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Motivation and context



Cosmology from density fluctuations

Initial conditions

(inflation)

t

Dark matter
Dark energy

Inflation

Particle physics, string theory…

Can we learn more?



What are (spectroscopic) galaxy surveys?
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Why are we doing it?

1) Distribution of galaxies remembers the initial conditions

2) Everything gravitates

Single “clock”? Speed of inflaton fluctuations less than 1? 

“Spectroscopy” of massive/higher spin particles? 

Primordial features in the power spectrum?

Sum of neutrino masses. Other massive (but light) relics? Ultralight axions?

Spatial curvature, dark energy?

New energy components in early or late universe?

Probing dark sector, new long-range interactions?  



How are we going to do it?
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The power spectrum has a lot of features that carry information about cosmology

+n-point functions



Isn’t the CMB good enough?

1) We are approaching the limit, given by the number of pixels on the sky:    Npix. ≈ ℓ2
max. ∼ 107

also fix rd. Hence, the ↵-analysis and our method should be technically similar if we
fix rd in the ↵-analysis and !b,!cdm from our side.

Another important observation is that the ↵-analysis assumes H(zeff) and DA(zeff)

to be completely independent from each other, while in reality they are related by
construction,18

DA(z) =
1

1 + z

Z z

0

dz
0

H(z0)
. (6.1)

In ⇤CDM a prior on !m completely fixes the relation between the two at any redshift.
Once we impose this relation,19 the limits on H and DA from the ↵-analysis coincide
with the limits obtained with our method (modulo some small difference which can
be explained by the use of slightly different priors and theoretical models, see App. D
for more detail). This can be seen in Fig. 5 and Tabs. 6, 7.

One can notice that the ⇤CDM priors have a very dramatic effect on the mea-
surements of H and DA, whose errorbars reduce by a factor of few compared to the
basic ↵-analysis without any priors. However, the effect on DV is not very strong.
This reflects the observation that DV is the best measured combination of DA and H,
which is extracted directly from the monopole, while H and DA are measured from
the quadrupole, which has significantly bigger statistical errors.20 This statement is
not obvious from our analysis as the errorbars on all three distances H, DA, and DV

are comparable in ⇤CDM.
In order to better understand the situation we analyze the BOSS data assuming

a generic dynamical dark energy (DDE) model, described by the following Friedman
equation:

H
2(z) = H

2

0

⇣
⌦m(1 + z)3 + ⌦⇤ + ⌦de(1 + z)w0+wa

z
1+z

⌘
. (6.3)

We assume the following flat priors on wa and w0:

⌦de 2 (0, 1) , w0 2 (�2,�0.33) , wa 2 (�5, 5) , (6.4)

18We work in the unit system with c = 1.
19To that end we have run mock MCMC chains that fitted DA and H from the Gaussian likelihood

for rd assuming ⇤CDM. Then we found the principal component of these variables and imposed
this as a prior in the MCMC chains which sampled ↵ parameters.

20It is useful to compare our limits with the ones obtained in the main BOSS Fourier-space BAO
and FS power spectrum analyses, see Refs. [6, 82]. These are

DV (zeff = 0.38) = 1493± 28 [Mpc] , DV (zeff = 0.61) = 2133± 36 [Mpc] , (FS) ,
DV (zeff = 0.38) = 1479± 23 [Mpc] , DV (zeff = 0.61) = 2141± 36 [Mpc] , (pre-recon BAO) ,

DV (zeff = 0.38) = 1474± 17 [Mpc] , DV (zeff = 0.61) = 2144± 20 [Mpc] , (post-recon BAO) .

(6.2)

Note that these limits were obtained by using slightly different datasamples (NGC+SGC), kmax

cuts and the theoretical model, and hence should be compared to our results shown in this section
with some caution.
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CDMΛ H0rs(!cdm,!b) (9)

2



Isn’t the CMB good enough?

BAO

2) There are degeneracies in the CMB that have to be broken by the external data



Motivation

CMB is great, but not sufficient to answer all open questions in cosmology

Galaxy surveys complementary, becoming competitive with the CMB

In combination, they become even more powerful

The key is robust theoretical description of galaxy clustering



Dynamics of LSS



Galaxy clustering from a physicist’s point of view

Perturbation theory
Effective Field Theory

Dynamics
Non-perturbative results

Soft theorems

Symmetries



The main nonlinearities in LSS

typical separation between

galaxies is a few Mpc

At early times fluctuations are very small and nearly gaussian



The main nonlinearities in LSS

typical separation between

galaxies is a few Mpc

for        at low redshiftsR ∼ few Mpc

The horizon scale    H−1
0 ∼ 104 Mpc number of pixels in LSS:    Npix. ≈ (H0Rnl.)−3 ∼ 109

Tides:
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The main nonlinearities in LSS

typical separation between

galaxies is a few Mpc

typical displacements are  at low redshifts𝒪(10 Mpc)

free fall in the potential produced by the long-wavelength fields
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The main nonlinearities in LSS



The main nonlinearities in LSS

typical separation between

galaxies is a few Mpc

Galaxies are discrete, biased tracers of the underlying DM field (no mass and momentum conservation)

Galaxy formation complicated, but local in space (nonlocal in time!)



̂z

The main nonlinearities in LSS

Peculiar velocities introduce redshift-space distortions

where we have considered only the connected diagram and, for simplicity, we are neglecting soft loops
attached to each lines. To compare with perturbation theory, we need to compute the tree-level
exchange diagram. The contribution from taking ~k1 and ~k3 at second order yields

T2121 ⇡ �4D(⌘1)D(⌘3)P0(|~k1 +~k2|)
~k1 · (~k1 + ~k2)

2|~k1 + ~k2|2
~k3 · (~k1 + ~k2)

2|~k1 + ~k2|2
h�~k1(⌘1)�~k2(⌘2)i

0h�~k3(⌘3)�~k4(⌘4)i
0
, (32)

and summing up the other permutations lead to
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which confirms eq. (31). One can easily extend this check to the case of several soft-lines.

3 Going to redshift space
The derivation of the consistency relations has been done in real space, but the galaxy distribution will
of course be observed in redshift space. It is thus natural to ask if it is possible to write relations directly
in terms of redshift space correlation function. Before doing so, let us stress that it will be difficult—if
not impossible—to measure consistency relations at different times. To see the effect of the long mode,
one would like to measure at quite different redshifts the short-scale correlation function at a spatial
distance which is much smaller than Hubble. This is of course impossible since we can only observe
objects on our past lightcone. This implies that, although one can check the consistency relations at
different times in simulations, for real data we will have to stick to correlation functions at the same
time. Given that the consistency relations vanish at equal time, their main phenomenological interest
will be to look for their possible violations, which would indicate that one of the assumptions does not
hold. This would represent a detection of either multi-field inflation or violation of the equivalence
principle (or both!)

The mapping between real space ~x and redshift space ~s in the plane-parallel approximation is given
by

~s = ~x +
vz

H ẑ , (34)

where ẑ is the direction of the line of sight, vz ⌘ ~v · ẑ, and ~v is the peculiar velocity. Also the
relation between z and ⌘ receives corrections due to peculiar velocities. These corrections are small for
sufficiently distant objects for which v ⌧ Hx. Notice that we do not assume that the peculiar velocity
is a function of the position ~x since this holds only in the single-stream approximation, which breaks
down for virialized objects on small scales [16, 17].

The derivation of the consistency relations follows closely what we did in real space, once we observe
that also in redshift space the long mode induces a (time-dependent) translation. Indeed we have

~x ! ~x + D ~r�0,L , (35)

~v ! ~v + fHD ~r�0,L , (36)

where D(⌘) is the growth factor, f(⌘) ⌘ d ln D/d ln a is the growth rate and ~r�0,L a homogenous
gradient of the initial gravitational potential �0,L, related to �0 defined in eq. (5) by r2�0,L = �0,L.

11

velocity dependent change of coordinates

The power spectrum becomes anisotropic — multipole expansion P0(k), P2(k) …



Effective field theory of large-scale structure

Carrasco, Hertzberg, Senatore (2012)
Baumann, Nicolis, Senatore, Zaldarriaga (2010)

Galaxy field is a material that fills the expanding universe

Unknown microphysics, the only long-range force is gravity

Formation of galaxies is local in space

It is ok, we do not have to know anything on small scales in order to do large-distance physics

…



Effective field theory of large-scale structure

Carrasco, Hertzberg, Senatore (2012)
Baumann, Nicolis, Senatore, Zaldarriaga (2010)

Large distance dof: δg

EoM are fluid-like, including gravity

Expansion parameters: , δg ∂/kNL

On scales larger than  this is the universal description of galaxy clustering1/kNL

All “UV” dependence is in a handful of free parameters

…

Symmetries, Equivalence Principle



@⌧� +r[(1 + �)v] = 0

@⌧v +Hv +r�+ v ·rv = �c2sr� + · · ·

r
2� =

3

2
H

2⌦m�

Carrasco, Hertzberg, Senatore (2012)

The simplest case — dark matter

Collisionless Boltzmann

equation + gravity

average over “short” fluctuations

Baumann, Nicolis, Senatore, Zaldarriaga (2010)

Unique long-distance description of a self-gravitating collisionless system
(the same EoM for DM and axion-like particle)
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The one-loop power spectrum of dark matter

h�k��ki = h�(1)k �(1)�ki+ h�(2)k �(2)�ki+ h�(1)k �(3)�ki+ h�(3)k �(1)�ki+ · · ·

Carrasco, Hertzberg, Senatore (2012)

PUV
13 (k) = � 61

630⇡2
Plin(q)k

2

Z 1

0
dqPlin(q)

Figure 18: Function B` as defined in Eq. (B.3) as a function of k for the monopole and
quadrupole. We note an enhancement on small scales when reducing the velocity dispersion
(e.g. by suppressing the matter power spectrum).

indicates possible anisotropic effects of the structure suppression of axions and constitutes a
completely new signature beyond the well-known structure suppression. To investigate this,
we make use of a very simple redshift space model for the galaxy power spectrum where we
approximate the galaxy power spectrum as

Pg(k, µ) ⇡ e
�(kµf�v)2

�
1 + fµ

2
�2

b
2
gPlin(k), (B.1)

where bg is the galaxy bias and where �v is the galaxy velocity dispersion. This model is
based on the Kaiser approximation [99] with a Gaussian kernel for the finger-of-God effects.
The velocity dispersion can be roughly approximated at linear order with (see Ref. [100] and
references therein)

�
2
v,lin =

1

6⇡2

Z
dqPlin(q). (B.2)

Using Eq. (3.2), we have that the multipoles of the power spectrum are

P`(k) =
2` + 1

2
b
2
gPlin(k)

Z 1

�1
dµ e

�(kµf�v)2
�
1 + fµ

2
�2 P`(µ)

| {z }
⌘B`(k;�v)

. (B.3)

From this simple model, we find that the increase in the quadrupole moment is at-
tributable to a decrease in the velocity divergence which arises when the linear matter power
spectrum is suppressed and the value of the integral in Eq. (B.2) decreases. This decrease in
�v leads to a higher value of the B`, especially for the ` = 2 as shown in Fig. 18.

C Axion Transfer Function Interpolation

The axion transfer function defined in Eq. 3.3 captures the deviation from ⇤CDM due to
axions in the matter power spectrum. It is most often obtained through semi-analytic approx-
imations [27] or numerically with adapted Boltzmann codes. In the present study however,
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Infrared resummation

4

has been kept in (??). For each q mode, this scales as
Plin(q)(`BAO/�)2 for q ⌧ `�1

BAO
, and Plin(q)/(q�)2 for

q > `BAO. The corrections are suppressed by one or
more powers of �/`BAO and q�, respectively. Hence, due
to the bulk motions, ⇠̃g has a broader peak with ⌃2

⇤
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6⇡2
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dqPlin(q)[1�j0(q`BAO)+2j2(q`BAO)], (15)

where jn is the nth order spherical Bessel function.
It is easy to perturbatively confirm the above result

when ⇠g is taken to be the dark matter correlation: The
leading contribution of the long wavelength modes to the
one-loop power spectrum of the peak reads5

Pw
1�loop

(k > ⇤) =
1

2

Z
⇤ d3q

(2⇡)3
(q · k)2

q4
Plin(q)

[Pw
lin
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lin
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For q ⌧ k the expression in the square brackets simplifies
to �4Pw

lin
(k) sin2(q · k̂`BAO/2), giving

Pw
1�loop

(k > ⇤) = ⌃2

⇤
k2Pw

lin
(k), (18)

and taking the Fourier transform with respect to k re-
produces (??).

Note that for any k, our approximation is valid for all
q ⌧ k while the above expressions are based on a rigid
separation of scales above and below ⇤. Of course, in
reality Pw

g (k) has support in a large range of momenta,

roughly (0.05�1) hMpc�1. Even if a q-mode falls in this
range, it is still true that its leading e↵ect on higher k
modes is the mere bulk motion. Therefore, it contributes
to the peak power through ⇠g,L, and at the same time,
broadens it by dispersing the shorter modes. A better
estimate of the width can be obtained by including for
each k the broadening e↵ect of all smaller q modes, i.e.
by taking ⇤ to increase with k. Below, we will implement
this idea by taking ⇤ = ✏k, with ✏ ⌧ 1.

Taking ✏ = 1/2, the above expression (??) predicts an
e↵ective broadening of ⌃✏k⇤ ⇡ 5.5h�1Mpc, where k⇤ is
defined by ⌃✏k⇤k⇤ = 1. This turns out to be a sizable
fraction of the actual width of the observed matter cor-
relation function. We compare the theoretical prediction

5 The full one-loop power spectrum is given by
Z

d3q

(2⇡)3
[6F3(q,�q,k)Plin(k)+2F 2

2 (q,k�q)Plin(|k�q|)]Plin(q) .
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For q ⌧ k it reduces to (??). Incidentally, this coincides with

1
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as expected from the remark after (??).
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FIG. 3. The acoustic peak in the matter correlation function
in linear theory (solid), 1-loop perturbation theory (dashed),
and simulation.

with the result of an N -body simulation6 in fig. ??. It is
seen that the perturbative treatment has completely de-
formed the shape of the peak. A more accurate descrip-
tion should, therefore, treat the relative motions non-
perturbatively.

Infra-red resummation.— We can obtain a formula
which is valid to all orders in the relative displacement
�q/q, by rewriting (??) as (see e.g. [? ])

D
�g(

x

2
, t)�g(�

x

2
, t)

E

�L
'

Z
d3k

(2⇡)3
eik·x

exp
h
2i�q(t) sin

⇣q · x

2

⌘q · k

q2

i
h�g(k, t)�g(�k, t)i .

(19)

As before, this is only relevant in the presence of a fea-
ture. Taking the expectation value over the realizations
of the q modes, approximating them, as we did so far, as
being Gaussian, and using hexp(i')i = exp(�

⌦
'2

↵
/2)

for Gaussian variables, we obtain our final expression
for the dressed two-point correlation function around

6 We are measuring power spectra and correlation functions in a
suite of 16 dark matter only simulations, each of which captures
the evolution of 10243 particles in a box of 15003 h�3Mpc3. The
matter density parameter is ⌦m = 0.272, the tilt ns = 0.967 and
the normalization �8 = 0.81. The leading cosmic variance has
been divided out, such that the error bars reflect the sub-leading
cosmic variance.

6

ture are not absent. The presence of this feature is the
cause for the common wisdom that SPT does not work
for the correlation function. As the good performance of
the IR-resummed EFT proves, the failure is not related
to the high-k behavior of the perturbation theory but
to the missing non-perturbative treatment of motions.
One can indeed see that the IR-resummed EFT provides
a good description of the correlation function down to
10 h�1Mpc separations [? ].

Another feature of fig. ?? that is worth emphasizing is
the shift of the peak compared to the linear correlation
function. This shift is expected to be due to corrections
to ⇠̃g of order ⌃2⇠0g/`BAO, which are smaller than the
broadening e↵ects by a factor of �/`BAO [? ]. They
are not entirely fixed by symmetries since the cross cor-
relation between a displacement and other nonuniversal
e↵ects — e.g. arising from living in an over dense re-
gion — caused by a long wavelength mode contributes at
the same level. Nevertheless, they can be calculated in
perturbation theory and are included, to leading order,
in the 1-loop result, which predicts the position of the
peak reasonably well. On the other hand, the BAO re-
construction schemes, to be discussed below, reproduce
the original peak by virtue of undoing the displacements
caused by the long modes which also eliminates the above
mentioned cross correlations.

For comparison, we have also plotted in fig. ?? the
Zel’dovich correlation function, which is known to give
a relatively accurate description of the BAO spread. We
will next argue that the success of the Zel’dovich approx-
imation is because it can be formulated as (??).

Zel’dovich approximation.— The matter correlation
function can be related to the correlation function of the
relative displacement �s(z) of two points with initial
(Lagrangian) separation z:

1+⇠(x) =

Z
d3k

(2⇡)3
eik·x

Z
d3ze�ik·z

D
e�k·�s(z)

E
. (23)

In the Zel’dovich approximation, �s is replaced by its
linear expression, and the above expectation value is triv-
ially expressed in terms of the variance

Aij(z) =
⌦
�si(z)�sj(z)

↵

=

Z
d3q

qiqj

q4
Plin(q) sin

2

⇣q · z

2

⌘
.

(24)

Let us define Zel’dovich power spectrum as the result of
the inner integral in (??) at k 6= 0:

Pz(k) =

Z
d3ze�ik·ze�

1

2
Aij

(z)kikj

, (25)

which in the presence of the BAO feature contains an
oscillating component Pw

z (k). This can be approximated
by the product of a non-smoothed piece times a broad-
ening factor, as in (??): Define Aij

S (z,⇤), and Aij
L (z,⇤)

by the same integral as in (??), but taken, respectively,
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Zel'dovich

80 90 100 110 120

5

10

15

20

r [h-1Mpc]

10
4 �

FIG. 5. Various theoretical approximations to the acoustic
peak in the correlation function as well as simulation mea-
surements. Solid: linear, dashed: IR-resummed linear, dot-
dashed: IR-resummed 1-loop, and dotted: Zel’dovich.

over short modes q > ⇤, and long modes q < ⇤. So we
have

Aij(z) = Aij
S (z,⇤) +Aij

L (z,⇤). (26)

A Zel’dovich power spectrum in the absence of the long
modes Pz,S(k,⇤), where ⇤ ⌧ k, can now be defined by

replacing Aij
! Aij

S in (??). This is the analog of the
last factor in (??): it contains the full nonlinear e↵ect of
the short modes in the Zel’dovich approximation, but no
long modes whatsoever.
Consider now the full Pz(k). The integral in (??) is

dominated by z = O(1/k), and, if k is in the support of
Pw
z (k), by z = ±`BAOk̂+O(1/k). The second contribu-

tion is what we called Pw
z (k). Here, Aij

L (z) is first of all
appreciable, and second, it can be approximated to be a
constant given by its value at z = `BAOk̂ to yield

Pw
z (k) ⇡ e�

1

2
Aij

L (`BAOk̂,⇤)kikj

Pw
z,S(k,⇤)

⇡ e�⌃
2

⇤
k2

Pw
z,S(k,⇤).

(27)

The second equality holds up to terms suppressed by
�/`BAO. Replacing ⇤ ! ✏k results in the desired ana-
log of (??).
Hence, the Zel’dovich approximation, despite being a

crude model of short scale dynamics, gives an accurate
description of BAO broadening by taking into account
the leading displacement caused by all longer wavelength

h�q(⌘)�k1(⌘1) · · · �kn(⌘n)i0q⌧k = �Plin(q, ⌘)
X
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One of the applications of cosmological soft theorems
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✏kk
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h�g(k, t)�g(�k, t)i✏ . (20)

To write the exponent in the above form, we have used
the fact that r2

⇡ @2
r [and therefore k2 ⇡ (x̂ · k)2] up to

corrections of order �/`BAO. In principle, the exponen-
tial factor should only multiply the peak power Pw

g (k),
though in practice the smooth background at r ⇡ `BAO is
insensitive to the presence of this factor since ⌃ ⌧ `BAO.
The subscript ✏ on the momentum space expectation
value on the r.h.s. indicates that it should be evalu-
ated in the absence of modes with momentum q smaller
than ✏k, though it contains all short scale nonlinearities.
Within a perturbative framework, it is possible to include
dynamical e↵ects of the long modes, as well as their non-
Gaussianity by writing more complicated expressions (see
below).

To get an idea of how well (20) performs, we set
�g = � and approximate the exclusive expectation value
in the integral first by the linear matter power spectrum,
and then by the 1-loop perturbation theory result. The
first approximation underestimates the broadening by ne-
glecting short scale nonlinearities and therefore predicts
a slightly sharper peak.

Let us discuss the 1-loop approximation in more de-
tails to see how (20) can be used to improve perturbative
results. Two points have to be kept in mind: (i) The
broadening is only relevant for the acoustic peak, hence
the exponential broadening in (20) multiplies Pw

✏ (k). (ii)
Replacing Pw

✏ (k) with the 1-loop power spectrum double-
counts the e↵ect of the long modes since the 1-loop re-
sult already contains ⌃2

✏kk
2Pw

lin
(k) [c.f. (18)]. Hence in

this context the infra-red resummed version of the 1-loop
power spectrum presented in [7] can be simplified and
written as:

P̃ (k) = Pnw
lin

(k) + Pnw
1�loop

(k)

+e�⌃
2

✏kk
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(1 + ⌃2
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Pw
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(k),

(21)

where the first line contains just the smooth part of the
power spectrum.7 When considering loop integrals with
large internal momenta, one should allow for the possi-
bility of higher derivative corrections to the dark matter
equations of motion in an E↵ective Field Theory (EFT)
framework [9]. These corrections compensate for the er-
ror made in treating the short-scale modes as a perfect
fluid. Therefore, the EFT 1-loop power spectrum di↵ers
from (16) by one such correction:

P1�loop(k) = P13(k) + P22(k)� 2R2k2Plin(k), (22)

where R (also known as speed of sound) is chosen to be
1.8 h�2Mpc2 in order to obtain 1% agreement with the

7 In practice, Pnw
1�loop

can be obtained by substituting Plin(k) with

its no-wiggle part in the loop integrals (16) since Pw
lin

/Pnw
lin

⌧ 1.
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FIG. 4. The ratio of various theoretical approximations to the
power spectrum to the simulation result. Solid: IR-resummed
(21), short-dashed: 1-parameter 1-loop EFT (22), dot-dashed:
0-parameter 1-loop EFT (22) with R = 0, and long-dashed:
linear. The gray shaded region on the IR-resummed EFT
curve gives the statistical error.

simulation results up to kmax = 0.3hMpc�1 (see fig. 4).
This choice is a rough estimate of R, made in order to
illustrate how the resummation improves matching the
BAO oscillations for k > 0.1hMpc�1. The exact value of
R is irrelevant for the shape of the acoustic peak.
The above resummation formula (21) can be straight-

forwardly extended to any order in perturbation theory
and to higher order statistics such as the bispectrum or
trispectrum. Note that in this approximation the lead-
ing dynamical e↵ect of the long modes on short modes is
also taken into account. The comparison between the IR-
improved power spectrum (21), and the original 1-loop
result (22) can be seen in fig. 4. The IR-resummation
clearly reduces the residual wiggles in the EFT predic-
tion and can thus increase the range over which the the-
ory agrees with simulations, as was pointed out in [7].
For the correlation function, the broadened acoustic

peak resulting from the IR-resummed linear and 1-loop
power spectra is shown together with the initial peak in
fig. 5. Although the first approximation does not fully
capture the smoothing of the peak seen in the data, it
shows that indeed most of the spread is caused by the
bulk motions.
Without resummation the 1-loop EFT (or SPT) power

spectra result in a spurious double-peaked feature at the
BAO scale similar to the one shown in fig. 3. This is
because they only include ⌃2

✏k⇠
00(r) while higher deriva-

tive terms 1/n!⌃2n
✏k ⇠

(2n)(r) that partially cancel this fea-
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FIG. 4. The ratio of various theoretical approximations to the
power spectrum to the simulation result. Solid: IR-resummed
(21), short-dashed: 1-parameter 1-loop EFT (22), dot-dashed:
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curve gives the statistical error.

simulation results up to kmax = 0.3hMpc�1 (see fig. 4).
This choice is a rough estimate of R, made in order to
illustrate how the resummation improves matching the
BAO oscillations for k > 0.1hMpc�1. The exact value of
R is irrelevant for the shape of the acoustic peak.
The above resummation formula (21) can be straight-

forwardly extended to any order in perturbation theory
and to higher order statistics such as the bispectrum or
trispectrum. Note that in this approximation the lead-
ing dynamical e↵ect of the long modes on short modes is
also taken into account. The comparison between the IR-
improved power spectrum (21), and the original 1-loop
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Galaxies in redshift space

counterterm is combined with the higher derivative bias since they are perfectly
degenerate for the galaxy power spectrum. Third, the contributions from operators
�
3
, �G2, G3 disappeared after renormalization. This is the reason why b3, b�G2 , bG3 are

absent in Eq. (2.10).

Using the same bias model we can also calculate the galaxy-matter cross-spectrum
which is of relevance, for instance, for lensing surveys. It has the following form [54]:

Pgm(z, k) = b1(z)(Plin(z, k) + P1-loop, SPT(z, k)) +
1

2
b2(z)I�2(z, k)

+

✓
bG2(z) +

2

5
b�3(z)

◆
FG2(z, k)

+ bG2(z)IG2(z, k)�
�
R

2

⇤(z) + 2c2s(z)b1(z)
�
k
2
Plin(z, k) .

(2.12)

Note that the matter counterterm and the higher-derivative bias enter the cross-
spectrum and the the auto-spectrum in different combinations. In principle, This
allows one to break the degeneracy between them using the galaxy-lensing observa-
tions.

2.4 Power Spectrum of Biased Tracers in Redshift Space

The radial positions of galaxies in a survey are assigned using their redshifts, which
are contaminated by the peculiar velocity field. This gives rise to the so-called
redshift-space distortions RSD, which allow one to probe the velocity field along the
line-of-sight direction ẑ. We will work within the flat-sky plane-parallel approxima-
tion, where the redshift-space mapping can be fully characterized by the cosine of
the angle between the line-of-sight ẑ and the wavevector of a given Fourier mode k,
µ ⌘ (ẑ · k)/k. In this setup, the expression for the one-loop redshift-space power
spectrum reads (see Refs. [59, 60]):

Pgg,RSD(z, k, µ) =Z
2

1
(k)Plin(z, k) + 2

Z

q

Z
2

2
(q,k� q)Plin(z, |k� q|)Plin(z, q)

+ 6Z1(k)Plin(z, k)

Z

q

Z3(q,�q,k)Plin(z, q)

+ Pctr,RSD(z, k, µ) + P✏✏,RSD(z, k, µ) ,

(2.13)
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where the redshift-space kernels are given by

Z1(k) = b1 + fµ
2
, (2.14a)

Z2(k1,k2) =
b2

2
+ bG2

✓
(k1 · k2)2

k
2

1
k
2

2

� 1

◆
+ b1F2(k1,k2) + fµ

2
G2(k1,k2)

+
fµk

2

✓
µ1

k1
(b1 + fµ

2

2
) +

µ2

k2
(b1 + fµ

2

1
)

◆
, (2.14b)

Z3(k1,k2,k3) = 2b�3


(k1 · (k2 + k3))2

k
2

1
(k2 + k3)2

� 1

� ⇥
F2(k2,k3)�G2(k2,k3)

⇤

+ b1F3(k1,k2,k3) + fµ
2
G3(k1,k2,k3) +

(fµk)2

2
(b1 + fµ

2

1
)
µ2

k2

µ3

k3

+ fµk
µ3

k3

⇥
b1F2(k1,k2) + fµ

2

12
G2(k1,k2)

⇤
+ fµk(b1 + fµ

2

1
)
µ23

k23
G2(k2,k3)

+ b2F2(k1,k2) + 2bG2


(k1 · (k2 + k3))2

k
2

1
(k2 + k3)2

� 1

�
F2(k2,k3) +

b2fµk

2

µ1

k1

+ bG2fµk
µ1

k1


(k2 · k3)2

k
2

2
k
2

3

� 1

�
, (2.14c)

where k = k1 + k2 + k3 and Gn are the velocity divergence kernels [30]. Note that
Z3(k1,k2,k3) contains only bias parameters that give nontrivial contributions to the
redshift-space one-loop power spectrum and that it must be symmetrized over its
momentum arguments when used in Eq. (2.13). Furthermore, we have omitted the
time dependence of f ⌘ d logD/d log a and biases for clarity.

Let us discuss the structure of the last two terms in Eq. (2.13) in some detail.
The leading counterterm contributions in redshift space can be seen as a simple
generalization of the dark matter sound speed [59, 72],

Pctr,RSD,r2�(z, k, µ) =� 2c̃0(z)k
2
Plin(z, k)

� 2c̃2(z)f(z)µ
2
k
2
Plin(z, k)� 2c̃4(z)f

2(z)µ4
k
2
Plin(z, k) ,

(2.15)

where c̃0(z), c̃2(z) and c̃4(z) are quantities that are generically expected to have sim-
ilar value to the real-space dark matter sound speed in units of [Mpc/h]2. However,
due the presence of fingers-of-God [73] these counterterms can be more significant
for some tracers than naïvely expected. Since the fingers-of-God are induced by
the higher-derivative terms in the non-linear RSD mapping, one may include an ad-
ditional counterterm proportional to k

4
µ
4
Plin(z, k) as a proxy of the higher-order

contributions,

Pctr,RSD,r4
z�(z, k, µ) = �c̃(z)f 4(z)µ4

k
4(b1(z) + f(z)µ2)2Plin(z, k) , (2.16)

where we have inserted the linear Kaiser factor (b1(z)+f(z)µ2)2 [74] for convenience.
Whilst, we leave the systematic derivation of all corrections of this order for future
work, we stress that addition of this term can be important in order to fit the data
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space cases. Since the large bulk flows affect only the BAO wiggles, the common
starting point is to split the linear power spectrum into the smooth Pnw and wiggly
component Pw;

Plin(k) = Pnw(k) + Pw(k) . (2.24)

The details of the algorithm used to perform this splitting is given in Section 4.
In real space we follow the approach presented in Refs. [49], which was developed

in the context of time-sliced Perturbation Theory (TSPT) [48]. Following the wiggly-
smooth decomposition one computes the damping factor9

⌃2(z) ⌘
1

6⇡2

Z kS

0

dq Pnw(z, q)


1� j0

✓
q

kosc

◆
+ 2j2

✓
q

kosc

◆�
, (2.25)

where kosc is the wavenumber corresponding to the BAO wavelength `BAO ⇠ 110h/Mpc,
jn(x) are spherical Bessel functions of order n, and kS is the scale separating the long
and short modes. We use the value kS = 0.2 h/Mpc as advocated in Ref. [49], even
though any other choice in the physically relevant range (0.05�0.1) h/Mpc produces
a very similar result. When we perform the one-loop calculation, the residual depen-
dence of the final result on kS is comparable to the two-loop wiggly contribution and
hence should be treated as a small theoretical error. Once the damping factor ⌃2(z)

is obtained, one computes the tree-level IR-resummed dark matter power spectrum
as

Pmm,LO(z, k) = Pnw(z, k) + e�k2⌃2
(z)
Pw(z, k) . (2.26)

The various one-loop IR-resummed power spectra for matter (XY=mm), galaxy
(XY=gg), and the matter-galaxy cross spectrum (XY=gm) can be obtained from
the usual one-loop integrals evaluated using Pmm,LO(z, k) as an input instead of the
linear power spectrum. Schematically, we can write

PXY = Ptree,XY[Pmm,LO] + P1�loop,XY[Pmm,LO] , (2.27)

where the various spectra Ptree,XY are given by

Ptree,mm = Pnw(z, k) + e�k2⌃2
(z)
Pw(z, k)(1 + k

2⌃2(z)) ,

Ptree, gm = b1Ptree,mm , Ptree, gg = b
2

1
Ptree,mm .

(2.28)

Note that the additional term k
2⌃2(z)e�k2⌃2

(z)
Pw(z, k) prevents double-counting of

the bulk flow contributions that are contained in the one-loop expression.
Let us now focus on the redshift-space power spectrum of galaxies. IR resumma-

tion becomes more complicated in this case, since the tree-level IR resummed matter

9Note the additional factors of 2⇡ compared to Refs. [49, 51]; these are a result of using a
different Fourier transform convention.
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power spectrum picks up non-trivial angular dependence from the anisotropic damp-
ing factor [51],

Pmm, LO(z, k, µ) ⌘ (b1(z) + f(z)µ2)2
⇣
Pnw(z, k) + e�k2⌃2

tot(z,µ)Pw(z, k)
⌘
, (2.29)

where we have introduced the new damping function, which depends on the loga-
rithmic growth factor, f(z);

⌃2

tot
(z, µ) = (1 + f(z)µ2(2 + f(z)))⌃2(z) + f

2(z)µ2(µ2
� 1)�⌃2(z) . (2.30)

This is a function of the real-space damping (2.25) and on a new contribution,

�⌃2(z) ⌘
1

2⇡2

Z kS

0

dq Pnw(z, q)j2

✓
q

kosc

◆
. (2.31)

Due to the anisotropy of the BAO damping, the one-loop calculation strictly requires
computation of anisotropic loop integrals, which in contrast to the real space case,
cannot be reduced to one-dimension. However, these can be simplified by splitting
the one-loop contribution itself into a smooth and wiggly part. More precisely, one
first computes the usual redshift-space one-loop integrals with a smooth part only.
Second, one evaluates the same integrals with one insertion of the unsuppressed
wiggly power spectrum and applies the direction-dependent damping factor (2.30)
to the output, giving [46]

Pgg(z, k, µ) = (b1(z) + f(z)µ2)2
⇣
Pnw(z, k) + e�k2⌃2

tot(z,µ)Pw(z, k)(1 + k
2⌃2

tot
(z, µ))

⌘

+ Pgg, nw, RSD, 1-loop(z, k, µ) + e�k2⌃2
tot(z,µ)Pgg, w, RSD, 1-loop(z, k, µ) .

(2.32)

Here P...1-loop[Plin] are treated as functionals of the input linear power spectrum;

Pgg, nw, RSD, 1-loop(z, k, µ) ⌘ Pgg, RSD, 1-loop[Pnw] ,

Pgg, w, RSD, 1-loop(z, k, µ) ⌘ Pgg, RSD, 1-loop[Pnw + Pw]� Pgg, RSD, 1-loop[Pnw] .
(2.33)

For simplicity we have neglected the one-loop contributions obtained from two in-
sertions of the wiggly power spectrum (since these scale as P

2

w
). Once the two

contributions Pgg,w and Pgg,nw are summed, the eventual IR-resummed anisotropic
power spectrum can be used to compute the multipoles in Eq. (2.20).

It is important to stress that our implementation of IR resummation at one loop
order contains four potential sources of error:

• Imperfectness of the wiggly-non-wiggly decomposition;

• Dependence of the damping factor on the separation cutoff;

• Inaccuracy of the factorization prescription;
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Due to the anisotropy of the BAO damping, the one-loop calculation strictly requires
computation of anisotropic loop integrals, which in contrast to the real space case,
cannot be reduced to one-dimension. However, these can be simplified by splitting
the one-loop contribution itself into a smooth and wiggly part. More precisely, one
first computes the usual redshift-space one-loop integrals with a smooth part only.
Second, one evaluates the same integrals with one insertion of the unsuppressed
wiggly power spectrum and applies the direction-dependent damping factor (2.30)
to the output, giving [46]

Pgg(z, k, µ) = (b1(z) + f(z)µ2)2
⇣
Pnw(z, k) + e�k2⌃2

tot(z,µ)Pw(z, k)(1 + k
2⌃2

tot
(z, µ))

⌘

+ Pgg, nw, RSD, 1-loop(z, k, µ) + e�k2⌃2
tot(z,µ)Pgg, w, RSD, 1-loop(z, k, µ) .

(2.32)

Here P...1-loop[Plin] are treated as functionals of the input linear power spectrum;

Pgg, nw, RSD, 1-loop(z, k, µ) ⌘ Pgg, RSD, 1-loop[Pnw] ,

Pgg, w, RSD, 1-loop(z, k, µ) ⌘ Pgg, RSD, 1-loop[Pnw + Pw]� Pgg, RSD, 1-loop[Pnw] .
(2.33)

For simplicity we have neglected the one-loop contributions obtained from two in-
sertions of the wiggly power spectrum (since these scale as P

2

w
). Once the two

contributions Pgg,w and Pgg,nw are summed, the eventual IR-resummed anisotropic
power spectrum can be used to compute the multipoles in Eq. (2.20).

It is important to stress that our implementation of IR resummation at one loop
order contains four potential sources of error:

• Imperfectness of the wiggly-non-wiggly decomposition;

• Dependence of the damping factor on the separation cutoff;

• Inaccuracy of the factorization prescription;
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Parameters: (ωb, ωcdm, h, A1/2, ns, mν) × (b1A1/2, b2A1/2, b𝒢2
A1/2, Pshot, c2

0 , c2
2 , c̃)

The nonlinear model including galaxy bias and redshift-space distortions

Infrared resummation

contain galaxy

formation physics



The most stringent test are on the map level, differences to the truth compatible with the shot noise

How well does PT work?

Schmittfull, MS, Ivanov, Philcox, Zaldarriaga (2020)
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Blind analysis, very large volume, realistic galaxies
22

FIG. 13. Posterior distributions from the post-unblinding analyses where one or two additional bias parameters are floated.

1. Residual shot noise

It is known that dark matter halos or associated galax-
ies are not a Poisson sample of the underlying hypothet-
ical continuous distribution [e.g., 114, 115]. As explained
in Sec. III C, the standard shot noise contribution is al-
ready subtracted in the power spectra data files provided
by the Japan Team. The subtracted shot noise contribu-
tion is, strictly speaking, not really an estimate of the ad-
ditional fluctuations associated with the connection be-

tween the underlying smooth field and the discrete point
distribution, but simply the “zero-lag” correlator inher-
ent in a point process. Therefore, the assumption of the
zero shot-noise like term adopted in the blinded analyses
presented in the main text is not guaranteed to be valid.
We study here the impact of adding a nuisance parame-
ter to model the residual shot term, which is relevant for
the monopole moment.

The green contours in Fig. 13 show the result at four
di↵erent kmax as indicated in the figure legend. They

How well does PT work?
Nishimichi et al. (2020)
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A new era in cosmology
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Application to BOSS data
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Figure 1: Left panel : The posterior distribution for the late-Universe parameters
H0,⌦m and �8 obtained with priors on !b from Planck (gray contours) and BBN (blue
contours). For comparison we also show the Planck 2018 posterior (red contours) for
the same model (flat ⇤CDM with massive neutrinos). Right panel : The monopole
(black dots) and quadrupole (blue dots) power spectra moments of the BOSS data for
high-z (upper panel) and low-z (lower panel) north galactic cap (NGC) samples, along
with the best-fit theoretical model curves. The corresponding best-fit theoretical
spectra are plotted in solid black and blue. H0 is quoted in units [km/s/Mpc].

adopted in this work allows for a clear comparison between the two experiments at
the level of the fundamental ⇤CDM parameters. Our measurement of H0 is driven by
the geometric location of the BAO peaks, whereas the limits on ⌦m result from the
combination of both the geometric (distance) and shape information. �8 is measured
through redshift-space distortions. We performed several tests to ensure that our
constraints are saturated with these three effects, and confirmed that distance ratio
measurements implemented through the Alcock-Paczynski effect can only marginally
affect the cosmological parameters of ⇤CDM. However, the situation changes in
its extensions, in which the Alcock-Paczynski effect becomes a significant source of
information.

It is important to emphasize that we did not assume strong priors on the power
spectrum shape in our analysis, in contrast with the previous full-shape studies,
which used such priors. In order to explore the relation with those previous works
we ran an analysis with very tight shape priors and obtained essentially the same
results as in Tab. 1. However, in that case ⌦m cannot be viewed as an independently
measured parameter, since the shape priors completely fix the relation between ⌦m

– 6 –

Galaxy map

Full-shape analysis
Similar to CMB, directly measures “shape” parameters

all cosmological parameters

no CMB input needed



Application to BOSS data

Figure 5. CMB-independent cosmological constraints obtained from this work for the baseline
⌫⇤CDM model, as tabulated in Tab. 2. The ‘FS+BAO’ dataset refers to the combination of full-shape
(FS) modelling of unreconstructed power spectra via a one-loop full-shape model and BAO-modelling
of reconstructed power spectra to compute Alcock-Paczynski parameters, incorporating the theoretical
error methodology of Ref. [66], with a joint sample covariance used to unite the two approaches. The
‘FS’ dataset (equivalent to the full-shape analysis of Sec. 2.3) was presented in Ref. [52] and ‘Planck
2018’ refers to Ref. [1]. This plot shows the cosmological constraints obtained from combination of
four BOSS DR12 data chunks, which are displayed separately in Fig. 6. H0 is quoted in km s�1Mpc�1

units.

a result of the paucity of modes in the large-scale regime, which are particularly sensitive to
ns.

In Fig. 6 we show the constraints obtained from analyzing each of the four data chunks
separately, with corresponding parameters given in Tab. 5 of Appendix B. Note that, even in

– 23 –

Ivanov, MS, Zaldarriaga (2019)
d’Amico, Gleyzes, Kokron, Markovic, Senatore, Zhang, Beutler, Gil Marin (2019)

Philcox, Ivanov, MS, Zaldarriaga (2020)

1) Datasets are consistent

2) BOSS errors on H0 and  comparable to Planck Ωm

H0 = 68.6 ± 1.1 km/s/Mpc

H0 = 67.8 ± 0.7 km/s/Mpc (fixing the tilt)

Here we use the BBN prior on ωb



provement. But once the degeneracy is broken, the gain from adding more of the
bispectrum information is very modest. It would be interesting to understand to
what extent the situation can change after taking into account higher-order multi-
pole moments and the AP effect in the bispectrum, omitted in the present analysis.
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the total neutrino mass m⌫ in units [ eV] and other parameters of the base ⇤CDM, see
also Tab. 4 for the corresponding 1� confidence limits. The filled and half-filled contours
represent 68% and 95% confidence limits. The blue dashed lines correspond the Planck
2018 baseline results reproduced with the mock Planck likelihood.
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1) Euclid/DESI ~ Planck

2) much better in combination

Forecast for a Euclid/DESI-like survey
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FIG. 7. Posterior distributions for the parameters extracted from the joint Planck 2018 TT+TE+EE+low `+lensing + mock
Euclid/DESI likelihood, compared to those from Planck + BOSS data.

data. Second, they rely on a simplified “compressed”
redshift-space galaxy power spectrum likelihood that ig-
nores the matter power spectrum shape information and
implicitly assumes standard early-universe physics.

The impact of the galaxy clustering and weak lens-
ing data on the EDE constraints was recently studied
in Refs. [1] and [86]. Hill et al. (2020) [1] first showed
that the primary CMB data alone does not reveal signif-
icant evidence for the EDE model. Moreover, the con-
straints on the EDE model strengthen after taking into
account the data from photometric surveys. The “walk-
ing barefoot” analysis of Ref. [1], based on all available
cosmological datasets without SH0ES, yielded an upper
limit fEDE < 0.060 (95%CL), significantly lower than the
value fEDE ⇡ 0.1 needed to resolve the Hubble tension.
Thus, the addition of the LSS data rules out the EDE
model as a resolution to the Hubble tension.

Chudaykin et al. (2020) [86] claimed that the photo-
metric LSS data does not rule out the EDE model if the
` > 1000 region of the Planck power spectra are discarded
and replaced with the SPTPol measurements [87]. This
was motivated by the presence of the so-called “lensing
anomaly” in the Planck high-` data. The significance of
this anomaly is 2.8� [3], which still makes it compatible
with a statistical fluctuation, and no systematic has been
identified as a culprit despite significant dedicated anal-
ysis [88, 89]. Thus, we believe that the presence of this
mild tension does not give a su�ciently strong reason to
discard the Planck high-` data, which has more statistical
power than the SPTPol measurement. It is also worth
noting that ⇤CDM does not provide a very good fit to
the SPTPol power spectra (PTE = 0.017), and there are
mild internal parameter tensions within the SPTPol data
set (see Sec. 8 of [87]).
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FIG. 13. Posterior distributions for the parameters extracted from the joint Planck 2018 TT+TE+EE+low `+lensing + BOSS
FS+BAO data. We show the results obtained using the standard FS+BAO likelihood (in blue) and the EFT-based likelihood
(in red). For reference, we also display the constraints from the Planck 2018 primary CMB data alone (TT+TE+EE), obtained
in [1]. The gray band shows the H0 measurement from SH0ES, for comparison. The dark-shaded and light-shaded contours
mark 68% and 95% confidence intervals, respectively.
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Early dark energy example

Ivanov et al. (2020)

This is a general lesson, extensions constrained much better than with the CMB alone



Summary

Now we can routinely use galaxy clustering data to constrain LCDM and extensions

Many more things I didn’t have time to talk about… 

EFT approach to galaxy clustering has proven to be very successful and fruitful 

We are in a new era in which galaxy surveys become comparable to the CMB

(bispectrum and first PNG constraints, perturbative forward modeling vs. n-point functions, novel data compression

techniques to simplify covariance matrix estimates, new observables to mitigate RSD issues, new estimators to 

include the effects of the window functions exactly, perturbative models for the BAO reconstruction, efficient evaluation 

of higher order loops in PT and higher order n-point functions…)



Additional slides



Beyond LCDM
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Figure 14: Joint posterior distributions for an axion with a mass of 10�32 eV for three
experimental setups. We note an improvement on the constraint on the axion fraction when
breaking the degeneracy with H0 present with the CMB data. The gray shaded area represent
the confidence interval for h from the SH0ES measurement [81].

Figure 15: 68% (dark-colored) and 95% (light-colored) confidence level bounds on the axion
density from the CMB data, galaxy clustering and the combined measurements.

prior favours a higher value of As which is slightly degenerate with the axion fraction at
that mass as shown in Fig. 16. Another contributing factor is that the CMB prior does not
constrain the axion fraction as well as for the axion masses below 10�25 eV. Performing a
joint likelihood analysis rather than imposing a prior on the cosmological parameters may
allow for stronger constraints for this mass bin and is left for future work. We note however
that galaxy clustering measurements alone improve existing constraints on the axion fraction
at that mass by over a factor of 4.5 (see Table 3).
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Laguë, Bond, Hložek, Rogers, Marsh, Grin (2021)

Ultralight axions
4

FIG. 2: Constraints for Weyl-fermion light relics in the

mX � T
(0)
X parameter space, obtained from a joint anal-

ysis of P18 + BOSS-FS + WLens datasets. We find no
preference for relics throughout, and display specific up-
per bounds on present-day temperature for relics of fixed
mass. Other types of relics (such as scalars or vectors)
have identical signatures to Weyl fermions with di↵erent
parameters, so this search rules out LiMRs of any spin.

↵ forest [47] or BAO and weak-lensing data [48]2) and
our constraints are stronger by a factor 2 � 5. We also
investigate here the relative power of each dataset, and
find (i ) the inclusion of full-shape galaxy power-spectrum
information, as opposed to BAO only, strengthens our
constraints by a significant 30%, and (ii ) weak-lensing
data is crucial for obtaining strong limits, as it precisely
measures the abundance of clustering matter, breaking
a degeneracy between !cdm and !X (we encourage the
reader to visit the Supplemental Material for the confi-
dence contours).

Our constraints on LiMRs can be interpreted within
di↵erent particle-physics models: eV-scale extensions to
the neutrino sector, particularly sterile neutrinos, have
been widely proposed and studied [21, 22, 49], dark pho-
tons [15, 16, 50] are well-motivated examples of a vector
LiMR, and scalar relics are straightforwardly realized in
axions and axion-like particles [17–20]. We note, how-
ever, in the latter case that our present data is insensi-
tive to the sub-eV mass candidates typically considered,
though a relic population of hot QCD axions are expected
to have much higher than minimum temperature [51].

As a detailed example, we study the case of the grav-
itino, for which a relic population easily arises in gauge-
mediated SUSY-breaking scenarios [52–54]. While the

2 We note that Ref. [48] assumes a slightly higher relic tempera-
ture, which is less conservative. We recover excellent agreement
with that work under matching assumptions.

FIG. 3: Limits on the mass mX of di↵erent species of
light relic, all at 95% CL and assuming the minimum-
temperature scenario, T

0
X = 0.91 K. Red bars show con-

straints from this work, which are obtained via joint anal-
ysis of all our data sets (P18+BOSS-FS+WLens), whereas
the pink band has BAO-only rather than full-shape
galaxy data. Gray bands represent the previous con-
straints on Weyl fermions from Refs. [47, 48]. Our limits
are a factor of 2 � 5 stronger and extend to other relic

species.

gravitino is intrinsically s = 3/2, only two of its four
modes are thermally populated at the time of its rela-
tivistic decoupling, making it cosmologically equivalent
to a Weyl fermion (s = 1/2), and allowing us to set a
limit on its mass mX < 2.26 eV at 95% CL. This limit is
strictly conservative, as the gravitino decoupling temper-

ature can only be higher than our minimal T
(0)
X = 0.91

K for these models [55]. Our limit cuts into the pre-
dictions of low-energy SUSY-breaking scenarios [13, 14].
Consequently, we are able to set an upper limit on the
SUSY breaking scale, estimated as

p
F ⇡

p
MplmX  70

TeV [48, 52, 54], where Mpl is the reduced Planck mass,
in strong complementarity with upcoming lower bounds
from collider studies [56–58].

In this Letter we present the strongest constraints
to date on cosmological light relics, and the first ever
to make use of full-shape LSS data. The inclusion of
broadband galaxy data as well as state-of-the-art CMB
measurements allows us to improve significantly upon
previous limits, and to present comprehensive bounds
across the parameter space of relics of various species,
masses, and temperatures. We find that low-redshift
weak-lensing data is critical to break key degeneracies,
and the orthogonality of the LiMR signature with the �8

tension allows us to safely incorporate those data.
The coming years will see a dramatic improvement in

the amount of cosmological data available, as new CMB
facilities and galaxy surveys will come online. These data

Light (but Massive) Relics — LiMRs 

Xu, Muñoz, Dvorkin (2021)



H0 tension

credit: Colin Hill



Milestones towards the optimal analysis

1) Do the optimal bispectrum analysis and make it “easy”

2) Complete the P2-loop + B1-loop + Ttree  calculation and implement it in the nonlinear codes

tree 1-loop 2-loop

P

B

T

classification of all relevant nonlinearities, 

efficient evaluation of loops, explore new “simpler” observables

new methods for data analysis,

compression, new observables 

3) Include relativistic effects, go to the light cone and full sky 



also fix rd. Hence, the ↵-analysis and our method should be technically similar if we
fix rd in the ↵-analysis and !b,!cdm from our side.

Another important observation is that the ↵-analysis assumes H(zeff) and DA(zeff)

to be completely independent from each other, while in reality they are related by
construction,18

DA(z) =
1

1 + z

Z z

0

dz
0

H(z0)
. (6.1)

In ⇤CDM a prior on !m completely fixes the relation between the two at any redshift.
Once we impose this relation,19 the limits on H and DA from the ↵-analysis coincide
with the limits obtained with our method (modulo some small difference which can
be explained by the use of slightly different priors and theoretical models, see App. D
for more detail). This can be seen in Fig. 5 and Tabs. 6, 7.

One can notice that the ⇤CDM priors have a very dramatic effect on the mea-
surements of H and DA, whose errorbars reduce by a factor of few compared to the
basic ↵-analysis without any priors. However, the effect on DV is not very strong.
This reflects the observation that DV is the best measured combination of DA and H,
which is extracted directly from the monopole, while H and DA are measured from
the quadrupole, which has significantly bigger statistical errors.20 This statement is
not obvious from our analysis as the errorbars on all three distances H, DA, and DV

are comparable in ⇤CDM.
In order to better understand the situation we analyze the BOSS data assuming

a generic dynamical dark energy (DDE) model, described by the following Friedman
equation:

H
2(z) = H

2

0

⇣
⌦m(1 + z)3 + ⌦⇤ + ⌦de(1 + z)w0+wa

z
1+z

⌘
. (6.3)

We assume the following flat priors on wa and w0:

⌦de 2 (0, 1) , w0 2 (�2,�0.33) , wa 2 (�5, 5) , (6.4)

18We work in the unit system with c = 1.
19To that end we have run mock MCMC chains that fitted DA and H from the Gaussian likelihood

for rd assuming ⇤CDM. Then we found the principal component of these variables and imposed
this as a prior in the MCMC chains which sampled ↵ parameters.

20It is useful to compare our limits with the ones obtained in the main BOSS Fourier-space BAO
and FS power spectrum analyses, see Refs. [6, 82]. These are

DV (zeff = 0.38) = 1493± 28 [Mpc] , DV (zeff = 0.61) = 2133± 36 [Mpc] , (FS) ,
DV (zeff = 0.38) = 1479± 23 [Mpc] , DV (zeff = 0.61) = 2141± 36 [Mpc] , (pre-recon BAO) ,

DV (zeff = 0.38) = 1474± 17 [Mpc] , DV (zeff = 0.61) = 2144± 20 [Mpc] , (post-recon BAO) .

(6.2)

Note that these limits were obtained by using slightly different datasamples (NGC+SGC), kmax

cuts and the theoretical model, and hence should be compared to our results shown in this section
with some caution.
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Loop integrals and massless QFT

P22(k) = 2

Z

q
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dimensionality. This poses a direct challenge to our ability to interrogate large datasets and one

that merely more and faster computers will not address.

In order to simplify and speed up loop calculations we require new ideas, new strategies, to

approach the problem. One inspiring idea, developed in [9] and [10], is to use Fast Fourier Trans-

form (FFT) for e�cient evaluation of the one-loop power spectrum. After first “deconvolving”

the lowest order PT solutions, and performing all angular integrals, the one-loop expressions

reduce to a set of simple one-dimensional integrals that can be e�ciently evaluated using FFT.

Unfortunately, deconvolving higher order perturbative solutions and extending this approach to

the one-loop bispectrum or the two-loop power spectrum proves to be challenging [11].

In this paper we build on ideas of [9, 10] but choose a slightly di↵erent strategy which allows

us to go beyond the one-loop power spectrum. Let us briefly sketch the main idea behind our

proposal. Prior to doing any integrals, the linear power spectrum is expanded as a superposition

of ideal self-similar power-law cosmologies. This is naturally accomplished using FFT in log k.

Given some range of wavenumbers of interest, from kmin to kmax, the approximation for the linear

power spectrum with N sampling points is [9, 12]

P̄lin(kn) =

m=N/2X

m=�N/2

cm k⌫+i⌘m
n , (1.1)

where the coe�cients cm and the frequencies ⌘m are given by

cm =
1

N

N�1X

l=0

Plin(kl) k�⌫
l k�i⌘m

min e�2⇡iml/N , ⌘m =
2⇡m

log(kmax/kmin)
. (1.2)

Notice that the we denote the approximation for the linear power spectrum with P̄lin(k), while

eq. (1.2) uses the exact linear power spectrum Plin(k) to calculate the coe�cients cm. We will keep

using the same notation throughout the paper. The parameter ⌫ is an arbitrary real number. As

we will see, the simplest choice ⌫ = 0 is insu�cient in some applications, so we will use the more

general form of the Fourier transform. In the terminology of [9] we call this ⌫ parameter bias.

Note that the powers in the power-law expansion are complex numbers. In practice, even a small

number of power-laws, O(100), is enough to capture all features of the linear power spectrum

including the BAO wiggles. One important thing to keep in mind is that the Fourier transform

produces the power spectrum that is periodic in log k. Therefore, we will take care to choose kmin

and kmax such that we cover the range of scales where we actually care about the value of the

power spectrum. In other words we are choosing the momentum range where the loop integrals

have the most of the support. However, one always has to be careful about possible contributions

particularly from high k modes or short scales.

Is this a limitation? Absolutely not. At the heart of the EFT understanding is the simple

recognition that the PT idealized description of satisfying fluid-like equations of motion can only

be valid at certain scales. This is much the same as the hydrodynamic description of liquid water

is only valid at certain scales. Attempting to integrate this approximation over scales outside

of its validity introduces non-parametrically controlled errors. Instead the information in the
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all cosmology dependence in coefficients

Very useful in practice, it speeds up evaluation of loop integrals by orders of magnitude
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The simplest case — dark matter
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These equations of motion can be solved perturbatively
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