta f_{235}S_{235} + \Delta f_{239}S_{\text{pu}_\text{combo}} + \Delta f_{238}S_{238} + (\Delta f_{241} - 0.183 \Delta f_{239})S_{241}$ includes 6% deficit + 5-MeV bump another model: which one?

average effective fission fractions

	f ₂₃₅	f ₂₃₈	f ₂₃₉	f ₂₄₁
DYB	0.564	0.076	0.304	0.056
JUNO	0.58	0.07	0.30	0.05

$$\Delta f_i = f_i^{\text{JUNO}} - f_i^{\text{DYB}}$$

$$\underline{\text{note}}: f_i^{\text{JUNO}} \to f_i^{\text{JUNO}}(t)$$

$$\Delta f_i \to \Delta f_i(t)$$

Build JUNO spectrum using DYB+PP unfolded spectra - <u>without</u> pu_combo:

$$S_{\text{JUNO}} = S_{\text{total}} + \Delta f_{235} S_{235} + \Delta f_{239} S_{239} + \Delta f_{238} S_{238} + \Delta f_{241} S_{241}$$

arXiv:2102.04614

Impact of the fission fractions on the DYB-based model

DYB total = S_{total} <u>arXiv:2102.04614</u> JUNO total = S_{JUNO} from model 2 (DYB+HM)

	f ₂₃₅	<i>f</i> ₂₃₈	<i>f</i> ₂₃₉	<i>f</i> ₂₄₁
DYB	0.564	0.076	0.304	0.056
JUNO	0.58	0.07	0.30	0.05

$$\begin{array}{l} \Delta f_{235} = +0.016 \\ \Delta f_{238} = -0.006 \\ \Delta f_{239} = -0.004 \\ \Delta f_{241} = -0.006 \end{array}$$

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Final inputs to the DYB-based reactor model

Build JUNO spectrum using Daya Bay unfolded spectra - with pu_combo:

 $S_{\text{JUNO}} = S_{\text{total}} + \Delta f_{235} S_{235} + \Delta f_{239} S_{\text{pu}_\text{combo}} + \Delta f_{238} S_{238} + (\Delta f_{241} - 0.183 \Delta f_{239}) S_{241}$

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Absolute model comparison

05/05/22

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Evolution with burnup

05/05/22

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time evolution

Cross section per fission (or IBD yield)

studies on sterile neutrinos

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Mean cross section per fission: a few numbers

 $\langle \sigma \rangle_f^{\text{DYB}} = (5.90 \pm 0.13) \times 10^{-43} \text{ cm}^2/\text{fission}$ $\langle \sigma \rangle_f^{\text{DC}} = (5.71 \pm 0.06) \times 10^{-43} \text{ cm}^2/\text{fission}$

Vanilla model: $\langle \sigma \rangle_f = 6.15 \times 10^{-43} \text{ cm}^2/\text{fission}$ DYB model: $\langle \sigma \rangle_f = 5.83 \times 10^{-43} \text{ cm}^2/\text{fission}$

DYB/vanilla = 0.948

Predicted σ_i per isotope (HM): $\sigma_{235} = (6.69 \pm 0.14) \times 10^{-43} \text{ cm}^2/\text{fission}$ $\sigma_{239} = (4.40 \pm 0.11) \times 10^{-43} \text{ cm}^2/\text{fission}$ $\sigma_{238} = (10.10 \pm 0.82) \times 10^{-43} \text{ cm}^2/\text{fission}$ $\sigma_{241} = (6.03 \pm 0.13) \times 10^{-43} \text{ cm}^2/\text{fission}$

Giunti et al., arXiv:2110.06820

I find same values within 1%

<u>Note</u>: ²³⁸U has largest IBD yield, but only fission with fast neutrons

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

evolution

Fission fractions and fuel composition

<u>Fission fraction</u> f_i : # of fissions from *i-th* isotope / total # of fissions

1 refueling cycle ~ 12-18 months At every cycle, only ~ 1/3 or 1/4 of the reactor fuel is replaced with fresh fuel: Low Enriched Uranium (LEU) YJ: 95.55% 238 U, 4.45% 235 U TS: 97.02% 238 U, 2.98% 235 U

²³⁹Pu and ²⁴¹Pu: produced by neutron capture on ²³⁸U

Fuel composition is not constant --> fission fractions evolve in time

DYB, <u>arXiv:1607.05378</u>

Evolution of $\langle \sigma \rangle_f$

- DYB-based model (2021) is used
- Results depend on the integration interval compare blue and green
- HM model overestimates by 5-6%
- Mean cross section per fission decreases by -6.48% over 1 burnup cycle (blue points)

Evolution of the fission rate

Mean energy per fission:

$$\langle E \rangle_f = \sum_j f_j \; e_j$$

It increases with burnup

Fission rate =
$$\frac{W_{\text{th}}}{\langle E \rangle_f}$$

[#fission/s]

Fission rate decreases by -1.31% over 1 burnup cycle

Note: a constant load factor of 100% is assumed

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Evolution of the antineutrino rate

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

evolution

 $\langle \sigma_f \rangle$

-6.48%

Effect of burnup on the spectral shape

Bottom panel: relative difference wrt spectrum at beginning of burnup cycle

05/05/22

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Summary and next steps

- JUNO reactor model
 - Use DYB-based reactor model with RAA and 5-MeV bump
 - Inputs: mainly DYB, TAO in the future
- Evolution in time
 - Effects both on shape and rate
 - Extend from single-core to multiple-core configuration
- Next steps
 - Uncertainties treatment study is ongoing
 - Contribution from Spent Nuclear Fuel and Non-Equilibrium correction

Stay tuned and thank you!

Bibliography (1)

- Vogel and Engel, 1989, PRD 39
- Huber 2011, <u>arXiv:1106.0687v4</u>, conversion based on ILL's data
- Mueller et al. 2011, arXiv:1101.2663, conversion based on ILL's data
- Haag et al. 2014, arXiv:1312.5601, conversion of ²³⁸U based on Garching's data
- Estienne, Fallot et al. 2019, arXiv:1904.09358, ab initio method
- Kopeikin *et al.* 2021, <u>arXiv:2103.01684</u>, correction to U's based on KI's data
- DYB collab. 2019, <u>arXiv:1904.07812</u>, Extraction of the 235U and 239Pu Antineutrino Spectra at Daya Bay - PRL 2019
- DYB collab. 2021, <u>arXiv:2102.04614</u>, unfolded spectra CPC 2021
- DYB+PROSPECT 2021, <u>arXiv:2106.12251</u>, new spectra with PROSPECT

Bibliography (2)

- Huber and Jaffke, <u>arXiv:1510.08948</u>, nonlinear nuclides
- DYB collab. 2017, <u>arXiv:1607.05378</u>, *Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay* SNF, NonEq, ...
- DYB collab. 2017, <u>arXiv:1704.01082</u>, Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay
- Hayes et al. 2017, <u>arXiv:1707.07728</u>, Analysis of the Daya Bay Reactor Antineutrino Flux Changes with Fuel Burnup
- Yu-Feng Li, Zhao Xin, 2021, <u>arXiv:2112.11386v2</u>, Model-Independent Determination of Isotopic Cross Sections per Fission for Reactor Antineutrinos

Bibliography (3)

- Sonzogni et al., <u>arXiv:1710.00092</u>, fine structure
- Prospects for Improved Understanding of Isotopic Reactor Antineutrino Fluxes, <u>arXiv:1709.10051</u>
- Giunti et al., *Diagnosing the Reactor Antineutrino Anomaly with Global Antineutrino Flux Data*, <u>arXiv:1901.01807</u>
- STEREO+PROSPECT, <u>arXiv:2107.03371</u>
- Giunti et al., *Reactor antineutrino anomaly in light of recent flux model refinements*, <u>arXiv:2110.06820</u>
- <u>Special features of the inverse-beta-decay reaction proceeding on a proton in a reactor-antineutrino flux</u>, Kopeikin et al.

Backup

05/05/22

DYB+PROSPECT spectra - only weighted by $\sigma_{\rm IBD}$

PROSPECT (PP)

- experiment at HEU reactor at Oak Ridge National Laboratory
- measurement of $\overline{\nu}_e$ spectrum from ²³⁵U

Consistency between DYB and PROSPECT is assessed

A joint fit is performed:

- reduced uncertainty on ²³⁵U
- reduced correlation between
 ²³⁵U and ²³⁹Pu

DYB+PROSPECT (2021) arXiv:2106.12251

From reactor antineutrinos Range: 1.8-8.5 MeV Binning: 250 keV

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Fission cross-section

- 1980's ILL measurement with thermal neutrons: ²³⁵U, ²³⁹Pu, and ²⁴¹Pu
 --> conversion (Huber)
- Fast neutrons needed to induce fission on ²³⁸U
 - ²³⁸U with *ab initio* method
 - --> Mueller or Estienne-Fallot
 - 2014 Garching measurement with thermal and fast neutrons:
 ²³⁵U and ²³⁸U β spectra
 --> ²³⁸U from conversion method

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Haag spectrum

Garching measurement - 2014

- Both thermal and fast neutrons
- Target foils from natural uranium (0.7% ²³⁵U, 99.3% ²³⁸U)
- Both ²³⁵U and ²³⁸U spectra are measured
- Normalization to ILL's ²³⁵U to reduce systematic uncertainties

First bin center at 3 MeV due to background at low energy

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Kopeikin spectra

Kurchatov Institute (KI) - 2021

- Ratio of β spectra of ²³⁵U and ²³⁹Pu
- Smaller ratio than ILL data
- β spectra converted in $\overline{\nu}_{e}$ spectra:
 - Corrected ²³⁵U spectrum
 - ²³⁸U spectrum: correction to Haag spectrum + Kopeikin at al. in the range 2-3 MeV (2012)

05/05/22

Kopeikin et al. arXiv:2103.01684

Conversion method + normalization correction Range: 1.875-8.125 MeV Binning: 250 keV

²³⁸U comparison: Haag vs Kopeikin

Kopeikin's $\overline{\nu}_e$ spectrum (KI) is not just Haag's $\overline{\nu}_e$ spectrum (BILL) renormalized. Re-normalization is performed on the β spectrum, then conversion is applied.

From Kopeikin et al.: BILL/KI = 1.054

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

²³⁸U: comparison

ab initio method conversion method

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Effect of ²³⁸U on total unoscillated spectrum

05/05/22

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

ab initio method conversion method

Kink is not an issue

Kink is not an issue: < 1% effect on the total spectrum

Haag spectrum begins at 3 MeV -> we don't trust extrapolation in the 2-3 MeV region

Kopeikin spectrum combines Haag data (3-7.5 MeV) with data from another experiment (<3 MeV)

In the end, we decided to stick to *ab initio* method for ²³⁸U

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

05/05/22

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

IBD cross section

- SV_{ci} and VB_{ci} from common inputs
 --> any correction included?
- SV_{approx} from Strumia-Vissani, Physics Letters B 564 (2003), eq. (25)
- Above 2 MeV, difference is within 0.5%

(2) A simple approximation which agrees with our full result within few per-mille for $E_{\nu} \lesssim 300 \text{ MeV}$ is

$$\sigma(\bar{\nu}_e p) \approx 10^{-43} [\text{cm}^2] p_e E_e E_\nu^{-0.07056 + 0.02018 \ln E_\nu - 0.001953 \ln^3 E_\nu}, \quad E_e = E_\nu - \Delta, \tag{25}$$

where all energies are expressed in MeV.

 $\Delta = m_n - m_p \approx 1.293 \text{ MeV}$

05/05/22

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Quantifying spectral changes

05/05/22

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Spectral changes per energy bin

- 6 energy bins
- S_j : mean cross section per fission integrated over the j-th energy bin for fixed values of f_{239}
- \overline{S}_j : mean of S_j in the j-th bin
- both DYB and HM models are shown

Beatrice Jelmini - JUNO unoscillated reactor model: spectrum and time

Burnup spectral changes versus energy

Plot of the slope
$$\overline{S}_j^{-1} dS_j / df_{239}$$

versus energy

High energy part of the spectrum is more affected by fission fractions evolution with burnup

Fission fraction uncertainty treatment

 $^{241}\mathrm{Pu}$

 $^{239}\mathrm{Pu}$

 $^{238}\mathrm{U}$

 $^{235}\mathrm{U}$

23511

Assumed uncertainty on fission fraction is 5%

Fuel evolution generates correlation between fission fractions

<u>Ma et al.</u>: fission fraction uncertainty varies with time + correlation coefficients at different burnup stages

Work in progress (see future talks)

