The R0

SM 00 BSM 000 Methodology 00 Conclusions 0

Natural Ultraviolet Complete Extensions of the Standard Model

Luca Zambelli

FELLINI WORKSHOP

May 30, 2022

H2020 MSCA COFUND G.A. 754496

Istituto Nazionale di Fisica Nucleare Sezione di Bologna

he	RG	
00		

BSM 000 Methodology 00 Conclusions 0

QFTs & Predictivity

Definitions

• Predictive Theory

given \mathbf{few} preliminary measurements, is able to predict the result of an ∞ number of experiments

• Effective Theory predictive only up to a minimumlength/maximum-energy scale (called UV cutoff)

• Ultraviolet Complete (Fundamental) Theory the opposite of an effective theory

he	RG
00	

QFTs & Predictivity

Two Conflicting Methodological Definitions

- **Perturbatively Renormalizable Theory** when it appears to be fundamental within a (all-orders) perturbative series
- Non-Perturbatively Renormalizable Theory

when it appears to be fundamental according to any method which goes beyond the technical limitations of perturbative methods

Translate from German 🗸	Into Spanish 🗸	Formal/informal \checkmark	Glossary
diese Theorie <u>ist</u>	esta teoría	no es	
<u>renormierbar</u>	renormaliz	able	

he	\mathbf{RG}	
00		

Т

SM 00 BSM 000 Methodology 00 Conclusions 0

The RG Flow

A Renormalization Group (RG) Transformation:

- changes length/energy scales (e.g. the UV cutoff)
- correspondingly changes the theory... (is a mapping between effective theories)
- ...but only its unphysical/unessential features!
- is computable in QFTs!
- is not unique (∞ freedom)

What is it good for?

he	\mathbf{RG}	
•0		

SM 00 BSM

Methodology 00 Conclusions 0

The RG Flow

It allows to establish what is physical:

- the fixed points of the RG = the theories that do not change at all
- the stability properties of the fixed points
- the **long-distance properties** = IR attractors = UV complete theories

The RG	SM	BSM	Methodology	Conclusi
000	00	000	00	0

Wilsonian Renormalizability

Definition: A theory is **renormalizable á la Wilson** if it possesses a RG fixed point with a finite number of relevant parameters.

Two kinds:

- Asymptotic Freedom when the fixed point describes a non-interacting theory
- Asymptotic Safety otherwise

The RG	SM	BSM	Methodology	Conclusion
000	•0	000	00	0

RG Flow in the Standard Model

Light Higgs = almost vanishing self-interaction to high scales

The RG	SM	BSM	Methodology	Conclusions
000	00	000	00	0

RG Flow in the Standard Model

(Buttazzo, Degrassi, Giardino,

Giudice, Sala, Salvio, Strumia '13)

Light Higgs = almost vanishing self-interaction to high scales

The RG	SM	BSM	Methodology	Conclusions
000	00	•00	00	0

RG Flow Beyond the Standard Model

Beyond the SM, is **Total Asymptotic Freedom** possible?

• within perturbative renormalizability: it is rare needs many new particles

(Giudice, Isidori, Salvio, Strumia '15) (Holdom, Ren, Zhang '15)

• beyond perturbative renormalizability: it is common

 $\checkmark\,$ non-Abelian Higgs-Yukawa models (e.g. GUT)

(Gies, \mathbf{LZ} '15 & '16) (Gies, Sondenheimer, Ugolotti, \mathbf{LZ} '18 & '19)

The RG	SM	BSM	Methodology	Conclusions
000	00	000	00	0

RG Flow Beyond the Standard Model

Beyond the SM, is **Total Asymptotic Freedom** possible?

• within perturbative renormalizability: it is rare needs many new particles

(Giudice, Isidori, Salvio, Strumia '15) (Holdom, Ren, Zhang '15)

- beyond perturbative renormalizability: it is common
 - non-Abelian Higgs-Yukawa models (e.g. GUT)
 (Gies, LZ '15 & '16) (Gies, Sondenheimer, Ugolotti, LZ '18 & '19)
 - ?? SM-like Higgs-Yukawa models (with $U(1)_Y$):

work in progress: SM + higher-dimensional operators (Gies, Vacca, LZ) work in progress: $SM + hidden \ sector$ (Litim, Vacca, LZ)

The RG	SM	BSM	Methodology	Conclusions
000	00	000	00	0

RG Flow Beyond the Standard Model

Beyond the SM, is **Asymptotic Safety** possible?

Several scenarios have been proposed:

- with Quantum Gravity (Reuter et al.) (Percacci et al.) ...
- Large $N_f \& N_c$ (Litim, Sannino '14)

but $U(1)_Y$ needs a cure (Dondi, Dunne, Reichert, Sannino '20) work in progress: (Litim, Vacca, LZ)

• in Nonlinear Sigma Models (Percacci, Codello '09)

(Percacci, Fabbrichesi et al. '10 & '11)

in preparation: (Vacca, LZ)

The RG

SM 00 BSM 000 Methodology ●0 Conclusions 0

Methodology

Wilsonian Renormalizability sets a stage for a rigorous definition of

Scale Invariance and Hierarchies of Scales

but, the question remains **hard!** (nonperturbative)

Needs methodological innovations

- Functional methods
- Exact RG Equations

$$\partial_t \Gamma = \frac{1}{2} \left(\Gamma^{(2)} + R \right)^{-1} \partial_t R$$

- Effective Field Theory
- Conformal Field Theory

he	RG	
00		

SM 00 BSM

Methodology 0● Conclusions 0

Methodology

Applications to:

1. SM and BSM gauge hierarchy problem

in preparation: (Gies, Schmieden, LZ)

2. dynamical mass generation in non-Abelian gauge theories

(Gies, Gkiatas, \mathbf{LZ} '22)

in preparation: (Asnafi, Gies, Gkiatas, LZ)

3. critical nonlinear sigma models

(Baldazzi, Percacci, LZ '21)

in preparation: (Vacca, LZ)

he RG

SM

BSM

Methodology

Conclusions

Conclusions

Still plenty of room for (theoretical) discoveries

Thank you and stay tuned!