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g-modes

I Global, long-lived, nonradial fluid oscillations resulting from fluid-element
perturbations in a stratified environment.

I Slow chemical equilibration generates buoyancy forces to oppose
dispacement.

I In stably-stratified systems the opposing force sets up oscillations with a
characteristic frequency (Brunt-Vaisala) which depends on both the
equilibrium and the adiabatic sound speeds.

I g-mode oscillations couple to tidal forces; they can be excited in a NS
merger and provide information on the interior composition.

I Detection remains a challenge; but within sensitivity of 3rd generation
detectors.
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Cowling vs. linearized GR

I In linearized GR, the calculation of g-mode frequencies, damping times,
and amplitudes requires the solution of 4 coupled ODEs.

I The relativistic Cowling approximation neglects metric perturbations that
must accompany matter perturbations in a GR treatment reducing
complexity:
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and λ, ν are Schwarzchild metric functions.

I Accurate to a few % compared to GR.

I Cannot compute imaginary part of eigenfrequeny (damping time).
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Sound Speeds

I The difference ∆(c−2) = c−2
eq − c−2

ad drives the restoring force for g-mode
oscillations. For example, in npe matter
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I c2
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I c2
ad =

(
∂p
∂ε

)
x

; τβ � τoscillation.
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Equation of State

I Nucleons: Zhao - Lattimer
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I Quarks: vMIT
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I Leptons: noninteracting, relativistic fermions
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Hybrid Matter

I Gibbs

ε∗ = (1− χ)εH + χεQ ; 0 ≤ χ ≤ 1

PQ = PH

I Crossover (Kapusta-Welle)

PB = (1− S)PH + S PQ

S = exp

[
−
(
µ0

µ

)4
]

µ0 ∼ 2 GeV

I Neutron-star matter
I Strong equilibrium: µn = 2µd + µu ; µp = 2µu + µd

I Weak equilibrium: µn = µp + µe ; µe = µµ ; µd = µs

I Charge neutrality: n∗p + (2n∗u − n∗d − n∗s )/3 − (ne + nµ) = 0

I Baryon number cons: n∗n + n∗p + (n∗u + n∗d + n∗s )/3 − nB = 0
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Sound-speed difference vs. g-mode frequency

I g-modes in Gibbs hybrid matter have
a larger frequency range compared
to the pure-nucleon and crossover cases
corresponding to the behavior of ∆(c−2)
in the mixed phase.

I Dramatic changes in νg require the
appearance of new particle species
not merely a smooth change in
composition.

I The Cowling approximation is
qualitatively similar to GR
but underestimates νg by up to 10%;
does better for low-mass stars.
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Energy per unit distance

I Energy per unit radial distance in oscillatory motion:
dET
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= ω2 r2
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]
I ZL, XO × 10

I The Gibbs energy scale is one order
of magnitude larger than ZL
and KW once quark matter appears
(∼ 1051 ergs/km vs. ∼ 1050 ergs/km).
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Universal relation: Ωg vs. Y c

I Universal relations depend weakly
on the EOS and can be used to break
degeneracies and otherwise constrain
difficult-to-access observables.

I Given the sensitivity of g-modes to
departures from chemical equilibrium,
it is likely that N and νg depend
strongly on composition

I Ωg = GMωg/c
3 = 1.228(Y c − 0.05)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Yc

lep + Yc
qak

0.00

0.01

0.02

0.03

0.04

0.05

0.06

G
M

g/c
3

fit formula

ZL40
ZL55
ZL70

Gibbs40
Gibbs55
Gibbs70

KW40
KW55
KW70

C. Constantinou g-mode Oscillations in Neutron Stars



Summary

I First calculation of g-mode properties under Gibbs phase rules and for the
KW model (both with the Cowling approximation as well as linearized GR).

I g-modes can detect nonnucleonic matter in the cores of NS; assuming
quark matter (by some other means), g-modes can distinguish between a
first-order phase transition and a crossover.

I Universal relation between Ωg and Y c .

I (Near) Future:
I Extend KW to finite T .

I Applications to protoneutron stars (cooling, superfluidity)

I Other signals?

I Construct EOS that uses the same underlying description for quarks and
hadrons; explore hybrid matter microscopically.
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