Jet Quenching and the Nature of the QGP

Daniel Pablos - INFN Torino

Istituto Nazionale di Fisica Nucleare

FELLINI Meeting - Ferrara '22

Daniel Pablos

QCD Matter

A New Phase: Quark-Gluon Plasma (QGP):

- Filled the universe μ s after Big Bang.
- Colour is liberated.
- A gas of quarks and gluons.

What are the properties of the plasma close to the transition?

Hadron Gas:

- Color is confined.
- Hadrons re-scatter.

Heavy-Ion Collisions (HIC): The Little Bangs

Equation of State from Lattice QCD:

Rapid crossover transition.

Deconfined matter: rapid increase of # d.o.f. above T_c.

Asymptotycally approaches non int. limit.

Daniel Pablos

Heavy-Ion Collisions (HIC): The Little Bangs

4

Daniel Pablos

CMS Experiment at LHC, CERN

Deconfined matter in experiments:

- Very strong collective effects.
- Thousands of particles correlated according to initial geometry.
- Hydrodynamic explosion!

How Can We Probe the QGP?

Daniel Pablos

Hypothesis:

High energy partons in the QGP:

• Turbulent cascade develops, with a sink at $E \sim T$.

Necessary length to reach the turbulent regime?

Daniel Pablos

Motivation

The QGP is a very good fluid.

emit quanta, which in turn emit more quanta, and should (eventually) hydrodynamize.

Blaizot et al. - JHEP '13 & '14, PRL '13

Hypothesis: The QGP is a very good fluid.

High energy partons in the QGP:

are dual to strings falling into a black hole, hydrodynamizing.

Chesler & Rajagopal - PRD '14, JHEP '16

Daniel Pablos

Motivation

npSYM

$$\langle \Delta T^{\mu\nu}(t, \boldsymbol{x}) \rangle = \frac{L^3}{4\pi G_{\text{Newton}}} H^{(4)}_{\mu\nu}(t, \boldsymbol{x})$$

"Jet" induced EM tensor: hard + soft modes.

Perturbed metric @ boundary.

Energy lost per unit length; suitable for pheno.

At strong coupling:

Modification of stress-energy tensor due to supersonic quark contains sound and diffusive modes.

Effective source for hydro corresponds to drag force on the quark.

Agreement between hydrodynamics & wake of a quark even for small distances $\sim 1/T$.

> Fulfils Energy-Momentum Conservation in the Jet+Plasma Interplay.

The Wake of a Quark

Chesler & Yaffe - PRD '07

The Effect of the Recoiling Jet

Daniel Pablos

ading	<pr>> density of wake hadrons</pr> w.r.t leading jet axis.
50	Aligned in rapidity
40 80 80	Subleading jet's QGP trough hits leading jet.
.0	Separated in rapidity
, -10	Subleading jet's QGP trough misses leading jet.

 $p_T^L > 250 \text{ GeV}$ $p_T^S > 80 \text{ GeV}$ $\Delta \phi_D > 2\pi/3$

differential in $|\eta_D| \equiv |\eta_L - \eta_S|$

Leading Jet Suppression vs. Ind

DP - PRL '20

A new observable.

R = 0.4

leading jet area easy to miss; small effect from QGP trough.

R = 1.0

strong dependence on $|\eta_D|$; knee visible when $\eta_D \sim R$.

$$p_T^L > 250 \text{ GeV}$$

 $p_T^S > 80~{
m GeV}$ $\Delta \phi_D > 2\pi/3$

differential in $|\eta_D| \equiv |\eta_L - \eta_S|$

Analytic, but over-simplified medium response needs to be improved: ->> Starting point: linearised hydro eqs. for perturbations on top of viscous Bjorken flow.

Daniel Pablos

Linearized Hydrodynamics

• $\partial \epsilon$: energy density pert.

Wavefront structure (Mach cone) diffuses due to viscosity.

• g_x : momentum pert.

Wing shaped structure diffuses due to viscosity (diffusion wake).

Casalderrey, Milhano, DP, Rajagopal, Yao - JHEP '21 **INFN** Torino

Sound modes make wake energy spread in rapidity with time.

Jet breaks long. boost invariance.

Casalderrey, Milhano, DP, Rajagopal, Yao - JHEP '21 Daniel Pablos

Linearized Hydrodynamics

Vortex ring around jet direction.

 \rightarrow Imprints on Λ polarisation? Serenone et al. - PLB '21

Green's Functions for the Wake

(a) Energy-momentum deposition for $E_i = 10$ GeV (filled arrow) and $E_i = 50$ GeV (empty arrow).

Daniel Pablos

Hadrons from the wake depend on evolution time, local flow...

3+1D Hydrodynamics ~ 2 hours

Green's Functions in Bjorken flow Trans., Rot., & Boosts ~ 3 seconds

Analytic Jet Suppression

Daniel Pablos

Mehtar-Tani, DP, Tywoniuk - PRL '21

Minijets Hydrodynamization

• At high p_T , usually consider single hard scattering producing dijet pair.

Daniel Pablos

- \Rightarrow As we consider lower p_T, minijet production becomes increasingly abundant...

A Spikier Evolution

Collectivity in Small Systems

17

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_{\rm t}dp_{\rm t}dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \Psi_R)]\right)$$

Weller & Romatschke - PLB '17

 v_2

 v_3

 v_4

Daniel Pablos

Collectivity signatures observed in smaller systems (proton-proton, proton-nucleus):

Is it QGP? System size can be smaller than expansion rate... (attractors?)

What is it?

Collectivity in Small Systems

Model proton-proton system as a droplet of liquid QGP. Use novel hadronization mechanisms involving recombination.

Daniel Pablos

Baryon to meson enhancement observed also in pp collisions.

- Hadron spectra and yields can be described by thermal distribution... even in proton-proton! -> Connection with microscopic description of hadronization? Colour-reconnection, entanglement...
 - Improve understanding of hadronization, in large and small systems, using heavy quark probes.

Beraudo, De Pace, Nardi, Prino, DP - in preparation

Daniel Pablos

-

6

