PNN studies update

A (slightly) different approach to PNN

- No negative MC weights in training set —> signal/bkg equalization + signal masses equalization with definite positive weights
- MC weights in test set (as usual)
- New combination of variables in input
- Simplified architecture of the PNN (less layers and nodes)
- Testing the model:
 - Loss performance on test set
 - Optimized significance

Input variables

The model - PNN

- 2 hidden layers;
- 32 nodes each;
- Output: softmax;
- Loss: categorical_crossentropy;
- LR: 0.01 with Adam optimizer;
- No dropout.

Performance on test set (with MC weights)

Loss: 0.096

Accuracy: 0.957

The model - PNN

AUC as a function of the resonance mass

- 2 hidden layers;
- 32 nodes each;
- Output: softmax;
- Loss: categorical_crossentropy;
- LR: 0.01 with Adam optimizer;
- No dropout.

Some distributions of the pnn score - X_boosted_m

Significance

- Signal scaled (significance formula well defined for a b/s > 1e-1)
- Double binning optimization (Luigi's method).

Significance

VBF merged Radion

mass

Conclusions

- To do:
 - Generalization to other signals/channels;
 - Compute significance on selected region (e.g. MergHP ZZ)
- Results:
 - Promising results (higher pnn significance over X_boosted_m)
 - Better performance that previous model;
 - The model can be further optimized (idea: use pca for deriving its correct size)