

Juno Italia meeting

May 5 - 6, 2022

Antineutrinos from reactors

Davide Chiesa

University and INFN of Milano - Bicocca

Introduction

Development of an analysis tool to generate and study the spectrum of antineutrinos from reactors

FEATURES

- Based on available nuclear data (ab initio calculation)
- Flexible and easy to use
- Can be coupled with reactor burnup simulations

Known limitations

Uncertainties from nuclear data

Provides the **unoscillated** $\bar{\nu}_e$ spectrum with **infinite energy resolution**

To be used for **benchmark** analysis with experimental data (TAO, JUNO, ...)

Input data

We want transparent and easy to be updated/modified input data

LIVE CHART OF NUCLIDES

- Developed and maintained by the IAEA
 Nuclear Data Section (<u>link</u>)
- The LiveChart API (Application Programming Interface) allows the direct download of data
- The Livechart API works very effectively with Python data analysis libraries

We load the **nuclear data** we need for the ab initio calculation (fission yields, half-lives, beta decay Q-values, ...) ΒεταShape

- The BetaShape program has been developed by the LNHB (Laboratoire National Henri Becquerel)
- Can be downloaded for free and run on most OS
- Its output was recently added to the Live Chart of Nuclides

We produce a data library with all the **spectra of antineutrinos** emitted in beta decays

First step: equilibrium spectrum

- Generate the $\bar{\nu}_e$ spectra from the main fissile (²³⁵U, ²³⁹Pu, ²⁴¹Pu) and fissionable (²³⁸U) isotopes at the **equilibrium** condition
- Most fission products have relatively short half-lives and reach equilibrium (production rate = decay rate) in a negligible timescale

SUMMATION SPECTRUM AT EQUILIBRIUM

$$S_{\nu}(E) = \sum_{i} f_{i} S_{\nu,i}(E) = \sum_{i} f_{i} \sum_{j} y_{i,j} S_{\nu,j}(E)$$

Fission
fraction
Fission
yields
Fission
of j-th isotope

i = ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

Multiplication by IBD cross section

Since TAO/JUNO will detect $\bar{\nu}_e$ through the IBD reaction, we multiply all $S_{\nu,j}(E)$ spectra by the IBD cross section:

$$S_{\nu,j}^{IBD}(E) = \sigma_{IBD}(E) S_{\nu,j}(E)$$

- We take $\sigma_{IBD}(E)$ from Eq. 25 in "A. Strumia, F. Vissani, <u>arXiv:astro-ph/0302055</u>"
- We produced a collection of $S_{\nu,j}^{IBD}(E)$ spectra for all β^- decaying fission products

In this way:

- we reduce the number of $\bar{\nu}_e$ spectra to be summed (1.8 MeV threshold)
- we can analyze the relative contribution of each fission product to the "IBD detectable" spectrum

Building the ²³⁵U equilibrium spectrum

STEP 1: Load all β^- decaying isotopes through the LiveChart API

- The half-lives and Q-values of 2764 β^- decays are loaded in a Python dataframe (pandas)
- STEP 2: Load the fission yields of ²³⁵U from LiveChart
 - ▶ 972 cumulative thermal fission yields of ²³⁵U are loaded in another dataframe

STEP 3: Merge the two **dataframes** to allow for data selection based on β^- decays half-lives and Q-values

- ▶ 821 fission yields entries are left after cutting stable fission products
- ▶ 666 isotopes left after removing β^- decays with Q < 1.8 MeV

STEP 4: Load the **IBD-weighted** $\overline{\nu}_e$ **spectra** from the collection of $S_{\nu,i}^{IBD}(E)$ spectra

- 206 spectra out of 666 are missing from the BetaShape database...
- Currently, we still do not include the contribution from 124 metastables fission products that would need for a dedicated treatment

Building the ²³⁵U equilibrium spectrum

STEP 5: Stack the $S_{\nu,j}^{IBD}(E)$ spectra multiplied by the fission yields y_j to get:

$$S_{\nu,i}(E) = \sum_{j} y_{i,j} S_{\nu,j}(E)$$
 $i = {}^{235}U$

Impact of missing/excluded data

How to quantify the impact of missing data?

- In the absence of spectral data, we cannot calculate their contribution (integral fraction) to the total spectrum...
- However, we can compute the fraction of missing data in terms of fission yields:

How many spectra to reach 99%?

- ▶ 117 spectra out of the 333 included ones are needed to reach 99% integral of the ²³⁵U $S_{\nu,j}^{IBD}(E)$ spectrum
- ▶ The first 10 spectra ordered by integral area are shown below

First 10 components of U235 antiNu spectrum

Impact of isotopes with $T_{1/2} > 24$ h

- We selected long-lived fission products with $T_{1/2} > 24$ h that do not *immediately* reach equilibrium (on a reactor cycle timescale, let's say 1 year)
- For the Their contribution to the ²³⁵U $S_{\nu,i}^{IBD}(E)$ spectrum is 0.083% of integral area
- At the maximum around 2.3 MeV, they account for about 2% of total spectrum

U235 antiNu spectrum

Impact of isotopes with $T_{1/2} > 10 d$

- ▶ There are only 3 fission products: ¹²⁴Sb (60.2 d), ¹²⁶Sb (12.5 d), and ¹⁵⁶Eu (15.2 d)
- ▶ Their contribution to the ²³⁵U $S_{\nu,j}^{IBD}(E)$ spectrum is 0.0001% of integral area
- At the maximum around 2.4 MeV, they account for about 1.4×10^{-5} of total spectrum

U235 antiNu spectrum

Comparison of ²³⁵U, ²³⁹Pu, ²⁴¹Pu, ²³⁸U spectra

antiNu spectra

Comparison of ²³⁵U, ²³⁹Pu, ²⁴¹Pu, ²³⁸U spectra

	²³⁵ U	²³⁹ Pu	²⁴¹ Pu	²³⁸ U
Fission Products (Q>1.8 MeV)	666	720	726	697
Fission Products included	333	357	358	342
% FY included	90.3%	87.2%	87.7%	87.4%
# of spectra to get 99% integral	117	134	141	127
Impact long-lived $T_{1/2} > 10 \text{ d}$	1.0×10^{-6}	1.2×10^{-5}	1.5×10^{-5}	3.1×10^{-6}

Conclusions

- A flexible and easy to use tool for generating *ab initio* antineutrino spectra is under development
- A preliminary analysis of equilibrium spectra from ²³⁵U, ²³⁹Pu, ²⁴¹Pu, ²³⁸U fissions has been conducted.
 - ▶ We still have to include the contribution from metastable fission products
- The impact of off-equilibrium long-lived isotopes seems to be negligible...
 - ...but we still have to check if they are parent isotopes of short-lived daughters that would be off-equilibrium as well
- The LiveChart API allows also to import uncertainties associated to FY data
 - ▶ We plan to study the impact of such uncertainties in the next future
 - Through this tool we can focus on the uncertainties of most relevant isotopes
- This tool will be integrated with PWR reactor simulations (see next talk) to analyze the antineutrino spectrum dependence as a function of burnup (fission fractions)
- * This tool will allow to investigate the fine structures of the unoscillated \bar{v}_e spectrum measured by TAO

Juno Italia meeting

May 5 - 6, 2022

Thanks for your attention

Davide Chiesa

University and INFN of Milano - Bicocca

