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Preliminaries: part 1

e Disclosures
¢The views expressed in this tutorial are my own.
— | am not speaking for my employer.
— | am not speaking for the OpenMP ARB
e | take my tutorials VERY seriously:

¢Help me improve ... let me know if you have ideas
on how to improve this content.



Preliminaries: Part 2

e Our plan for the day .. Active learning!
oWe will mix short lectures with short exercises.

e Please follow these simple rules

¢Do the exercises | assign and then change things
around and experiment.

— Embrace active learning!
¢Don’t cheat: Do Not look at the solutions before

you complete an exercise ... even if you get really
frustrated.




Our Plan for the day

Topic

Exercise

concepts

Intro to parallel
programming

No exercise

Basic concepts and the jargon of
parallel programming

OMP Intro

Install sw, hello_world

Parallel regions

Creating threads

Pi_spmd_simple

Parallel, default data

environment, runtime Iibr
; . Break
False sharing, critical, ato rea

Synchronization Pi_spmd_final
Parallel loops Pi_loop, Matmul For, schedule, reduction,
The rest of worksharing | No exercise Single, sections, master, runtime

and synchronization

libraries, environment variables,
synchronization, etc.

Data Environment

Molecular Dyn.

Data environment details,
software optimization

OpenMP 3 and
tasks

Linked list (tasks)
Linked list (no tasks)

Tasks and other OpenMP 3
features

Memory model

Producer-Consumer

The need for flush

A survey of parallel
programming models

No exercise

.
Cilk, MPI, OpenCL, TBB, etc.

<z




Outline

=) e INntro to parallel programming
e An Introduction to OpenMP
e Creating threads
e Basic Synchronization
e Parallel loops (intro to worksharing)
e The rest of worksharing and synchronization
e Data Environment
e OpenMP tasks
e The OpenMP Memory model
e A survey of parallel programming models



Agenda - parallel theory

mm) = How to sound like a parallel programmer
m An overly brief look at parallel architecture

m Understanding design patterns for parallel
programming



" A
The foundation of parallel computing

(intel'

m Concurrency: when multiple tasks are active and able to
make progress (in principle) at the same time.

Concurrency is a general idea — even on single processor
systems inside the OS.

m [wo ways to use concurrency
Parallel computing — when concurrency is used to make a job run
faster.

= The problem being solved “makes sense” as a serial program ... for
example, A parallel molecular dynamics program.

Concurrent computing — when the concurrency is used to
manage availability or reduce latencies for multiple agents.

= The “job” in question is fundamentally concurrent ... there is no
reasonable serial analog ... for example, a print server.



An Example of Parallel Computing

Compute N independent tasks on one processor

Load Data Compute T, Compute T, Consume Results

Timeseq(l) = Tload N*Ttask Tconsume

Compute N independent tasks with P processors

Compute T, Ideally Cut
Load Data . Consume Results runtime by ~1/P

Compute Ty (Note: Parallelism
only speeds-up the
concurrent part)

T|mepar(P) Tload+(N/P)*Ttask Tconsume




* (inteD
Talking about performance

m Speedup: the increased -
performance from running on P S(P) = Tlmeseq (1)
processors. ( ) — Ti D

ime .. (P)

m Perfect Linear Speedup:
happens when no parallel
overhead and algorithm is —
100% parallel. S (P) P

m Super-linear Speedup: typically
due to cache effects ... i.e. as P
grows, aggregate cache size S (P) > P
grows so more of the problem
fits in cache




" )
Amdahl’s Law =

m What is the maximum speedup you can expect from a parallel program?

m Approximate the runtime as a part that can be sped up with additional
processors and a part that is fundamentally serial.

parallel _ fraction

Time_,.(P) = (serial _ fraction + 5 )*Time,,,
m If serial_fraction is a and parallel_fraction is (1- o) then the speedup is:
Time,, (1 1
S(P) = q( ) =
-«

_a .
a+——-)*Time_ (1 o+——
(™ )< Time @) a+™

m If you had an unlimited number of processors: P —> o0

g 1 Amdahl’s
Q Law

m The maximum possible speedup is:




" B
Implications of Amdahl’s Law

m Consider benefits of adding processors to your parallel program for different
serial fractions.

m Note: getting a serial fraction under 10% is challenging for the typical
application

4.5
- ——90%

A

3.5 = ||~ 50%
3 = 20%
25 o = 10%

dnpaadg

2
T /Z' —e \
17 Fraction
0.5
0

Number of cores
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" intel
(intel
Granularity

m Granularity is the ratio of compute time to
communication time

Hardware: raw compute rate vs. communication rate or
memory latency

Software: Consider time spent in local computations vs.
time spent updating state between computing agents.

= Single channel Seismic codes and rendering programs are
coarse grained.

» Unstructured mesh codes tend to be fine grained

Key rule: Granularity demanded by software must be met
or bettered by hardware. Fine grained applications do not
run well on coarse grained systems.

12



" S
Load Balancing

m Load Balancing: The distribution of work among the
processors of a parallel computer:

static load balancing: distribution deterministic and setup at
program startup.

dynamic load balancing: distribution changes as the calculation
proceeds.

(intel.

Overall performance depends on the processor
that takes the longest time.

Top Performance requires that all processors
are equally loaded.




" A
Fooling the masses with performance results

on parallel computers

Compare 32 bit results on the machine you like (e.g. a GPU) to 64 bit
results on the machine you “don't like” (e.g. a CPU).

Present results for a highly tuned inner kernel and then suggest the
results reflect performance for the full application.

Use aggressive tuning (assembly code) on the system you like.

Report speedups comparing a great parallel algorithm to a poor serial
algorithm (or call the parallel algorithm running on one core your serial
algorithm).

Exclude memory movement costs ... warm your caches and load local
memory before starting the clock (a common trick by people pushing
GPGPU programming and accelerators).

Inspired by David Bailey’s classic paper “Twelve Ways to Fool the Masses when giving performance results on parallel
computers”, Supercomputing Review, Aug 1991, pp. 54-55. http://crd.Ibl.gov/~dhbailey/dhbpapers/twelve-ways.pdf

(intel'
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" J intel

recap

m S0 now you know how to sound like a parallel
programmetr.

m Essential issues are:
Finding enough concurrency to meet desired scalability targets.
Balance the load carefully since the slowest core determines the
overall runtime.

Minimize serial fraction in your problem and keep parallel
overhad low ... or Amdahl’s law will get you.

Learn how to use performance results to mislead people (a useful
skill when annual review time comes around).
Parallel software is the key challenge
» Find concurrency
Structure your algorithm to exploit concurrency
Express concurrency in source code
Run on a parallel computer.

15



Agenda - parallel theory

m How to sound like a parallel programmer
mm) u An overly brief look at parallel architecture

m Understanding design patterns for parallel
programming



" A
How do we connect cores together?

m A symmetric multiprocessor (SMP) consists of a collection

of processors that share a single address space:
= Multiple processing elements.
= A shared address space with “equal-time” access for each processor.
m The OS treats every processor the same

Proc,

Proc,

Proc,

O

O

O

Proc

Shared Address Space

17



"
How realistic is this

m Some of the old
supercomputer
mainframes followed this
model,

T Lr e LI T g

A CPU with lots of cache ...

model?

m But as soon as we added caches to
CPUs, the SMP model fell apart.
Caches ... all memory is equal, but

some memory is more equal than
others.

18



" A
NUMA issues on a Multicore Machine
2-socket Clovertown Dell PE1950

Transpose: Dell Power Edge 1950 (Claovertown)

tr "clovertownsstatic. 0" uE..iﬂgI 16: 2 —f— A Slngle
"clovertown/guideds.0, 1" using 16:24 —— _
| “Clovertonn/guidedd 0. 2" ueing 16:24 —%— . quad-core
"cl townsguided8.0,4" using 16:24 —B— . o
clover Lawn EL,Il e usmg Chlp IS a
12 } |
2 threads, 2 cores, NUMA
10 sharing a cache : machine!

2 thrds, 2 cores, 1 sock,

no shared cache

Memary bandwidth [GB/s]
o

| s 1 s |
| | I

2 I Ty |
2 thrds, 2 cores, 2 sockets
[:l M M 1 M " M 2 g " 1 " M " " " M '] " " M PR M 1 Xeon® 5300
1 4 16 G4
| Processor block
Memory footprint [ME] ]
diagram

Third party names are the property of their owners. Source Dieter an Mey, IWOMP’07 face to face meeting

19



" A
Put these into a larger system and it
only get’s worse

« Consider atypical NUMA computer:

(intel.

NODE 0

Memory

(0)

ProcO

Procl

NODE 1

Memory

(1)

Proc2

Proc3

- Memory access takes longer if memory is remote.

* For example, on an SGI Altix:
*ProcO to local memory (0)
*Proc0O to remote memory (1)

207 cycles
409 cycles

Source: J. Marathe & F. Mueller, Gelato ICE, April 2007.

20



(intel.
Surviving NUMA: initializing data
m Keep data close to where it
is needed:

Bind threads to cores. MFLOPS vs. number of threads

Iniitialize the data so its
near the core that will
use it. 3000 -

m Test problem: Jacobi from
www.openmp.org, with

2500

2000x2000 matrix. 2000 -
m Hardware: a 4-socket 1500 . W 1st touch
machine with dualcore @ master init

Opteron processors with 10001

processor binding enabled. 5001

1 2thrd 4thred 8 thred

Source Dieter an Mey, IWOMP’07 face to face meeting

Third party names are the property of their owners.
21



Modern GPGPU Architecture

Generic many core GPU

Less space devoted to
control logic and caches

Large register files to
support multiple thread
contexts

Low latency hardware
managed thread switching

Large number of ALU per
“core” with small user
managed cache per core

Memory bus optimized for
bandwidth

SNV a|dwis

150 GBPS

|

On Board System Memory

150 GBPS

!

Cache




AMD GPU Hardware Architecture

* AMD 5870 — Cypress
20 SIMD engines

Instruction Cache

i o * 16 SIMD units per core
] N * 5 multiply-adds per
: s ‘é’ functional unit (VLIW
3 g 1z processing)
5; = = e 2.72 Teraflops Single
. ‘ Precision
=
* 544 Gigaflops Double
Precision

aJeys eieq (eqojo g9

128kB L2 128kB L2 128kB L2 128kB L2

$J3)513ay UORezIU0IYIUAS |8qo|D

Source: Introductory OpenCL
SAAHPC2010, Benedict R. Gaster



Nvidia GPUs - Ferm

* GTX480-Compute 2.0
capability
— 15 cores or Streaming
Multiprocessors (SMs)

— Each SM features 32 CUDA
processors

— 480 CUDA processors
* Global memory with ECC

Architecture

Source: NVIDIA’s Next
Generation CUDA
Architecture Whitepaper

_ smmeman
==/==[E/N
HESH
HESE
HiH H

Interconnect Memory

L1 Cache / 64kB Shared Memory

L2 Cache




" J @

Moving "“beyond the single board”

m Parallel computers are classified in terms of streams of
data and streams of instructions:

s MIMD Computers: Multiple streams of instructions acting on multiple
streams of data.

s SIMD Computers: A single stream of instructions acting on multiple
streams of data.
m Parallel Hardware comes in many forms:
= On chip: Instruction level parallelism (e.g. IPF)
= Multiprocessor: Multiple processors inside a single computer.
= Multicomputer: networks of computers working together.

25



" =
Hardware for parallel computing =

Parallel Computers

— \

Single Instruction Multiple Instruction
' D IMD)* :
Multiple Data (SIMD) Multiple Data (MIMD)

@Address S@ @Address S@

Symmetric Non-uniform Massively Cluster Distributed
Multiprocessor Memory Parallel Computing
(SMP) Architecture Processor

(NUMA) (MPP)

*SIMD has failed as a way to organize large scale computers with multiple processors.
It has succeeded, however, as a mechanism to increase instruction level parallelism in
modern microprocessors (MMX, SSE, AVX, etc.).



" A
Examples: SIMD MPP

Thinking machines
CM-2: The Classic
Symmetric SIMD
supercomputer (mid-
80’s):

Description: Up to 64K bit-
serial processing elements.

Strength: Supports
deterministic programming
models ... single thread of
control for ease of
understanding.

Weakness: Poor floating point
performance. Programming
model was not general

“... we want to build a computer that enough. TMC struggled

will be proud of us”, Danny Hillis throughout the 90’s and filed
for bankruptcy in 1994,

Third party names are the property of their owners.



" A ntel
(intel
Examples: Symmetric Multi-Processor

Cray 2. The Classic
Symmetric Multi-
Processor (mid-80’s):

Description: multiple Vector
processors connected to a
custom high speed memory.
500 MFLOP processors.

Strength: Simple memory
architecture makes this the
easiest supercomputer in
history to program. Truly an
SMP (no caches).

Weakness: Poor scalability.
VERY expensive due to the
fact that everything (memory
to processors) were custom.

Third party names are the property of their owners.



Examples: Massively Parallel Processors

Third party names are the property of their owners.

Paragon MP: The Classic
MPP (early-90’s):

Description: 3 i860 CPU’s (a vector
inspired microprocessor)
connected by a custom mesh
interconnect. 40 MFLOP
processors*.

Strength: A massively scalable
machine (3000+ processors). The
lights were pretty, but useful
helping to show bottlenecks in the
code.

Weakness: Hard to program (NX
message passing and later MPI).
Expensive due to low volume
microprocessor, custom back-
plane and packaging.

(intel.

29



" A
Examples: Cluster

Third party names are the property of their owners.

(intel.

NCSA'’s Itanium cluster:
(early-00’s):

Description: 160 dual IPF nodes
connected by a Myracom network.
3.2 GFLOP per processors.

Strength: Highly scalable, nothing
custom so hardware costs are
reasonable.

Weakness: Hard to program ( MPI).
Lack of application software. Cluster
middleware is fragile and still
evolving.

30



Examples: distributed computing (e.g. GRID)

Intel =8 =X
philanthropic o

program
Making PC Philanthropy a Part of PC Ownership"

peer-to-peer & -

Anthrax Toxin (F.A)

Third party names are the property of their owners.

Intel’s Cure@home
program.

Description: Thousands of home
PC’s donated to solve important
problems.

Strength: Highly scalable —the
ultimiate costs performance since it
uses compute-cycles that would
otherwise be wasted.

Weakness: Only coarse grained
embarrassingly parallel algorithms
can be used. Security constraints
difficult to enforce.

(intel.

31



Agenda - parallel theory

m How to sound like a parallel programmer
m An overly brief look at parallel architecture

mm) » Understanding design patterns for parallel
programming



Getting started with parallel algorithms

« Concurrency Is a general concept
— ... multiple activities that can occur and make progress
at the same time.
« A parallel algorithm is any algorithm that uses

concurrency to solve a problem of a given size In
less time

« Scientific programmers have been working with
parallelism since the early 80’s

— Hence we have almost 30 years of experience to draw
on to help us understand parallel algorithms.

© 2009 Mathew J. Sottile, Timothy G. Matts‘aﬁ, and Craig E Rasmussen



A formal discipline of design

|  Christopher Alexander’s approach to (civil)
A Pattern Language architecture:

Topasr i Crouaiigive — A design pattern “describes a problem which
occurs over and over again in our environment,

and then describes the core of the solution to that

problem, in such a way that you can use this

solution a million times over, without ever doing it

the same way twice.” Page x, A Pattern

i A Language, Christopher Alexander

Sara Ishikawa - Murray Silverstein
e it e A pattern language Is an organized way of
tackling an architectural problem using

patterns
- The gang of 4 used patterns to bring order |I)‘ \“’!},' ”}f”'\
to the chaos of object oriented design. ObjectOr gt
« The book “over night” turned object i

oriented design from “an art” to a
systematic design discipline.

© 2009 Mathew J. Sottile, Timothy G. Mattgt?f, and Craig E Rasmussen



Can Design patterns bring order to parallel
programming?

The book “Patterns for Parallel
Programming” contains a
design pattern language to
capture how experts think
about parallel programming.

It is an attempt to be to parallel
programming what the GOF
book was to object oriented
programming.

The patterns were mined from
established practice in
scientific computing ... hence
Its a useful set of patterns but
not complete (e.g. its weak on
graph algorithms).

£y
vy

PATTERNS
FOR PARALLEL
PROGRAMMING

s , SSSSSSSSSSSSSSSSSSSSSS
_____

© 2009 Mathew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen



Basic approach from the book

+ |dentify the concurrency in your problem: Ttk

PROGRAMMI\G

— Find the tasks, data dependencies and any other
constraints.

* Develop a strategy to exploit this concurrency:

— Which elements of the parallel design will be used to
organize your approach to exploiting concurrency.

 ldentify and use the right algorithm pattern to turn
your strategy into the design of a specific algorithm.

* Choose the supporting patterns to move your design
Into source code.
— This step is heavily influenced by the target platform

© 2009 Mathew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen



Concurrency in Parallel software:

Find Concurrency

Original Problem < Tasks, shared and local data

Program SPMD_Emb_Par () |

{| Program SPMD_Emb_Par () |

{| Program SPMD_Emb_Par () |
{| Program SPMD_Emb_Par ()

{

TYPE *tmp, *func();
H global_array Data(TYPE);
Su pportl ng global_array Res(TYPE);
patte mS int Num = get_num_procs();

int id = get_proc_id();

if (id==0) setup_problem(N, Data);
for (int 1= ID; 1<N;I1=1+Num){

} tmp = (I, Data);

—1 } Res.accumulate( tmp);
- ] }
—1 }

Units of execution + new shared data )
for extracted dependencies Corresponding source code

—

© 2009 Mathew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen



Strategies for exploiting concurrency

« Given the results from your “finding concurrency”
analysis, there are many different ways to turn
them into a parallel algorithm.

* In most cases, one of three Distinct Strategies are
used

— Agenda parallelism: The collection of tasks that are to
be computed.

— Result parallelism: Updates to the data.

— Specialist parallelism: The flow of data between a fixed
set of tasks.

Ref: N. Carriero and D. Gelernter, How to Write Parallel Programs: A First Course, 1990.

© 2009 Mathew J. Sottile, Timothy G. Mattsf(‘)'ﬁ, and Craig E Rasmussen




The Algorithm Design Patterns

Start with a basic concurrency decomposition
A problem decomposed into a set of tasks

« Adata decomposition aligned with the set of tasks ... designed to minimize
Interactions between tasks and make concurrent updates to data safe.

Dependencies and ordering constraints between groups of tasks.

4 » R
Specialist Agenda Result
Parallelism Parallelism Parallelism

Pipeline Event Based 'FI)'askII ! Emblaltrrlassmgly geometrlc_t_ I:l?ata” !

u Coordination arallelism aralle ecomposition arallelism
Divide and Separable Recursive
Conquer Dependencies Data

© 2009 Mathew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen




" A
Implementation strategy Patterns
(Supporting Structures)

Patterns that support Implementing Algorithm strategies as code.

[ .
: Program Structure Data Structures i
I

: SPMD Shared Data :
i Task-queue Shared Queue i
; Loop Parallelism Partitioned Array :
I I
2 Fork/Join Partitioned Graph :
' |
i Index-map Shared Map :
: Actors :
e —— i

40



Our approach for today ...

m Once you understand the basic patterns, you can
implement them in any language ... the parallel
programming language we use just doesn’t matter
that much

m We will use OpenMP to explore these patterns and
help you become “expert” parallel programmers.
s Why OpenMP?
Its easy to learn ... you quickly move form learning
constructs to writing code.

Its everywhere ... OK, its everywhere as long as you focus
on shared memory machines.



Outline

e Intro to parallel programming
m=) e An Introduction to OpenMP
e Creating threads
e Basic Synchronization
e Parallel loops (intro to worksharing)
e The rest of worksharing and synchronization
e Data Environment
e OpenMP tasks
e The OpenMP Memory model
e A survey of parallel programming models

42



OpenMP™ Overview:

CALL OMP SET NUM THREADS (10)

CSOMP FLUSH
C$SOMP THREADPRIVATE (/ABC/)

w  OpenMP: An API for Writing Multithreaded |

C
| Applications
*A set of compiler directives and library

routines for parallel application programmers

*Greatly simplifies writing multi-threaded (MT) a
programs in Fortran, C and C++

=Standardizes last 20 years of SMP practice

C$OMP PARALLEL COPYIN (/blk/) C$OMP DO lastprivate (XX)
Nthrds = OMP_GET NUM PROCS () omp set lock (lck)
43

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.
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OpenMP pre-history

e OpenMP based upon SMP directive
standardization efforts PCF and aborted ANSI
X3H5 — late 80’s

¢Nobody fully implemented either standard
¢0Only a couple of partial implementations
e Vendors considered proprietary API’s to be a
competitive feature:
¢Every vendor had proprietary directives sets

¢Even KAP, a “portable” multi-platform parallelization
tool used different directives on each platform

PCF — Parallel computing forum KAP — parallelization tool from KAL.
44



History of OpenMP

SGl

Cray

KAl ——

Merged,
needed

commonality

across
products

ISV - needed
larger market

was tired of

ASCI

recoding for

—  SMPs. Urged

vendors to
standardize.

Wrote a
rough draft
straw man
SMP API

1 DEC

HIBM

-1 Intel

Other vendors
invited to join

OpenMP

1997



OpenMP Release History

A single
specification
1998 2002 for Fortran, C

and C++
OpenMP OpenMP
C/C++ 1.0 C/C++ 2.0 2005
OpenMP
ortran 1.0 : Fortran 2.0

1997 1999 2000

tasking,
other new
features

46



OpenMP Basic Defs: Solution Stack

o

5

= Application

g’% Directiyes, OpenMP library Envw_onment
o Compiler variables
B - -

3 OpenMP Runtime library

£

é OS/system support for shared memory and threading

7]

=

T

Shared Address Space

47




OpenMP core syntax

e Most of the constructs in OpenMP are compiler
directives.

#pragma omp consftruct [clause [clause]...]
¢Example
#pragma omp parallel num_threads(4)
e Function prototypes and types in the file:
#include <omp.h>
e Most OpenMP* constructs apply to a
“structured block™.

¢ Structured block: a block of one or more statements
with one point of entry at the top and one point of
exit at the bottom.

¢It’s OK to have an exit() within the structured block.
48



Exercise 1, Part A: Hello world
Verify that your environment works
e Write a program that prints “hello world”.

Int main()

{

Int ID = O;

printf(* hello(%d) *, ID);
printf(* world(%d) \n”, ID);

49



Exercise 1, Part B: Hello world
Verify that your OpenMP environment works
e Write a multithreaded program that prints “hello world”.

#include “omp.h”
void main()

{

#pragma omp parallel

{ Switches for compiling and linking
gcc -fopenmp gcc
Int ID = 0; pgee -mp ogi
printf(* hello(%d) ”, ID); icl /Qopenmp intel(windows)
printf(“}World(%d) \n”, ID); icc —openmp intel (linux)

} 50



Exercise 1. Solution
A multi-threaded “Hello world” program

e Write a multithreaded program where each
thread prints “hello world”.

#include “omp.h” < OpenMP include file

void main() —

i Sample Output:
#pragma omp parallel & hello(1) hello(0) world(1)
{ world(0)

int1D = omp_get_thread_num();  ne|ig (3) hello(2) world(3)
printf(* hello(%d) ”, ID);
printf(“ world(%d) \n”, ID); world(2)

} Runtime library function to
} End of the Parallel region return a thread ID.

51



OpenMP Overview:
How do threads interact?

e OpenMP is a multi-threading, shared address
model.

—Threads communicate by sharing variables.

e Unintended sharing of data causes race
conditions:

—race condition: when the program’s outcome
changes as the threads are scheduled differently.

e To control race conditions:
—Use synchronization to protect data conflicts.

e Synchronization is expensive so:

— Change how data is accessed to minimize the need

for synchronization. -



Outline

e Intro to parallel programming
e An Introduction to OpenMP
mm) e Creating threads
e Basic Synchronization
e Parallel loops (intro to worksharing)
e The rest of worksharing and synchronization
e Data Environment
e OpenMP tasks
e The OpenMP Memory model
e A survey of parallel programming models

53



OpenMP Programming Model:

Fork-Join Parallelism:
¢ Master thread spawns a team of threads as needed.

¢ Parallelism added incrementally until performance goals
are met: i.e. the sequential program evolves into a
parallel program.

Parallel Regions A Nested
Master / l Parallel
Thread region
In red S —
\ // \\\\
€=~ -4
\\\\ //,
N

Sequential Parts



Thread Creation: Parallel Regions

e You create threads in OpenMP* with the parallel
construct.

e For example, To create a 4 thread Parallel region:

double A[1000]; Runtime function to
Each thread

omp_set _num_threads(4); request a certain
executes a T e number of threads
copy of the prag PP
code within {
the
structured
block }

Int ID = omp_get_thread _num();
pooh(ID,A);

\ Runtime function
returning a thread ID

e Each thread calls pooh(ID,A) for ID=01t0 3

55
* The name “OpenMP” is the property of the OpenMP Architecture Review Board



Thread Creation: Parallel Regions

e You create threads in OpenMP* with the parallel
construct.

e For example, To create a 4 thread Parallel region:

clause to request a certain
double A[1000]; number of threads
Each thread
executes a

copy of the #pragma omp parallel num_threads(4)
code within {

the
structured
block }

Int ID = omp_get_thread _num();
pooh(ID,A);

\ Runtime function
returning a thread ID

e Each thread calls pooh(ID,A) for ID=01t0 3

56
* The name “OpenMP” is the property of the OpenMP Architecture Review Board



Thread Creation: Parallel Regions example

double A[1000];
omp_set _num_threads(4);

#pragma omp parallel

{
int ID = omp_get_thread _num();

}

omp_set _num_threads(4) printf(“all done\n”);

e Each thread executes the
same code redundantly.

A single
copy of A
IS shared — pOOh(OsA) pOOh(l,A) pOOh(ZsA) pOOh(SsA)

between all

threads. \
printf(“all done\n”); Threads wait here for all threads to

finish before proceeding (i.e. a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board




Exercises 2 to 4:

Numerical Integration
Mathematically, we know that:

1

4.0 = ‘\\ j 40
A 0
N
) \ We can approximate the
+ Integral as a sum of
s °° rectangles:
<
| N
X
I Z F(X)AX = TC
1=0
" Where each rectangle has
0.0 '

X width Ax and height F(x;) at

the middle of interval 1.
58



Exercises 2 to 4. Serial Pl Program

static long num_steps = 100000;
double step;

void main ()

{ IntI; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
X = (1+0.5)*step;
sum =sum + 4.0/(1.0+x*x);

}

pl = step * sum;
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Exercise 2

e Create a parallel version of the pi program
using a parallel construct.

e Pay close attention to shared versus private
variables.

e In addition to a parallel construct, you will need
the runtime library routines

¢int omp_get_num_threads(); . BRI RIIECELERIRGT
: _ team
¢int omp_get_thread num();
edouble omp get_ witi me()Q —T——
Time in Seconds since a fixed -
point in the past o0
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Sy nec h ron | Zati on Synchronization is used

to impose order

e High level synchronization: constraints and to
_erfies protect access to shared
. data
—atomic
—barrier
—ordered
e Low level synchronization
—flush

—locks (both simple and nested)
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Synchronization: critical

e Mutual exclusion: Only one thread at a time
can enter a critical region.

float res;

#pragma omp parallel

{ floatB; Intli,id, nthrds;

Id =omp_get _thread num();
Threads wait nthrds = omp_get _num_threads();
their turn — for(i=id;i<niters;i+nthrds){
only one at a B = big_job(i);

time calls #pragma omp critical
consume() consume (B, res);




Synchronization: Atomic

e Atomic provides mutual exclusion but only
applies to the update of a memory location (the
update of X in the following example)

#pragma omp parallel

{
double tmp, B;

B = DOIT();
tmp = big_ugly(B); Atomic only protects the

read/update of X

#pragma omp atomic
X += tmp;
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Exercise 3

e In exercise 2, you probably used an array to
create space for each thread to store its partial
sum.

e If array elements happen to share a cache line,
this leads to false sharing.
—Non-shared data in the same cache line so each
update invalidates the cache line ... in essence

“sloshing independent data” back and forth
between threads.

e Modify your “pi program” from exercise 2 to
avold false sharing due to the sum array.
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SPMD vs. worksharing

e A parallel construct by itself creates an SPMD
or “Single Program Multiple Data” program ...
l.e., each thread redundantly executes the
same code.

e How do you split up pathways through the
code between threads within a team?
¢This is called worksharing
—Loop construct
— Sections/section constructs
— Single construct
—Task construct .... Available in OpenMP 3.0
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The loop worksharing Constructs

e The loop worksharing construct splits up loop
iterations among the threads in a team

#pragma omp parallel

{ Loop construct
#pragma omp for name:
for (1=0;I<N;l++){ . _
NEAT STUFF(I); S
} Fortran: do

| N

The variable | is made “private” to each

thread by default. You could do this
explicitly with a “private(l)” clause
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Loop worksharing Constructs
A motivating example

Sequential code for(i=0;1<N;i++) {ali] = a[i] + b[i];}

#pragma omp parallel

{
Int id, 1, Nthrds, istart, iend,;
OpenMP parallel id = omp_get_thread_num();
region Nthrds = omp_get_num_threads():
Istart = id * N / Nthrds;
lend = (id+1) * N / Nthrds;
If (id == Nthrds-1)iend = N;
for(i=istart;l<iend;i++) { a[i] = a[i] + b[i];}
}

OpenMP parallel
region and a
worksharing for
construct

#pragma omp parallel
#pragma omp for
for(i=0;1<N;i++) { a[i] = a[i] + bli];}



loop worksharing constructs:
The schedule clause

e The schedule clause affects how loop iterations are
mapped onto threads
¢schedule(static [,chunk])
— Deal-out blocks of iterations of size “chunk” to each thread.

¢ schedule(dynamic[,chunk])

— Each thread grabs “chunk” iterations off a queue until all
iterations have been handled.

¢schedule(guided[,chunk])

— Threads dynamically grab blocks of iterations. The size of the
block starts large and shrinks down to size “chunk” as the
calculation proceeds.

¢schedule(runtime)

— Schedule and chunk size taken from the OMP_SCHEDULE
environment variable (or the runtime library ... for OpenMP 3.0).
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loop work-sharing constructs:
The schedule clause

Schedule Clause

When To Use

STATIC

Pre-determined and
predictable by the
programmer

DYNAMIC

Unpredictable, highly
variable work per
iteration AN

GUIDED

Special case of dynamic
to reduce scheduling
overhead

Least work at
runtime :
scheduling
done at
compile-time

Most work at
runtime :
complex
scheduling
logic used at
run-time
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Combined parallel/worksharing construct

e OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

double res[MAX]; inti; double resf]MAX]; inti;
#pragma omp parallel #pragma omp parallel for
{ for (i=0;i< MAX; i++) {
#pragma omp for res[i] = huge();
for (1=0;i< MAX; i++) { 1

res[i] = huge();

}
} \
These are equivalent
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Working with loops

e Basic approach
¢Find compute intensive loops

¢Make the loop iterations independent .. So they can
safely execute in any order without loop-carried
dependencies

¢Place the appropriate OpenMP directive and test

Note: loop index

inti, j, AIMAX]; “1” Is private by inti, A[MAX];
j=5: default #pragma omp parallel for
for (i=0;i< MAX; i++) { for (1=0;i1< MAX; 1++) {

intj =5 + 2%(i+1);

] +=2;
Ali] = bigY(N Remove loop / Ali] = big(Q);
} carried }

dependence
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Reduction

e How do we handle this case?

double ave=0.0, A[MAX]; inti;
for (i=0;i< MAX; i++) {
ave + = AJi];

}
ave = ave/MAX:;

e We are combining values into a single accumulation
variable (ave) ... there is a true dependence between
loop iterations that can’t be trivially removed

e This is a very common situation ... it is called a
“reduction”.

e Support for reduction operations is included in most
parallel programming environments.
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Reduction

e OpenMP reduction clause:
reduction (op : list)
e Inside a parallel or a work-sharing construct:

— A local copy of each list variable is made and initialized
depending on the “op” (e.g. 0 for “+”).
— Updates occur on the local copy.

— Local copies are reduced into a single value and
combined with the original global value.

e The variables in “list” must be shared in the enclosing
parallel region.

double ave=0.0, A[MAX]; inti;
#pragma omp parallel for reduction (+:ave)
for (1I=0;i< MAX; i1++) {
ave + = A[i];
}

ave = ave/MAX: &



OpenMP: Reduction operands/initial-values

e Many different associative operands can be used with reduction:
Initial values are the ones that make sense mathematically.

Fortran Only

Operator |Initial value
+ 0
* 1
- 0
C/C++ only
Operator |Initial value
& ~0
| 0
A 0)
&& 1
| 0

Operator Initial value
AND. true.

.OR. false.
NEQV. false.
IEOR. 0

IOR. 0
JAND. All bits on
EQV. true.

MIN* Largest pos. number

MAX* Most neg. number
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Exercise 4: P1 with loops

e Go back to the serial pi program and parallelize
It with a loop construct

e Your goal is to minimize the number of
changes made to the serial program.
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Exercise 5: Optimizing loops

e Parallelize the matrix multiplication program in
the file matmul.c

e Can you optimize the program by playing with
how the loops are scheduled?
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Synchronization: Barrier

e Barrier: Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private(id)
{

iId=omp_get _thread num();

A[id] = big _calcl(id);
#pragma omp barrier
#pragma omp for

for(i1=0;i1<N;i++){C[i]=big_calc3(i,A); }
#pragma omp for nowait

for(i=0;i1<N;i++){ B[i]=big_calc2(C, I); }

Afid] = big_calcA(id): S

}\ implicit barrier at the end no implicit barrier
of a parallel region due to nowait

Implicit barrier at the end of a
for Worksharing construct



Master Construct
e The master construct denotes a structured
block that is only executed by the master thread.

e The other threads just skip it (no
synchronization is implied).

#pragma omp parallel
{
do_many_things();
#pragma omp master
{ exchange boundaries(); }
#pragma omp barrier
do_many_other_things();

}
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Sections worksharing Construct

e The Sections worksharing construct gives a
different structured block to each thread.

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section
X _calculation();

#pragma omp section
y_calculation();

#pragma omp section
z_calculation();

}
}

By default, there is a barrier at the end of the “omp

sections”. Use the “nowait” clause to turn off the barrier.



Single worksharing Construct

e The single construct denotes a block of code that is
executed by only one thread (not necessarily the
master thread).

e A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel

{
do_many_things();

#pragma omp single
{ exchange boundaries(); }
do_many_other_things();
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Synchronization: ordered

e The ordered region executes in the sequential
order.

#pragma omp parallel private (tmp)
#pragma omp for ordered reduction(+:res)

for (I=0;I<N;I++){
tmp = NEAT_STUFF(I);
#pragma ordered
res += consum(tmp);

}
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Synchronization: Lock routines

e Simple Lock routines: A lock implies a
: : : r L memory fence (a
¢A simple lock is available if it Is unset. “ﬂusﬁ,,) ofall(
—omp_init_lock(), omp_set lock(), thread visible
TP variables

omp_unset_lock(), omp_test lock(),
omp_destroy lock()

e Nested Locks

®A nested lock is available if it is unset or if it Is set but
owned by the thread executing the nested lock function
—omp_init_nest_lock(), omp_set nest_lock(),
omp_unset_nest lock(), omp_test _nest lock(),
omp_destroy nest lock()

Note: a thread always accesses the most recent copy of the
lock, so you don’t need to use a flush on the lock variable. 85



Synchronization: Simple Locks
e Protect resources with locks.

omp_lock tIck;
omp_init_lock(&Ick);
#pragma omp parallel private (tmp, id)

{
id = omp_get_thread _num(); Wait here for
tmp = do_lots_of work(id); your turn.
omp_set_lock(&lck); Release the lock

printf(“%d %d”, 1d, tmp); so the next thread
omp_unset lock(&Ick); gets a turn.

}
omp_destroy lock(&Ick); Free-up storage when done.




Runtime Library routines

e Runtime environment routines:
— Modify/Check the number of threads

—omp_set_num_threads(), omp_get _num_threads(),
omp_get_thread_num(), omp_get_max_threads()

— Are we in an active parallel region?
—omp_in_parallel()

— Do you want the system to dynamically vary the number of
threads from one parallel construct to another?

—omp_set_dynamic, omp_get _dynamic();
— How many processors in the system?
—omp_num_procs()

...plus a few less commonly used routines.
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Runtime Library routines

e To use a known, fixed number of threads in a program,
(1) tell the system that you don’t want dynamic adjustment of
the number of threads, (2) set the number of threads, then (3)
save the number you got.

Disable dynamic adjustment of the

#include <omp.h> number of threads.
void main()
{ int num_threads; Request as many threads as
omp_set num_threads( omp_num_procs() );

#pragma omp parallel

{ Intid=omp_get thread num();
#pragma omp single

num_threads = omp_get _num_threads();
do lots_of stuff(id);

Protect this op since Memory
stores are not atomic

1 Even in this case, the system may give you fewer threads

than requested. If the precise # of threads matters, test
for it and respond accordingly.




Environment Variables

e Set the default number of threads to use.
— OMP_NUM_THREADS int_literal

e Control how “omp for schedule(RUNTIME)”
loop iterations are scheduled.

— OMP SCHEDULE “schedule[, chunk size]”

.. Plus several less commonly used environment variables.
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Data environment:
Default storage attributes

e Shared Memory programming model:
— Most variables are shared by default

e Global variables are SHARED among threads

— Fortran: COMMON blocks, SAVE variables, MODULE
variables

— C: File scope variables, static
— Both: dynamically allocated memory (ALLOCATE, malloc, new)

e But not everything is shared...

— Stack variables in subprograms(Fortran) or functions(C) called
from parallel regions are PRIVATE

— Automatic variables within a statement block are PRIVATE.
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Data sharing: Examples

double A[10]; extern double A[10];
Int main() { void work(int *index) {
int index[10]; double temp[10];
#pragma omp parallel static int count;
work(index);
printf(“%d\n”, index[0]); }
}

A, index, count

A, index and count are

shared by all threads.
temp temp temp

temp is local to each
thread

A, index, count
92
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Data sharing:
Changing storage attributes

e One can selectively change storage attributes for
constructs using the following clauses*

— SHARED All the clauses on this page
— PRIVATE apply to the OpenMP construct
— FIRSTPRIVATE NOT to the entire region.

e The final value of a private inside a parallel loop can be
transmitted to the shared variable outside the loop with:

— LASTPRIVATE

e The default attributes can be overridden with:

— DEFAULT (PRIVATE | SHARED | NONE)
DEFAULT(PRIVATE) /s Fortran only

All data clauses apply to parallel constructs and worksharing constructs except
“shared” which only applies to parallel constructs. 93



Data Sharing: Private Clause

e private(var) creates a new local copy of var for each thread.
— The value is uninitialized

— In OpenMP 2.5 the value of the shared variable is undefined after
the region

void wrong() {
iInt tmp = O;
#pragma omp for private(tmp)

for (intj = 0; j < 1000; ++j) tmp was not
tmp +=j; —
printf(“%d\n”, tmp); initialized
} /

tmp: O in 3.0,

unspecified in 2.5
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Data Sharing: Private Clause
When is the original variable valid?

e The original variable’s value is unspecified in OpenMP 2.5.

e In OpenMP 3.0, if it is referenced outside of the construct

— Implementations may reference the original variable or a copy .....
A dangerous programming practice!

int tmp;

void danger() { extern int tmp;
tmp = O; void work() {

#pragma omp parallel private(tmp) tmp = 5;
work(): }
printf(“%d\n”, tmp);

} N\

tmp has unspecified
value

unspecified which
copy of tmp
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Data Sharing: Firstprivate Clause

e Firstprivate is a special case of private.

— Initializes each private copy with the corresponding
value from the master thread.

void useless() {

int tmp = 0;
#pragma omp for firstprivate(tmp)
for (intj = 0; j < 1000; ++j) _
tmp += j; < Each thread gets its own

printf(“%d\n”, tmp); tmp with an initial value of 0

tmp: O in OpenMP 3.0

}
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Data sharing: Lastprivate Clause

e Lastprivate passes the value of a private from the
last iteration to a global variable.

void closer() {
int tmp = 0;

#pragma omp parallel for firstprivate(tmp) \
lastprivate(tmp)

for (int j = 0; j < 1000; ++j) Each thread gets its own tmp

tmp +=j;, < : .
orNt%din”. tmp); with an initial value of O

}

tmp is defined as its value at the “last

sequential” iteration (i.e., for j|=999)
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Data Sharing:

A data environment test
e Consider this example of PRIVATE and FIRSTPRIVATE

variablesA,B,and C =1
#pragma omp parallel private(B) firstprivate(C)

e Are A,B,Clocal to each thread or shared inside the parallel region?
e What are their initial values inside and values after the parallel region?

Inside this parallel region ...
e “A” is shared by all threads; equals 1
e “B” and “C” are local to each thread.
— B’s initial value is undefined
— C’s initial value equals 1

Qutside this parallel region ...

e The values of “B” and “C” are unspecified in OpenMP 2.5, and in
OpenMP 3.0 if referenced in the region but outside the construct.
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Data Sharing: Default Clause

e Note that the default storage attribute is DEFAULT(SHARED) (S0
no need to use it)

# Exception: #pragma omp task
e To change default: DEFAULT(PRIVATE)

¢ each variable in the construct is made private as if specified in a
private clause

¢ mostly saves typing

e DEFAULT(NONE): no default for variables in static extent. Must
list storage attribute for each variable in static extent. Good
programming practice!

Only the Fortran APl supports default(private).

C/C++ only has default(shared) or default(none).
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Data Sharing: Default Clause Example

itotal = 1000

C$OMP PARALLEL PRIVATE(np, each)
np = omp_get_num_threads()
each = itotal/np

C$OMP END PARALLEL

itotal = 1000

C$OMP PARALLEL DEFAULT(PRIVATE) SHARED(itotal)
np = omp_get _num_threads()
each = itotal/np

C$OMP END PARALLEL

These two
code
fragments are
equivalent
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Exercise 6: Molecular dynamics

e The code supplied is a simple molecular
dynamics simulation of the melting of solid
argon.

e Computation is dominated by the calculation of
force pairs in subroutine forces (in forces.c)

e Parallelise this routine using a parallel for
construct and atomics. Think carefully about
which variables should be SHARED, PRIVATE
or REDUCTION variables.

e Experiment with different schedules kinds.
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Exercise 6 (cont.)

e Once you have a working version, move the
parallel region out to encompass the iteration
loop In main.c

¢code other than the forces loop must be executed
by a single thread (or workshared).

¢how does the data sharing change?

e The atomics are a bottleneck on most systems.

¢This can be avoided by introducing a temporary
array for the force accumulation, with an extra
dimension indexed by thread number.

¢Which thread(s) should do the final accumulation
into f?
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General task characteristics

e A task has
¢ Code to execute
¢ A data environment (it owns its data)

¢ An assigned thread that executes the code and
uses the data

e Two activities: packaging and execution

¢ Each encountering thread packages a new instance
of atask (code and data)

¢ Some thread in the team executes the task at some
later time
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Definitions

e Task construct — task directive plus structured
block

e Task —the package of code and instructions
for allocating data created when a thread
encounters atask construct

e Task region —the dynamic sequence of
Instructions produced by the execution of a
task by a thread
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Tasks and OpenMP

e Tasks have been fully integrated into OpenMP

e Key concept: OpenMP has always had tasks, we just
never called them that.

¢Thread encountering parallel construct packages
up a set of implicit tasks, one per thread.

¢ Team of threads Is created.

¢Each thread in team Is assigned to one of the tasks
(and tied to It).

eBarrier holds original master thread until all implicit
tasks are finished.

e We have simply added a way to create a task explicitly
for the team to execute.

e Every part of an OpenMP program is part of one task or
another!
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task Construct
1

#pragma omp task [clause[[,]clause]
structured-block

where clause can be one of:

if (expression)

untied

shared (list)

private (list)
firstprivate (l1ist)
default( shared | none )
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Data Sharing: tasks (OpenMP 3.0)

e Private data in the scope of the encountering thread is firstprivate
by default. This is because the task may not be executed until
later (and variables may have gone out of scope).

e Variables that are shared in all constructs starting from the
Innermost enclosing parallel construct are shared, because the
barrier guarantees task completion.

#pragma omp parallel shared(A) private(B)

{ Ais shared
B is firstprivate
#pragma omp task / C is private
{
int C;
compute(A, B, C);
}

}
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When/where are tasks complete?

e At thread barriers, explicit or implicit

¢ applies to all tasks generated in the current parallel
region up to the barrier

¢ matches user expectation

e At task barriers

¢ 1.e. Wait until all tasks defined in the current task have
completed.

#pragma omp taskwait

¢ Note: applies only to tasks generated in the current task,
not to “descendants” .
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Example — parallel pointer chasing

using tasks

#pragma omp parallel
{
#pragma omp single private (p)
{

p = listhead ; p s firstprivate inside
while (p) { ///tmswﬁk

#pragma omp task
process (p)
p=next (p)
}
}
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Example — parallel pointer chasing on

multiple lists using tasks

#pragma omp parallel
{
#pragma omp for private (p)
for ( int 1 =0; i <numlists ; i++) {
p = listheads [ 1 ] ;
while (p ) {
ffpragma omp task
process (p)
p=next (p ) ’

}
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Example: postorder tree traversal

void postorder (node *p) {
if (p->left)
#fpragma omp task
postorder (p->left) ;
if (p->right)
#fpragma omp task
postorder (p->right) ;
#pragma omp taskwait // wait for descendants

rocess (p->data) ; ﬂ\\\\\\\\\\\\
} i P ) Task scheduling point

e Parent task suspended until children tasks complete
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Task switching

e Certain constructs have task scheduling points
at defined locations within them

e When a thread encounters a task scheduling
point, it Is allowed to suspend the current task
and execute another (called task switching)

e It can then return to the original task and
resume
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.
Task switching example

#pragma omp single
{
for (1=0; i<ONEZILLION; i++)
#fpragma omp task
process (item[i]) ;

}

e Too many tasks generated in the “blink of an eye”
e Generating task will have to suspend for a while
e With task switching, the executing thread can:

eexecute an already generated task (draining the
“task pool”)

¢dive into the encountered task (could be very
cache-friendly)
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Thread switching

#pragma omp single
{
#pragma omp task untied
for (i=0; i<ONEZILLION; i++)
#pragma omp task
process (item[i]) ;

e Eventually, too many tasks are generated

e Generating task is suspended and executing thread switches to a
long and boring task

e Other threads get rid of all already generated tasks, and start
starving...

e With thread switching, the generating task can be resumed by a
different thread, and starvation is over

e Too strange to be the default: the programmer is responsible!
115



Conclusions on tasks

e Enormous amount of work by many people
e Tightly integrated into 3.0 spec
e Flexible model for irregular parallelism

e Provides balanced solution despite often conflicting
goals

e Appears that performance can be reasonable
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Exercise 7: tasks in OpenMP

e Consider the program linked.c

¢ Traverses a linked list computing a sequence of
Fibonacci numbers at each node.

e Parallelize this program using tasks.

e Compare your solution’s complexity to an
approach without tasks.
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Exercise 8: linked lists the hard way

e Consider the program linked.c

¢ Traverses a linked list computing a sequence of
Fibonacci numbers at each node.

e Parallelize this program using constructs
defined in OpenMP 2.5 (loop worksharing
constructs ... i.e. don’t use OpenMP 3.0 tasks).

e Once you have a correct program, optimize It.
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Conclusion

e OpenMP 3.0 is a major upgrade ... expands the
range of algorithms accessible from OpenMP.
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OpenMP memory model

e OpenMP supports a shared memory model.

e All threads share an address space, but it can get complicated:

u Shared memory
/'
a
cac|he1 cac|:he2 Fca(|:he3 cach|eN
procl| |proc2| /|proc3 procN
d

e A memory model is defined in terms of:

¢ Coherence: Behavior of the memory system when a single
address is accessed by multiple threads.

¢ Consistency: Orderings of reads, writes, or synchronizations
(RWS) with various addresses and by multiple threads. 121



OpenMP Memory Model: Basic Terms

Program order

W, W, R, R, ...
Source code a ~'b la b
compiler
Code order RW’s in any
Executable code Wy, Ry, W, R, ... * se.mantlcally
equivalent order

thread / \ thread

private view :.] private view_’_:-

\\‘ a b \"“threaSZ!private ‘//__,x"' b a threadprivate
memory l l
g b 122

Commit order



Consistency:. Memory Access Re-ordering

e Re-ordering:

¢ Compiler re-orders program order to the code order

¢ Machine re-orders code order to the memory commit order
e At a given point in time, the “private view” seen by a

thread may be different from the view in shared
memory.

e Consistency Models define constraints on the orders of
Reads (R), Writes (W) and Synchronizations (S)

¢ ... i.e. how do the values “seen” by a thread change as you
change how ops follow (—) other ops.

¢ Possibilities include:

-R—R, W-W, R—->W, R-S, S-S, W-S
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Consistency

e Sequential Consistency:

¢In a multi-processor, ops (R, W, S) are sequentially
consistent if:

— They remain in program order for each
pProcessor.

— They are seen to be in the same overall order by
each of the other processors.

¢Program order = code order = commit order

e Relaxed consistency:

¢Remove some of the ordering constraints for
memory ops (R, W, S).
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OpenMP and Relaxed Consistency

e OpenMP defines consistency as a variant of
weak consistency:

¢S ops must be in sequential order across threads.

¢Can not reorder S ops with R or W ops on the same
thread

—Weak consistency guarantees
S—»W, S—R,R—-S, W-S, S-S

e The Synchronization operation relevant to this
discussion is flush.
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Flush

e Defines a sequence point at which a thread Is
guaranteed to see a consistent view of memory with
respect to the “flush set”.

e The flush set is:

¢ “all thread visible variables” for a flush construct without an
argument list.

¢ a list of variables when the “flush(list)” construct is used.

e The action of Flush is to guarantee that:

— All R,W ops that overlap the flush set and occur prior to the
flush complete before the flush executes

— All R,W ops that overlap the flush set and occur after the
flush don’t execute until after the flush.

— Flushes with overlapping flush sets can not be reordered.

Memory ops: R = Read, W = write, S = synchronization 196



Synchronization: flush example

e Flush forces data to be updated in memory so other
threads see the most recent value
double A;
A = compute();

flush(A); // flush to memory to make sure other
/I threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in

other shared memory API’s.
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What is the Big Deal with Flush?

e Compilers routinely reorder instructions implementing
a program

¢ This helps better exploit the functional units, keep machine
busy, hide memory latencies, etc.

e Compiler generally cannot move instructions:
¢ past a barrier
¢ past a flush on all variables

e But it can move them past a flush with a list of
variables so long as those variables are not accessed

e Keeping track of consistency when flushes are used
can be confusing ... especially if “flush(list)” is used.

Note: the flush operation does not actually synchronize different

threads. It just ensures that a thread’s values are made
consistent with main memory.
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Pair wise synchronizaion in OpenMP

e OpenMP lacks synchronization constructs that
work between pairs of threads.

e When this is needed you have to build it
yourself.

e Pair wise synchronization
¢Use a shared flag variable
¢Reader spins waiting for the new flag value
¢ Use flushes to force updates to and from memory

129



Exercise 10: producer consumer

e Parallelize the “prod_cons.c” program.
e This is a well known pattern called the
producer consumer pattern

¢0One thread produces values that another thread
consumes.

¢ Often used with a stream of produced values to
implement “pipeline parallelism”

e The key Is to implement pairwise
synchronization between threads.
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Exercise 10: prod cons.c

Int main()
{double *A, sum, runtime; int flag = 0;
A = (double *)malloc(N*sizeof(double));
runtime = omp_get_wtime();
fill_rand(N, A); // Producer: fill an array of data
sum = Sum_array(N, A); // Consumer: sum the array

runtime = omp_get_wtime() - runtime;

printf(" In %lf seconds, The sum is %lf \n",runtime,sum);

}
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Outline

e Intro to parallel programming
e An Introduction to OpenMP
e Creating threads
e Basic Synchronization
e Parallel loops (intro to worksharing)
e The rest of worksharing and synchronization
e Data Environment
e OpenMP tasks
e The OpenMP Memory model
=) ¢ A survey of parallel programming models
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The Algorithmic Strategy Patterns

Start with a basic concurrency decomposition
* A problem decomposed into a set of tasks

« Adata decomposition aligned with the set of tasks ... designed to minimize
interactions between tasks and make concurrent updates to data safe.

Dependencies and ordering constraints between groups of tasks.

Specialist Agenda Result
Parallelism Parallelism Parallelism

Task
Parallelism

Divide and
Conquer

Geometric
Decomposition

Speculation Data
P Parallelism

N

~—— ™

Pipeline . Discrete <
Event

We will only have time to consider
three patterns at this level
© 2009 Mathew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen




" A
Implementation strategy Patterns
(Supporting Structures)

Patterns that support Implementing Algorithm strategies as code.

P P P PSSP .
Program Structure Data Structures
P‘

<>SPMD ¢> Shared Data
Task-queue Shared Queue

S ——

| |
| |
| |
| |
| |
! !
| |
| |

|
: <| Loop Parallelism |) Partitioned Array i
| |
| |
| |
| |
| |
| |
| |
| |
| |

(| Fork/Join |> Partitioned Graph

—
e —

([ Index-map |> Shared Map

Actors

I We will only have time to consider these 4 patterns.
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" A
The role for Parallel programming languages

m A pattern is text that explains a design concept. Itis not a
working program.

m We need to move from a design expressed as a composition
of patterns into source code ... ultimately you need a
programming language/API.

m In the following slides we will survey some key patterns and
introduce key programming languages along the way:
OpenMP: Directive driven parallelism for shared memory computers.
Cilk: fine grained fork-join for shared memory
Thread libs (pthreads or windows threads): low level multi-threading
MPI: The Message passing standard from the HPC world.
OpenCL: New standard for heterogeneous platforms

3" party names are the property of their owners. 135
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: tel

A simple Example: The PI program @<
Numerical Integration

Mathematically, we know that:

1

4.0 T~ ‘\\ j 4.0

A 0

N
9 \ We can approximate the
+ Integral as a sum of
s rectangles:
¥
I N
>
I Z F(X)AX = T

=0
" Where each rectangle has
0.0 '

X width Ax and height F(x;) at

the middle of interval I.
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» I s
PI Program: (nte

The sequential program

static long num_steps = 100000;
double step;

void main ()

{ Inti; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=1;i<= num_steps; i++){
X = (I-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pI = step * sum;
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= B
Task Parallelism Pattern

m Use when:
The problem naturally decomposes into a distinct collection of
tasks

m Solution

Define the set of tasks and a way to detect when the
computation is done.

Manage (or “remove”) dependencies so the correct answer is
produced regardless of the details of how the tasks execute.

Schedule the tasks for execution in a way that keeps the work
balanced between the processing elements of the parallel
computer and

m Note:

This pattern includes the well known embarrassingly parallel
pattern (no dependencies).

(intel.
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PI Program: (nte

Task Parallelism

static long num_steps = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

Modify loop to make
iterations
independent and
define blocks of loop
iterations as an
explicit task

step = 1.0/(double) num_steps; _—

for (i=1;i<= num_steps; i++){
X = (i-0.5)*step;
sum =sum + 4.0/(1.0+x*x);

Can support the execution of the resulting tasks with the fork-join,
loop-level parallelism, or SPMD patterns
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"
Native Thread Libraries

m Linux and Windows both include native threads for
shared address space programming
m API provides:
Thread creation (fork)
Thread destruction (join)
Synchronization.

m Programmer is in control ... these are very general.
m Downside: programmer MUST control everything.

(intel.

3" party names are the property of their owners. 140



Fork JOin Pattern " Fork/join Pattern: (1) Package concurrent tasks in a
Win32 API - function, (2) fork threads to run each function, (3)

join when done, and (4) manage dependencies.

#include <windows.h>

#define NUM_THREADS 2 Launch threads to
HANDLE thread_handlesf]NUM_THREADS]; void main ()

CRITICAL_SECTION hUpdateMutex; { execute the
static long num_steps = 100000; double pi: int i function

double step; : ’

DWORD threadlD;

double global_sum =0.0; int thread Arg[]NUM_THREADS]:

void Pi (void *arg) for(i=0; i<NUM_THREADS; i++) threadArg[i] ¥ i+1;
int i, start;

double x. sum = 0.0: InitializeCriticalSection(&hUpdateMutex);

for (i=0; i<NUM_THREADS; i++){ 7
thread_handles[i] = CreateThread(0, O,
(LPTHREAD_START_ROUTINE) Pi,
&threadArg[i], 0, &threadID);

start = *(int *) arg;
step = 1.0/(double) num_steps;

}

for (i=start;i<= num_steps; i=i+NUM_THREADS){

x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
EnterCriticalSection(&hUpdateMutex);

global_sum += sum; pi = global_sum * step; Wait until the
LeaveCriticalSection(&hUpdateMutex); orintF(" pi is % \n" i) threads are done
\ }
Protect update to _ :
shared data Put work into a function

WaitForMultipleObjects(NUM_THREADS,
thread_handles, TRUE,INFINITE);




" S o
OpenMP Programming Model: =
Fork-Join Parallelism:

- Master thread spawns a team of threads as needed.

- Parallelism added incrementally until performance goals are met: i.e.
the sequential program evolves into a parallel program.

Parallel Regions A Nestod
Master / | \ Parallel
Thread region
in red /—\

=2

Sequential Parts

3t party names are the property of their owners. 142
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" J
OpenMP PI Program:

Loop level parallelism pattern

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum =0.0;
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for private(x) reduction (+:sum)
for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum +=4.0/(1.0+x*x);

}

pi = sum[i] * step;

}

3" party names are the property of their owners.

(intel.

Loop Level
Parallelism:

Parallelism
expressed
solely by (1)
exposing
concurrency,
(2) managing
dependencies,
and (3) splitting
up loops .
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(intel
Parallel API's: MPI
the Message Passing Interface
MPI Type contiguous MPI Recv 1init
MPI Bcast
| MPI: An API for Writing Clustered Applications
RLD
MPT_| = A library of routines to coordinate the
execution of multiple processes. bate
Cs = Provides point to point and collective rtall
communication in Fortran, C and C++
MPT | = Unifies last 15 years of cluster Pack
computing and MPP practice
MPT |

MPI Sendrecv replace

MPI Ssend MPI Waitall

MPI Alltoallv MPI Send

Third party names are the property of their owners. 144



MPI and The SPMD Model @

MPI is a standard API for passing messages between threads and processes. Works on
distributed and shared memory systems. The number one API for parallel programming.

A parallel program working

A sequential program on a decomposed data set.

working on a data set
« Coordination by passing

mesSages.

Replicate the program.
Add glue code
Break up the data

- \ /7 4

3" party names are the property of their owners. 145




" A

MPI Pi program: SPMD pattern
#include <mpi.h>
void main (int argc, char *argv[])

{

(intel.

int i, id, numprocs; double x, pi, step, sum = 0.0, stepl, stepN ;

step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
stepl = id *num_steps/numprocs ;
stepN = (id+1)*num_steps/numprocs;
if (stepN > num_steps) stepN = num_steps;
for (i=stepl; i<stepN; i++)
{

X = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

sum *= step ;

SPMD
Programs:

Each thread
runs the same
code with the
thread ID
selecting
thread-specific
behavior.

MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD) ;

}
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Divide and Conquer Pattern

m Use when:

A problem includes a method to divide into
subproblems and a way to recombine solutions of
subproblems into a global solution.

m Solution
Define a split operation

Continue to split the problem until subproblems are
small enough to solve directly.

Recombine solutions to subproblems to solve original
global problem.

m Note:

Computing may occur at each phase (split, leaves,
recombine).

(intel'
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Divide and conquer

m Split the problem into smaller sub-problems. Continue until
the sub-problems can be solve directly.

/ o \

subproblcm

/ split

subproblem

/ split \

‘ problem

m 3 Options:

subproblem ‘

subproblem

subproblem ‘

solve

b ¥

solve

solve

¥

snbsolution

subsolution ‘

suhsolution

N

subszsolution ‘

\wge/

\merge

/

subproblem ‘

solve

i

subhsolution ‘

\

subsolution

‘ solution

Do work as you split
into sub-problems.

Do work only at the
leaves.

Do work as you
recombine.
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" A i“tal)
Cilk: divide and conquer meets fork-join &=

m Extends C to create a parallel language but maintains serial semantics.

m A fork-join style task oriented programming model perfect for recursive
algorithms (e.g. branch-and-bound) ... shared memory machines only!

m Solid theoretical foundation ... can prove performance theorems.

cilk Marks a function as a “cilk” function that can be spawned

spawn | Spawns a cilk function ... only 2 to 5 times the cost of a
regular function call

sync Wait until immediate children spawned functions return

m “Advanced” key words

inlet Define a function to handle return values from a cilk
task

cilk_fence | A portable memory fence.

abort Terminate all currently existing spawned tasks

m Includes locks and a few other odds and ends.

3 party names are the property of their owners. 149



l _ e
PI Program: Cilk (divide and conquer implemented with fork-join)Lj—lnt |

static long num_steps = 1073741824; // I'm lazy ... make it a power of 2
double step = 1.0/(double) num_steps;
cilk double pi_comp(int istep, int nstep){
double x, sum;
if(nstep < MIN_SIZE)
for (int i=istep, sum=0.0; i<= nstep; i++){

x = (i+0.5)*step: Recursively split range of the loop
sum += 4.0/(1.0+x*x); until its small enough to just

} directly compute

return sum;

else {
suml = spawn pi_comp(istep, nstep/2);
sum2 = spawn pi_comp(istep+nstep/2, nstep/2);

} Wait until child tasks are done then return the sum

SYNC; . . .
y _ ... implements a balanced binary tree reduction!
return suml+sumz2;

}
int main ()

double pi, sum = spawn pi_comp(0,num_steps);

sync;

pi = step * sum; 150
}



Cilk and OpenMP

« With the task construct in OpenMP 3.0, we can
use the Cilk style of programming in OpenMP.

* In the following examples, we show an OpenMP
program to count instances of a key in an array.

© 2009 Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen



Count keys: Main program

#define N 131072
int main()

{
long a[N];
int i;
long key = 42, nkey=0;
/I fill the array and make sure it has a few instances of the key

for (i=0;i<N;i++) a[i] = random()%N;
a[N%43] = key; a[N%73] =key; a[N%3] = key;

/l count key in a with geometric decomposition
nkey = search_geom(N, a, key);
/l count key in a with recursive splitting

nkey = search_recur(N, a, key);

© 2009 Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen



Count keys: with OpenMP

long search(long Nlen, long *a, long key)

long search_recur(long Nlen, long *a, {
long key) long count1=0, count2=0, NI2;

{ if (Nlen == 2){

long count = 0; if (*(a) == key) count1=1;

#pragma omp parallel reduction(+:count) if (*(a+1) == key) count2=1;

{ return count1+count2;

#pragma omp single }
count = search(Nlen, a, key); else {

} NI2 = Nlen/2;

return count;
} #pragma omp task shared(count1)

count1 = search(NI2, a, key);

#pragma omp task shared(count2)
count2 = search(NI2, a+NI2, key);

- Design Patterns used:

- Divide and conquer with
fork=join return count1+count2;

}

#pragma omp taskwait

© 2009 Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen



Count keys: Random number generator

/I A simple random number generator

static unsigned long long MULTIPLIER = 764261123,
static unsigned long long PMOD = 2147483647,
unsigned long long random_last = 42;

long random()

{

unsigned long long random_next;

Il

// compute an integer random number from zero to pmod

Il
random_next = (unsigned long long)(( MULTIPLIER * random_last)% PMOD);
random_last = random_next;
return (long) random_next;

© 2009 Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen



=
Data Parallelism Pattern o B %

m Use when:

Your problem is defined in terms of collections of data elements
operated on by a similar (if not identical) sequence of instructions;
l.e. the concurrency is in the data.

m Solution
Define collections of data elements that can be updated in parallel.

Define computation as a sequence of collective operations applied
together to each data element.

! ] ! ] }

(baat | [Daa2 | [Daas | [ oo | [ Daan |

I Often supported with the data-parallel/Index-map pattern. |
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OpenCL: a language designed for the data-
parallel index-map pattern

CPUs

/
Multiple cores driving ~ Emerging
performance increases " Intersection

“E[\ \
: N

GPUs

Increasingly general purpose
data-parallel computing

Multi-processor
programming - . Heterogeneous

e.g. OpenMP Computing

Graphics APIs
and Shading
Languages

OpenCL - Open Computing Language
Open, royalty-free standard for portable, parallel programming of heterogeneous
parallel computing CPUs, GPUs, and other processors

3rd party names are the property of their owners. Source: SC09 OpenCL tutorial - page 156



OpenCL Platform Model

Processing
Element

o

mon
non HH
[mon
[alal=! |:|
Imon H
oo
iy

ﬂ

!
00

Host

L%

-
’

Computé Unit

‘-\

-
N

oy

Compuie Device

 One Host + one or more Compute Devices

- Each Compute Device is composed of one or more Compute Units

- Each Compute Unit is further divided into one or more Processing

Elements

Source: SC09 OpenCL tutorial

- Page 157



The data parallel index-map pattern:

* define a problem domain in terms of an index-map and

execute a kernel invocation for each point in the domain

- E.g., process a 1024 x 1024 image: Global problem dimensions:
1024 x 1024 = 1 kernel execution per pixel: 1,048,576 total kernel executions

Scalar

void
scalar mul (int n,
const float *a,
const float *b,
float *c)
{
int i;
for (i=0; i<n; i++)
c[i] = a[i] * b[i];

=)

Data Parallel

kernel wvoid

dp mul (global const float *a,
global const float *b,
global float *c)

{
int id = get global id(0);

c[id] = a[id] * b[id];

} // execute over “n” work-items

Source: SC09 OpenCL tutorial

- Page 158



Matrix Multiplication: Sequential code

void mat_mul(int Mdim, int Ndim, int Pdim, float *A, float *B, float *C)

{

}

inti, ], k:
for (i=0: i<Ndim: i++){

for (j=0: j<Mdim: j++){

for(k=0:k<Pdim:;k++){  //C(i,j) = sum(over k) A(i,k) * B(k,])

}

}

}

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+i];

C(i,) C(i,) Ali)
B(:.J)

Dot product of a row of A and a column of B for each element of C

Source: SC10 OpenCL tutorial

- Page 159



Matrix Multiplications Performance

*Basic, unoptimized results of C, serial matrix
multiplication on a CPU.

MFLOPS

CPU: Sequential C (not OpenCL) 167

Run on an Apple MacBook Pro laptop running OSX 10 Snow
Leopard.CPU is Intel® Core™2 Duo CPU T8300 @ 2.40GHz

Source: SC10 OpenCL tutorial

3" party names are the property of their owners.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or
software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information
on performance tests and on the performance of Intel products, reference _<http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104. - Page 160




Matrix Multiplication: OpenCL kernel (1/4)

void mat_mul(int Mdim, int Ndim, int Pdim, float *A, float *B, float *C)
{
inti,j, k;
for (I=0; i<Ndim; i++){
for (j=0; j[<Mdim; j++){
for(k=0;k<Pdim;k++){  //C(i,j) = sum(over k) A(i,k) * B(k,j)
C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];
}
}
}
}

Source: SC10 OpenCL tutorial -page 161

3" party names are the property of their owners.



Matrix Multiplication: OpenCL kernel (2/4)

—>| __kernel mat_mul(

int-Mdim—irtNdim—int-Pdim—s  constint Mdim, const int Ndim, const int Pdim,
~foat*A-float*B—fleat C)—> __global float *A, __global float *B, __global float *C)

{
inti,j, k;
for (i=0; i<Ndim; i++){ Mark as a kernel function and specify memory qualifiers
for (j=0; j<Mdim; j++){
for(k=0;k<Pdim;k++){  //C(i,j) = sum(over k) A(i,k) * B(k.,j)
C[i*Ndim+j] += A[iI*Ndim+k] * B[k*Pdim+j];
}
}
}
}

3rd party names are the property of their owners. Source: SC10 OpenCL tutorial -page 162



Matrix Multiplication: OpenCL kernel (3/4)

__kernel mat_mul(
const int Mdim, const int Ndim, const int Pdim,

__global float *A, __global float *B, _ global float *C)

{

inti, |, k;

for (I=0; i<Ndim; i++){

i = get_global_id(0);
> j=get_global_id(1);

/IC(i,j) = sum(over k) A(i,k) * B(k,j)
C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

>< Remove outer loops and set work item coordinates

3rd party names are the property of their owners. Source: SC10 OpenCL tutorial -page 163



Matrix Multiplication: OpenCL kernel (4/4)

__kernel mat_mul(
const int Mdim, const int Ndim, const int Pdim,
__global float *A, __global float *B, _ global float *C)
{
inti,j, k;
| = get_global id(0);
j =get_global id(1);
for(k=0;k<Pdim;k++){  /IC(i,]) = sum(over k) A(i,k) * B(k,))
C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];
}

3rd party names are the property of their owners. Source: SC10 OpenCL tutorial - page 164



Matrix Multiplication: OpenCL kernel

Rearrange a bit and use a local scalar for intermediate C element values (a
common optimization in Matrix Multiplication functions)

___kernel mmul(
const int Mdim,
const int Ndim,
const int Pdim,
__global float* A,
__global float* B,
__global float* C)

3" party names are the property of their owners.

int k;
int i = get_global _id(0);
int ] = get_global id(1);
float tmp;
tmp = 0.0;

for(k=0;k<Pdim;k++)

tmp += A[i*Ndim+k] * B[k*Pdim+j];

C[i*Ndim+j] = tmp;

Source: SC10 OpenCL tutorial

- Page 165



Matrix Multiplications Performance

- Basic results ... no effort to optimize code.

MFLOPS

CPU: Sequential C (not OpenCL) 167

GPU: C(i,)) per work item, all global 511

CPU: C(i,)) per work item, all global 744

Run on an Apple MacBook Pro laptop running OSX 10 Snow Leopard. GPU a GeForce®
8600M GT GPU from NVIDIA with a max of 4 compute units. CPU is Intel® Core™2 Duo
CPU T8300 @ 2.40GHz

3™ party names are the property of their owners. Source: SC10 OpenCL tutorial

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or
software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information
on performance tests and on the performance of Intel products, reference _<http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.




OpenCL Memory Model

* Private Memo
: ry Private Private Private Private
- Per work-item Memory Memory Memory = Memory

* Local Memory
- Shared within a workgroup

» Local Global/Constant Memory _LocaIMemory |

- Visible to all workgroups
* Host Memory

- On the CPU Global/Constant Memory

Computer Device

Work-Iltem Work-Iltem Work-Iltem Work-Iltem

Workgroup Workgroup

Host Memory

* Memory management is explicit
You must move data from host -> global -> local and back

Source: SC09 OpenCL tutorial -rage 167



Matrix Multiplications Performance

» After we optimize to increase flops per memory access, we get the
following results.

Case MFLOPS

CPU: Sequential C (not OpenCL) 1130
GPU: C(i,)) per work item, all global 511
GPU: C row per work item, all global 258
GPU: C row per work item, A row private 873
GPU: C row per work item, A private, B local 2472
CPU: C(i,)) per work item 744

Run on an Apple MacBook Pro laptop running OSX 10 Snow Leopard. GPU is a GeForce® 8600M GT
GPU from NVIDIA with a max of 4 compute units. CPU is Intel® Core™2 Duo CPU T8300 @ 2.40GHz

3™ party names are the property of their owners. Source: SC10 OpenCL tutorial

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or
software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information
on performance tests and on the performance of Intel products, reference _<http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.




Conclusion

e We have now covered the full sweep of the
OpenMP specification.

oWe’ve left off some minor details, but we’ve covered
all the major topics ... remaining content you can
pick up on your own.

e Download the spec to learn more ... the spec is
filled with examples to support your continuing
education.

¢WWW.0penmp.org

e Get Involved:
¢get your organization to join the OpenMP ARB.
¢Work with us through Compunity.
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OpenMP Organizations

e OpenMP architecture review board URL,
the “owner” of the OpenMP specification:

WWW.0penmp.org

e OpenMP User’s Group (cOMPunity) URL.:

www.compunity.org

Get involved, join compunity and help
define the future of OpenMP
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Exercise 1. Solution
A multi-threaded “Hello world” program

e Write a multithreaded program where each
thread prints “hello world”.

#include “omp.h” < OpenMP include file

void main() —

i Sample Output:
#pragma omp parallel & hello(1) hello(0) world(1)
{ world(0)

int1D = omp_get_thread_num();  ne|ig (3) hello(2) world(3)
printf(* hello(%d) ”, ID);
printf(“ world(%d) \n”, ID); world(2)

} Runtime library function to
} End of the Parallel region return a thread ID.
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The SPMD pattern

e The most common approach for parallel
algorithms is the SPMD or Single Program
Multiple Data pattern.

e Each thread runs the same program (Single
Program), but using the thread ID, they operate
on different data (Multiple Data) or take slightly
different paths through the code.

e In OpenMP this means:

¢ A parallel region “near the top of the code”.
¢Pick up thread ID and num_threads.

¢Use them to split up loops and select different blocks
of data to work on.
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Exercise 2. A simple SPMD pi program

Promote scalar to an array

#include <omp.h> dimensioned by number of
static long num_steps = 100000; double step; threads to avoid race
#define NUM_THREADS 2 condition.

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS];
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{ Only one thread should copy the

int i, id,nthrds; number of threads to the global
double x; value to make sure multiple threads

id = omp_get_thread_num(); writing to the same address don’t
=T — ’ flict.
nthrds = omp_get_num_threads(); —
if (id == 0) nthreads = nthrds;
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

X = (|+O.5)*step; This is a common trick in
sum[id] += 4.0/(1.0+x*x); SPMD programs to create a
} cyclic distribution of loop
) iterations

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;
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False sharing

e If iIndependent data elements happen to sit on the same
cache line, each update will cause the cache lines to
“slosh back and forth” between threads.

¢ This is called “false sharing”.

e |If you promote scalars to an array to support creation
of an SPMD program, the array elements are
contiguous in memory and hence share cache lines.

¢ Result ... poor scalability

e Solution:

¢ When updates to an item are frequent, work with local copies
of data instead of an array indexed by the thread ID.

¢ Pad arrays so elements you use are on distinct cache lines.
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Exercise 3: SPMD Pi without false sharing

#include <omp.h>

static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ double pi; step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
i{#pragma omp parallel Create a scalar local to
E each thread to
int i, id,nthrds; double x, sum; accumulate partial
id = omp_get_thread_num(); sums.

nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
for (i=id, sum=0.0;i< num_steps; i=i+nthreads){ No array, so
X = (i+0.5)*step; - no false
sum += 4.0/(1.0+x*x); sharing.

}
#pragma omp critical Sum goes “out of scope” beyond the parallel
pi += sum * step; region ... so you must sum it in here. Must
} ’ protect summation into pi in a critical region so

updates don'’t conflict
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Exercise 4: solution

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
: . For good OpenMP
vold main () implementations,
{ inti; double x, pi, sum = 0.0; reduction is more
step = 1.0/(doub|e) num_steps: scalable than critical.
omp_set_num_threads(NUM_THREADYS);
#pragma omp parallel for private(x) reduction(+:sum)
for_(i=0;i< num_steps; i++){
X = (1+0.5)*step;
default sum = sum + 4.0/(1.0+x*x);
h
pi = step * sum;

} any code and by adding 4
simple lines!

| private by

Note: we created a parallel
program without changing
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Matrix multiplication

#pragma omp parallel for private(tmp, i, |, k)
for (1I=0; i<Ndim; i++){
for (j=0; j<Mdim; j++){

tmp = 0.0;

for(k=0;k<Pdim;k++){
[* C(1,)) = sum(over k) A(i,k) * B(k,)) */
tmp +=*(A+(i*Ndim+k)) * *(B+(k*Pdim+j));

}

*(C+(I*Ndim+j)) = tmp;

*On a dual core laptop

13.2 seconds 153 Mflops one thread

7.5 seconds 270 Mflops two threads

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2
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Exercise 6 solution

Compiler will warn you
if you have missed some

variables

#pragma omp parallel for default (none) \
shared(x,f,npart,rcoff,side) \
reduction(+:epot,vir) \

schedule (static,32) \
t*3, |+:3){ Loop is not well load

for (lnt IZO; |<npar balanced: best schedule

has to be found by
......... experiment.

See forces.c in MolDynSoinl



Exercise 6 solution (cont.)

#pragma omp atomic
f[j] -=forcex;
#pragma omp atomic
f[j+1] -= forcey,
#pragma omp atomic

f[j+2] -= forcez;

}
}

#pragma omp atomic
fli] +=fxi;

#pragma omp atomic
fli+1] +=fyi;

#pragma omp atomic
fli+2] +=fzi;

}
}

All updates to f
must be atomic

See forces.c in MolDynSoinl



Exercise 6 with orphaning

Move the parallel construct into Main to reduce

overhead from creating/suspending threads for

#pragma omp single each call to force()

Implicit barrier needed to avoid race
epot — OO, = condition with update of reduction variables
at end of the for construct

#pragma omp for reduction(+:epot,vir) \
schedule (static,32)
for (int 1=0; iI<npart*3; 1+=3) {

See forces.c in MolDynSoiIn2



Exercise 6 reduce sync overhead

ftemp[myid][j] -= forcex;
ftemp[myid][j+1] -= forcey;
ftemp[myid][j+2] -= forcez;

f T — e Replace atomics with
temp myia, _|] t= fX|1 accumulation into array
ftempo 'myic' -i+1] 4= fyi' with extra dimension

ftemp[myid][i+2]  +=fzi;

See forces.c in MolDynSoIn3



Exercise 6 The reduction step

Reduction can be done in

#pragma omp for < parallel
for(int i=0;i<(npart*3);i++){
for(int id=0;id<nthreads;id++){
f[i] += ftemp[id][i];
ftemp[id][i] = 0.0;

} Zero ftemp for next time
round

See forces.c in MolDynSoIn3 Ul
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Linked lists with tasks (OpenMP 3)

e See the file Linked _omp3_tasks.c

#pragma omp parallel

{

#pragma omp single

{ Creates a task with its
p=head; own copy of “p”
while (p) { Initialized to the value
: : of “p” when the task is
#pragma omp task firstprivate(p) _
defined
processwork(p);
D = p->next;
}
}
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Linked lists without tasks

See the file Linked _omp25.c

while (p '= NULL) {
p = p->next; Count number of items in the linked list

}

count++;

p = head,;
for(i=0; i<count; i++) {

parr[i] = p; : :
0 = p->next: Copy pointer to each node into an array

#pragma omp parallel

{

}

#pragma omp for schedule(static,1)
for(i=0; i<count; i++)
processwork(parr[i]);

Process nodes in parallel with a for loop

Default schedule | Static,1
One Thread 48 seconds 45 seconds
Two Threads |39 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

LJIIT




Linked lists without tasks: C++ STL

e See the file Linked _cpp.cpp

std::vector<node *> nodelist;
for (p = head; p '= NULL; p = p->next)

nodelist.push_back(p);
Int j = (int)nodelist.size();

#pragma omp parallel for schedule(static,1)
for (inti=0; 1<]j; ++i)

processwork(nodelist[i]);

C++, default sched. | C++, (static,1) |C, (static,1)

One Thread 37 seconds 49 seconds 45 seconds
Two Threads 47 seconds 32 seconds 28 seconds
198

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2



Appendices

e Sources for Additional information

e Solutions to exercises
¢ Exercise 1: hello world
¢ Exercise 2: Simple SPMD Pi program
¢ Exercise 3: SPMD Pi without false sharing
¢ Exercise 4: Loop level Pi
¢ Exercise 5: Matrix multiplication
¢ Exercise 6: Molecular dynamics
¢ Exercise 7: linked lists with tasks
¢ Exercise 8: linked lists without tasks

mm) ¢ Exercise 9: the producer-consumer pattern

e Thread Private Data
¢ Exercise 10: Monte Carlo Pi and random numbers

e Fortran and OpenMP
e Compiler Notes 199



Exercise 10: producer consumer

int main()

{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));

#pragma omp parallel sections

{

#pragma omp section
{

fill_rand(N, A);

#pragma omp flush

flag = 1;

#pragma omp flush (flag)
}

#pragma omp section

{
#pragma omp flush (flag)
while (flag != 1){

#pragma omp flush (flag)

}
#pragma omp flush
sum = Sum_array(N, A);

}

}
}

Use flag to Signal when the
“produced” value is ready

Flush forces refresh to memory.
Guarantees that the other thread
sees the new value of A

Flush needed on both “reader” and “writer”
sides of the communication

Notice you must put the flush inside the while
loop to make sure the updated flag variable is
seen
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Data sharing: Threadprivate

e Makes global data private to a thread
¢ Fortran: COMMON blocks
¢ C: File scope and static variables, static class members

e Different from making them PRIVATE
¢ with PRIVATE global variables are masked.

¢ THREADPRIVATE preserves global scope within each
thread

e Threadprivate variables can be initialized using
COPYIN or at time of definition (using language-
defined initialization capabilities).
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A threadprivate example (C)

Use threadprivate to create a counter for each
thread.

Int counter = 0;
#pragma omp threadprivate(counter)

Int increment_counter()

{

counter++;
return (counter);

}
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Data Copying: Copyin

You Initialize threadprivate data using a copyin
clause.

parameter (N=1000)
common/buf/A(N)
ISOMP THREADPRIVATE(/buf/)

C Initialize the A array
call init_data(N,A)

I$SOMP PARALLEL COPYIN(A)

... Now each thread sees threadprivate array A initialied
... to the global value set in the subroutine init_data()

I$SOMP END PARALLEL

end 204



Data Copying: Copyprivate

Used with a single region to broadcast values of privates

from one member of a team to the rest of the team.
#include <omp.h>

void input_parameters (int, int); // fetch values of input parameters
void do_work(int, int);

void main()

{

int Nsize, choice;
#pragma omp parallel private (Nsize, choice)

{

#pragma omp single copyprivate (Nsize, choice)
iInput_parameters (Nsize, choice);

do_work(Nsize, choice);
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Exercise 10: Monte Carlo Calculations

Using Random numbers to solve tough problems

e Sample a problem domain to estimate areas, compute
probabilities, find optimal values, etc.

e Example: Computing 1 with a digital dart board:

2% e Throw darts at the circle/square.
e Chance of falling in circle is
o proportional to ratio of areas:
o o Ac =r2*m
o A = (2*r) * (2%r) =4 *r?
o P=AJA = m/4

e Compute 1 by randomly choosing
points, count the fraction that falls in
the circle, compute pi.

N= 10 m=2.8

N=100 m=23.16
N=1000 1T =3.148
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Exercise 10

e We provide three files for this exercise
¢ pi_mc.c: the monte carlo method pi program
¢ random.c: a simple random number generator
¢ random.h: include file for random number generator
e Create a parallel version of this program without
changing the interfaces to functions in random.c

¢ This is an exercise in modular software ... why should a user
of your parallel random number generator have to know any
details of the generator or make any changes to how the
generator is called?

¢ The random number generator must be threadsafe.

e Extra Credit:

¢ Make your random number generator numerically correct (non-
overlapping sequences of pseudo-random numbers).
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Computers and random numbers

e We use “dice” to make random numbers:

¢ Given previous values, you cannot predict the next value.

¢ There are no patterns in the series ... and it goes on forever.
e Computers are deterministic machines ... set an initial

state, run a sequence of predefined instructions, and
you get a deterministic answer

¢ By design, computers are not random and cannot produce
random numbers.

e However, with some very clever programming, we can
make “pseudo random” numbers that are as random as
you need them to be ... but only if you are very careful.

e Why do | care? Random numbers drive statistical
methods used in countless applications:

¢ Sample a large space of alternatives to find statistically good
answers (Monte Carlo methods).
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Monte Carlo Calculations:

Using Random numbers to solve tough problems

e Sample a problem domain to estimate areas, compute
probabilities, find optimal values, etc.

e Example: Computing 1 with a digital dart board:

2% e Throw darts at the circle/square.
e Chance of falling in circle is
o proportional to ratio of areas:
o o Ac =r2*m
o A = (2*r) * (2%r) =4 *r?
o P=AJA = m/4

e Compute 1 by randomly choosing
points, count the fraction that falls in
the circle, compute pi.

N= 10 m=2.8

N=100 m=23.16
N=1000 1T =3.148
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Parallel Programmers love Monte Carlo

algorithms Embarrassingly parallel: the
parallelism is so easy its
#include “omp.h” embarrassing.
static long num_trials = 10000; Add two lines and you have a
Int main () parallel program.
{
long i;  long Ncirc =0; double pi, X, y;

double r =1.0; //radius of circle. Side of squrare is 2*r
seed(0,-r, r); // The circle and square are centered at the origin
#pragma omp parallel for private (X, y) reduction (+:Ncirc)
for(i=0;i<num_trials; i++)
{

X =random(); y =random();

If (X*X +y*y)<=r*r) Ncirc++;

}

pi = 4.0 * ((double)Ncirc/(double)num_trials);
printf("\n %d trials, pi is %f \n",num_trials, pi);

}

210



Linear Congruential Generator (LCG)

e LCG: Easy to write, cheap to compute, portable, OK quality

random_next = (MULTIPLIER *random_last + ADDEND)% PMOQOD,;

random_last =random_next;

e |f you pick the multiplier and addend correctly, LCG has a
period of PMOD.

e Picking good LCG parameters is complicated, so look it up
(Numerical Recipes is a good source). | used the following:

¢ MULTIPLIER = 1366
¢ ADDEND = 150889
¢ PMOD = 714025
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LCG code

static long MULTIPLIER = 1366;
static long ADDEND  =150889;
static long PMOD = 714025;

long random_last = 0; :
double random () sequence by setting
{ random_last

long random_next;

Seed the pseudo random

random_next = (MULTIPLIER * random_last + ADDEND)% PMOQOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

212



Running the PI_MC program with LCG generator

Log,, number of samples

A

- LCG - one thread

- |_CG, 4 threads,
trail 1

LCG 4 threads,
trial 2

LCG, 4 threads,
trial 3

—
o
«Q
=
o
A
@
Q
=
<
)
®
=
=
o
-

0.00001

Run the same
program the
same way and
get different
answers!

That is not
acceptable!

Issue: my LCG
generator is not
threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core

laptop (Intel T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.
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LCG code: threadsafe version

static long MULTIPLIER = 1366; random_last carries
static long ADDEND = 150889; state between random
static long PMOD = 714025; number computations,
long random_last = O;

#pragma omp threadprivate(random_last)
double random ()

{

long random_ next;

To make the generator

threadsafe, make
random_last
threadprivate so each
thread has its own copy.

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}
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Thread safe random number generators

Log,, humber of samples

Thread safe

1
—
@)
'SCQ 0.1
>
g 0.01
CED.
@ 0.001
o
0.0001

0.00001

- |_.CG - one
thread

—8— LCG 4 threads,
trial 1

LCT 4 threads,
trial 2

LCG 4 threads,
trial 3

== | CG 4 threads,
thread safe

version gives the
same answer
each time you

run the program.

But for large
number of
samples, its
guality is lower
than the one
thread result!

Why?




Pseudo Random Sequences

e Random number Generators (RNGs) define a seguence of pseudo-random
numbers of length equal to the period of the RN

e In atypical problem, you grab a subsequence of the RNG range

™~

Seed determines starting point

e Grab arbitrary seeds and you may generate overlapping sequences
¢ E.g. three sequences ... last one wraps at the end of the RNG period.

| Thread 1 |
| Thread 2 |

| | Thread 3

e Overlapping sequences = over-sampling and bad statistics ... lower

quality or even wrong answers! 216




Parallel random number generators

e Multiple threads cooperate to generate and use
random numbers.

e Solutions:
¢ Replicate and Pray

¢ Give each thread a separate, independent
generator

¢ Have one thread generate all the numbers.

¢ Leapfrog ... deal out sequence values “round
robin” as if dealing a deck of cards.

¢ Block method ... pick your seed so each
threads gets a distinct contiguous block.

e Other than “replicate and pray”, these are difficult
to implement. Be smart ... buy a math library that
does it right.

Intel’s Math kernel Library supports

all of these methods.

If done right, can
generate the
same sequence
regardless of the
number of
threads ...

Nice for
debugging, but
not really
needed
scientifically.
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MKL Random number generators (RNG)

e MKL includes several families of RNGs in its vector statistics library.
e Specialized to efficiently generate vectors of random numbers

#define BLOCK 100

double buff[BLOCK]; Select type of
VSLStreamStatePtr stream; RNG and set seed

Initialize a
Zggjgnoor vsINewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val);

random -
numbers vdRngUniform (VSL_METHOD DUNIFORM_STD, stream,
BLOCK, buff, low, hi)

vslDeleteStream( &stream ); Fill buff with BLOCK pseudo rand.

nums, uniformly distributed with

values between lo and hi.
Delete the stream when you are done

pARS




Wichmann-Hill generators (WH)

e WH is a family of 273 parameter sets each defining a non-
overlapping and independent RNG.

e Easy to use, just make each stream threadprivate and initiate
RNG stream so each thread gets a unigue WG RNG.

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream)

vsINewStream(&ran_stream, VSL_ BRNG_WH+Thrd_ID, (int)seed);
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Independent Generator for each
thread

Log,, humber of samples

1

=

—$— \\VH One
thread

wlll= \WH, 2
threads

WH, 4
threads

Notice that
once you get
beyond the
high error,
small sample
count range,
adding threads
doesn’t
decrease
guality of
random
sampling.




Leap Frog method
e Interleave samples in the sequence of pseudo random numbers:
¢ Thread i starts at the i"" number in the sequence
¢ Stride through sequence, stride length = number of threads.
e Result ... the same sequence of values regardless of the number

of threads.

#pragma omp single

{ nthreads = omp_get_num_threads();
iseed = PMOD/MULTIPLIER; //just pick a seed One thread
pseed[0] = iseed; computes offsets
mult_n = MULTIPLIER; and strided
for (i = 1; i < nthreads; ++i) multiplier
{

iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD);

pseed[i] = iseed; LCG with Addend = 0 just
mult_n = (mult_n * MULTIPLIER) % PMOD; to keep things simple

}

} Each thread stores offset starting

. . point into its threadprivate “last
random_last = (unsigned long long) pseed]id]; random” value




Same sequence with many threads.

e We can use the leapfrog method to generate the
same answer for any number of threads

Steps One thread 2 threads 4 threads
1000 3.156 3.156 3.156
10000 3.1168 3.1168 3.1168
100000 3.13964 3.13964 3.13964
1000000 3.140348 3.140348 3.140348
10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and
one for the y values (WH+1). Also used the leapfrog method to deal out iterations among threads.
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Appendices

e Sources for Additional information

e Solutions to exercises
¢ Exercise 1: hello world
¢ Exercise 2: Simple SPMD Pi program
¢ Exercise 3: SPMD Pi without false sharing
¢ Exercise 4: Loop level Pi
¢ Exercise 5: Matrix multiplication
¢ Exercise 6: Molecular dynamics
¢ Exercise 7: linked lists with tasks
¢ Exercise 8: linked lists without tasks
¢ Exercise 9: the producer-consumer pattern

e Thread Private Data
¢ Exercise 10: Monte Carlo Pi and random numbers

==) ¢ Fortran and OpenMP
e Compiler Notes 223



Fortran and OpenMP

e \We were careful to design the OpenMP
constructs so they cleanly map onto C, C++
and Fortran.

e There are a few syntactic differences that once
understood, will allow you to move back and
forth between languages.

e In the specification, language specific notes
are included when each construct is defined.
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OpenMP:

Some syntax detalls for Fortran programmers

e Most of the constructs in OpenMP are compiler
directives.

¢For Fortran, the directives take one of the forms:
C$OMP construct [clause [clause]...]
ISOMP construct [clause [clause]...]
*$OMP construct [clause [clause]...]

e The OpenMP include file and lib module
use omp_lib
Include omp_lib.h



OpenMP:

Structured blocks (Fortran)
¢ Most OpenMP constructs apply to structured blocks.

— Structured block: a block of code with one point
of entry at the top and one point of exit at the
bottom.

— The only “branches” allowed are STOP
statements in Fortran and exit() in C/C++.

C3OMP PARALLEL C3OMP PARALLEL
10 wrk(id) = garbage(id) 10 wrk(id) = garbage(id)
res(id) = wrk(id)**2 30 res(id)=wrk(id)**2
If(conv(res(id)) goto 10 if(conv(res(id))goto 20
C3OMP END PARALLEL goto 10
print *,id C3OMP END PARALLEL
if(not_ DONE) goto 30
20 print*, id

A structured block Not A structured block



OpenMP:

Structured Block Boundaries

e In Fortran: a block iIs a single statement or a group of
statements between directive/end-directive pairs.

C$OMP PARALLEL C$32A|P_ET\|RALLEL o0
10 wrk(id) = garbage(id) reé(l):bigComp(l)
res(id) = wrk(id)**2 end do

If(conv(res(id)) goto 10

C$OMP END PARALLEL DO
C$OMP END PARALLEL

e The “construct/end construct” pairs is done anywhere a
structured block appears in Fortran. Some examples:

e DO ... END DO e SECTIONS ... END SECTIONS
e PARALLEL ... END PARREL e SINGLE ... END SINGLE

e CRICITAL ... END CRITICAL ¢ MASTER ... END MASTER

e SECTION ... END SECTION



Runtime library routines

e Theinclude file or module defines parameters
¢ Integer parameter omp_locl_kind
¢ Integer parameter omp_nest_lock _kind
¢ Integer parameter omp_sched_kind
¢ Integer parameter openmp_version
— With value that matches C’s _OPEMMP macro
e Fortran interfaces are similar to those used with C
¢ Subroutine omp_set_num_threads (hnum_threads)
¢ Integer function omp_get num_threads()
¢ Integer function omp_get_thread num()\
¢ Subroutine omp_init_lock(svar)
— Integer(kind=omp_lock_kind) svar
¢ Subroutine omp_destroy_lock(svar)
¢ Subroutine omp_set_lock(svar)

¢ Subroutine omp_unset_lock(svar) 298



Appendices

e Sources for Additional information

e Solutions to exercises
¢ Exercise 1: hello world
¢ Exercise 2: Simple SPMD Pi program
¢ Exercise 3: SPMD Pi without false sharing
¢ Exercise 4: Loop level Pi
¢ Exercise 5: Matrix multiplication
¢ Exercise 6: Molecular dynamics
¢ Exercise 7: linked lists with tasks
¢ Exercise 8: linked lists without tasks
¢ Exercise 9: the producer-consumer pattern

e Thread Private Data
¢ Exercise 10: Monte Carlo Pi and random numbers

e Fortran and OpenMP
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Compiler notes: Intel on Windows

e Intel compiler:
¢Launch SW dev environment ... on my laptop | use:

—start/intel software development tools/intel C++
compiler 11.0/C+ build environment for 32 bit

apps
¢cd to the directory that holds your source code
¢Build software for program foo.c
—icl /Qopenmp foo.c
¢ Set number of threads environment variable
—set OMP_NUM_ THREADS=4
¢Run your program

—foo.exe To get rid of the pwd on the
prompt, type

prompt =%



Compiler notes: Visual Studio

e Start “new project”

e Select win 32 console project
¢ Set name and path

¢ On the next panel, Click “next” instead of finish so you can
select an empty project on the following panel.

¢ Drag and drop your source file into the source folder on the
visual studio solution explorer

¢ Activate OpenMP

— Go to project properties/configuration
properties/C.C++/language ... and activate OpenMP

e Set number of threads inside the program
e Build the project
e Run “without debug” from the debug menu.
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Compiler notes: Other

e Linux and OS X with gcc:
>gcc -fopenmp foo.c /
>export OMP_NUM_ THREADS=4
> Ja.out
e Linux and OS X with PGl:
>pgcc -mp foo.c
>export OMP_NUM_ THREADS=4
> ./a.out
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OpenMP constructs

#pragma omp parallel
#pragma omp for

#pragma omp critical
#pragma omp atomic
#pragma omp barrier

Data environment clauses
¢ private (variable list)
¢ firstprivate (variable_list)
¢ lastprivate (variable_list)
¢ reduction(+:variable_list)

Where variable listis a
comma separated list of
variables

Print the value of the macro
_OPENMP
And its value will be

yyyymm

For the year and month of the
spec the implementation used

Tasks (remember ... private data is made firstprivate by default)

¢ pragma omp task
¢ pragma omp taskwait

#pragma threadprivate(variable list)

Put this on a line right after you
define the variables in question

233



