Basic C++ performance issues

LABORATOIRE
DE L'ACCELERATEUR
L1 NEAIRE

Author: Sebastien Binet
Institute: LAL/IN2P3
Date: 2010-11-23

0 November 23, 2010 1/48

Overview

Constructors and destructors
Temporaries

Cost of virtual functions

Cost of exceptions

If and when to inline functions
Standard library containers

Templates

0 November 23, 2010 2/48

Common vocabulary - goal

@ C++ performance has many aspects
> execution speed
> code size
> data size
> memory footprint at run-time
> time and space consumed by the edit/compile/link cycle

@ C++is a large language with many features, idioms and constructs

> constructors/destructors, exceptions, templates, late-binding, overloading, RAII, ...
> knowing (or having a rough idea of) the cost of these features is important for building
a (re-)usable efficient application

* model of time and space overheads of various C++ language features

0 November 23, 2010 3/48

Classes and inheritance

C++ supports object-oriented programming
@ involves (possibly deep) inheritance hierarchies of classes
@ operations performed on classes and class hierarchies
@ space and time overheads of using classes instead of structs ?

0 November 23, 2010 4/48

Representation overhead

@ C++ class with no virtual function
> no space overhead wrt a good old C struct
WYSIWYG
non-virtual functions do NOT take any space in an object
> ditto for static data
» ditto for static function

v

v

0
struct C . class Cxx
{ : { public:
int i; 4 int i;
int j;) int j;
int k;) int k;
bi 8 }i
k
12

0 November 23, 2010 5/48

Representation overhead

class Polymorphic thr\ &F1
t i
virtual void f1(); &F2
virtual void f2(); j
int 1; vtable
int j; k
int k;

}i
@ a polymorphic class (with at least one virtual function)

> per-object overhead of 1 pointer (vptr)

> per-class overhead ofa virtual function table
* 1 or 2 words per virtual function

> per-class overhead of a type information object (RTTI)
* 0(10) bytes
* name string (identifying the class)
* couple of words of more infos
* couple of words for each base class

0 November 23, 2010 6/48

Basic classes operations

@ cost of calling non-virtual, non-static, non-inline member function
@ compared to calling a freestanding function with one extra pointer

basic fct call timings
non-virtual

px—>f (1) 0.016
g(ps,1) 0.016
non-virtual

x.g9 (1) 0.016
g(&s, 1) 0.016
static fct mbr

X::h (1) 0.013
h(1) 0.013

0 November 23, 2010 7148

Virtual functions

@ calling a virtual function
@ calling a function through a pointer stored in an array

virtual fct call timings
virtual

px->f (1) 0.019
x.£(1) 0.016
ptr-to-fct

pll] (ps,1) 0.016
pll] (&s,1) 0.018

0 November 23, 2010 8/48

Virtual functions of class templates

@ new C++ support structures (vtb1l) for each specialization
@ pure replication of code at the instruction level
@ workarounds
> use non-template helper functions
» factor out non-parametric functionalities into a non-templated base class
void foo_helper_fct(...);

template<class T> class Foo
(...}

class Base { wvoid dostuff(); };
template<class T> class Derived : public Base

(...}

November 23, 2010 9/48

Inlining

@ calling a function has a cost
@ for simple functions, it may be pure overhead
@ inlining: directly copy callee’s body at call site

test timings
non-inline

px—>g (1) 0.016
x.g (1) 0.016
inline

px—>k (1) 0.006
x.k (1) 0.005
macro

K(ps,1) 0.005
K(&s, 1) 0.005

0 November 23, 2010 10/48

Multiple inheritance

@ more complicated binary layout of instances
@ for each call, need to adjust the this pointer to get the right substructure

> caller applies an offset to this fromthe vtbl
> or use a thunk: man-in-the-middle fragment of code

test timings
S, non-virtual px->g (1) 0.016
Base1, non-virtual pc—>g (1) 0.016
Base2, non-virtual pc->gg (1) 0.017
Sl, virtual px—>f (1) 0.019
Base1, virtual pa—->f (1) 0.019
Base2, virtual pa—>ff (1) 0.024

0 November 23, 2010 11/48

Virtual base classes

@ additional overhead wrt simple multiple inheritance

> position of base class subobject not known at compile time
> needs one additional indirection

test timings
SI, non-virtual px->g (1) 0.016
VBC, non-virtual pd->gg (1) 0.021
Sl, virtual px—>f (1) 0.019
VBC, virtual pa—>f (1) 0.025

0 November 23, 2010 12/48

Exception handling

@ systematic and robust way to cope with errors
@ traditional alternatives

double
double
double

returning error codes

setting error states indicators (errno)

calling error handling functions

escaping into error handling code using 1ong jmp
passing along a pointer to a state object w/ each call

fl(int a) { return 1.0 / a; }
f2(int a) { return 2.0 / a; }
£f3(int a) { return 3.0 / a; }

// no error handling

double

g(int x, int y, int z)

{ return fl(x) + f2(y) + £3(z); }

November 23, 2010 13/48

Exception handling

@ with error handling @ with EH

int error_state = 0; struct Error {...};
double f1l (int a) { double f1l (int a) {
if (a <= 0)

if (a <= 0) {
error_state = 42; throw Error (42);
return 0; return 1.0 / a;

}
return 1.0 / a;

} double g (...) {
try {
double g (...) { return f1l (x)+£2(y)
double xx = fl(x); +£3(z);
if (error_state) {...} } catch (Error& err) {

}

return xx+yy+zz;

November 23, 2010 14/48

Exception handling

@ 3 sources of overhead
> data and code associated with t ry blocks
> data and code associated with the normal execution of additional fcts
> data and code associated with throw expressions
@ implementation issues
> context setup of t ry blocks for associated cat ch clauses
» catch clause needs some kind of type identification
> clean-up of handled exceptions (memory mgt)
> ctors/dtors of non-trivial objects
L
@ 2 main implementation techniques
> the 'code’ approach
> the ’table’ approach

@ both need some kind of RTTI (thus code/data increase)

0 November 23, 2010 15/48

Exception handling

@ the 'code’ approach
> dynamically maintain auxiliary data structures

* to manage execution contexts
* to track the list of objects to be unwound (in case an exception occured)

> associated stack and run-time costs can be significant
> even when no exception is thrown, bookkeeping is performed

@ the ’table’ approach (g++)
> read-only tables are generated
* to determine the current execution context
* to locate catch clauses
* to track the list of objects to be unwound

> all bookkeeping is pre-computed
> no run-time cost if no exception is thrown (zero cost overhead for normal execution

path)

November 23, 2010 16/48

Templates

@ template overheads
for each new specialization, generation of a new instantiation of code
can lead to unexpectedly large amount of code and data
* EH, vtbl, ...

> canonical experiment:

* instantiate 100 std: : 1ist<T«> for some fixed T type

* instantiate 1 std: : 1ist<T«> for 100 T different types

* measure programs’ size
> optimization:

* recognize that all different specializations project onto the same generated machine code

can be done by the compiler

*
* or by a clever STL implementation
* je: implement (under the hood) all std: : 1ist<T*> interms of voidx

v

v

> compilation time

0 November 23, 2010 17/48

Templates vs inheritance

@ templates are usually more runtime efficiency friendly
@ deep inheritance trees incur overhead:

> ctors/dtors
> pointer indirection / virtual functions

0 November 23, 2010 18/48

Programmer directed optimizations

usual disclaimer:

@ don'tdoit:

> early (performance) optimization is the root of all evil
> spend that time on unit tests (make sure the code is right), documentation and new
features

@ think twice before applying performance any optimization tips
@ make it thrice

in the following:
@ afew rules of thumb
@ cover usual gotchas

<« D>

efficiency code re-use

0 November 23, 2010 19/48

Constructors & Destructors

@ C++ creates instances of classes with ctors
> allocate memory
> initialize fields
@ ... and cleans-up/relinquishes resources with dtors

/% 1in good old C */ // in C++

{ [o
struct S s; \ S s;
S_init (&s); \ // compute s...
/% compute s... */ [}

S_cleanup (&s);

}

in an ideal world: no overhead introduced by ctor/dtor
@ in practice:

> overhead because of inheritance
> overhead because of composition

@ overhead: perform computations which may be rarely needed

November 23, 2010 20/48

Object construction

@ in ctors prefer to use initializers
> no need to do the work twice

UsuallyOk::UsuallyOk(...) : m_1(42), m_2(str) {...}

UsuallyBad: :UsuallyBad(...)
{m 1= ...; m_2 = str; }

@ define variables as close to use-site than possible
@ define variables when ready to initialize (no ctor+assign)
X x1 = 42; X x2; x2 = 42;

@ passing arguments to a function by value is...

> cheap for built-ins
> potentially expensive for class types
> prefer passing by const-ref or address

void f (const std::strings);
void g (const Tx);

0 November 23, 2010 21/48

Implicit conversions & temporaries

@ Calling a function with the 'wrong’ arg.’s type implies type conversion
@ may require work at run-time

void fl (double) ;
£1(7.0); // no conversion but copy
£1(7); // conversion: f1 (double(7));

void f2 (const doubles) ;
£2(7.0); // no conversion
£2(7); // const double tmp =7; f2(tmp);

void f3(std::string); std::string s =
£f3(s); // no conversion but copy

£f3("bar"); // f3(std::string("bar"))

"foo"’.

void f4 (const std::stringé¢);
fd(s); // no conversion, no copy
f4("tf"); // const std::string tmp("f"); f4(tmp);

0 November 23, 2010 22/48

Explicit constructors

consider the class definition:

class Rational
{

friend Rational operator+ (const Rationals,

const Rationalé);

public:

Rational (int a=0, int b=1) : num(a), den(b) {}
private:

int num; // Numerator

int den; // Denominator

}i

0 November 23, 2010 23/48

Explicit constructors

and the following snippet:

Rational r;

V2R
r = 100;
@ no assignment operator with int so the above will be “translated” to:

Rational tmp (100);
r.operator= (tmp) ;
tmp.~Rational () ;

@ usually a good idea to define ctors which can be called with one argument, as
explicit:

explicit Rational (int a=0, int b=1) : num(a), den(b) {}

@ also good to overload operator=(T)

0 November 23, 2010 24/48

Default constructors

class X class Z : public Y
{ {

A a; E e;

B b; F £

virtual void fct (); public:

i z() {}
i
class Y : public X

C c;
D d;

@ compiler-generated default constructors are inline

@ substantial (!) amount of machine code can be inserted each time a Z is
constructed...

0 November 23, 2010 25/48

Temporary objects

@ probably the most acute problem wrt performance and efficiency.
@ preventing creation of temporaries benefits
> run-time speed

* creating temporaries takes CPU cycles
* destroying them, too !

> memory footprint
@ understand how and when compilers generate temporary objects
> initializing objects
> passing parameters to functions
> returning values from functions

0 November 23, 2010 26/48

Temporaries & initialization

quick example:

{
std::string sl = "Hello";
std::string s2 = "World";
std::string s3;

s3 = sl + s2; // s3 is now: "HelloWorld"
}
where the last statement is equivalent to:

{
std::string _temp;

operator+ (_temp, sl, s2); // pass _temp by refere
s3.std::string: :operator=(_temp); // assign _temp to s3
_temp.std::string::~string(); // destroy _temp

}

on top of that, the string concatenation function may itself create temporaries.

0 November 23, 2010 27/48

Temporaries, loops and type mismatch

@ what’s wrong with that code (short of being midly useful) ?
Complex operator+ (const Complexé& rhs,

const Complexé& lhs);

Complex a, b;
for (int 1i=0; 1<100; ++1i) a = i+xb + 1.0;

@ temporary generated to represent the complex 1+0]
@ lift the constant expression out of the loop

Complex one (1.0);
for (int i=0; i<100; ++1i) a = i*b + one;

@ a clever optimizer might do it for you (YMMV)

0 November 23, 2010 28/48

Eliminate temporaries with [some-op]=()

the following snippet generates 3 temporaries:

std::string sl,s2,s3,5s4;
std::string s5 = sl + s2 + s3 + s4;

the following does not:

std::string s5 = sl;
s5 += s2;
s5 += s83;
s5 += s4;

0 November 23, 2010 29/48

Pass by value

avoid writing APIs which use this pattern:

void f(T t) { /# do something with t#*/ }

T t;
£(t);
}
// 1s equivalent to:

{

T t;

T _temp;

_temp.T::T(t); // copy construct _temp from t
f(_temp); // pass _temp by reference

_temp.T::~T(); // destroy _temp

0 November 23, 2010 30/48

Return by value

another source of temporaries is function return value:

std::string fct () // 1s equivalent to: (pseudo-code)
{ {
std::string s; std::string p;
// compute ’s’ V2
return s; std::string _temp;
} // pass _temp by reference

fct (_temp);
// the following snippet:

{ // assign _temp to p
std::string p; p.std::string: :operator=(_temp) ;
VAR
p = fct(); // destroy _temp

} _temp.std::string::~string();

0 November 23, 2010 31/48

Return value - corollary

@ so we don't like (performance-wise) functions which return objects

class T

{

public:
T operator++ (int i); // foo++
T& operator++(); // ++foo

}i

@ prefer prefix over postfix increment operator

for (std::vector<T>::iterator
it = vec.begin(),
end= vec.end();
it != end; ++it) { // <—— and NOT: it++
VA

0 November 23, 2010 32/48

Return value optimization (RVO)

@ one way to side-step inefficiency of return by value: write ’C-like’ APls:

T fct();

T t;

Y

t fct ()

void compute_t (T& t);
T t;
compute_t (t);

@ another way is to enable the compiler to apply RVO...

0 November 23, 2010 33/48

RVO

class Complex ({

public:
Complex (double re=0., double im=0.);
double re, im;

bi

Complex operator+ (const Complexé& a, const Complexé& b) {
Complex res;
res.re = a.re + b.re;
res.im = a.im + b.im;
return res;

Complex cl,c2,c3;
c3 = cl + c2;

0 November 23, 2010 34/48

RVO

@ without any optimization, the emitted (pseudo)code would look like:

Complex _tmp;

_add_complex (_tmp, cl, c2);
c3.operator=(_tmp) ;
_tmp.~Complex () ;

void _add_complex (Complex &_tmp,
const Complex &a, const Complex &b) {
Complex ret;
//... as previously
_tmp.operator=(ret);
ret.~Complex () ;
return;

@ how to remove all these temporaries and their associated c/dtors ?

November 23, 2010 35/48

RVO

@ rewrite the add function to remove the local named temporary
@ use an unnamed temporary to help the compiler:

Complex operator+ (const Complex &a, const Complex &b) |
double re a.re + b.re;

double im = a.im + b.im;

return Complex(re, im);

}

@ note that complicated functions with multiple return statements are harder to elect
for RVO

@ RVO is not mandatory

> done at the discretion of the compiler
> inspection of generated code + trial&error

0 November 23, 2010 36/48

inlining basics

@ replaces a function call with a verbatim copy of the function at call-site
> kind of like a C-macro

@ works around the overhead of calling functions.
@ 2 ways to express intent of inlining a function

class FourMom {
float m_px, m_py, m_pz, m_ene;
public:
// implicit inlining:
// definition provided w/ declaration
float px () const { return m_px; }
void set_px (float px);
}i

// use inline keyword
inline void FourMom: :set_px(float px) { m_px = px; }

0 November 23, 2010 37/48

inlining basics

@ at source-code level, inlined functions are used like any other function:

int main (int, charxx)

{

FourMom mom;

mom.set_px (20.*GeV) ;

std::cout << "px: " << mom.px()
<< std::endl;

return 0O;

}

@ code expanded inline at call site:

> call site must know the definition of the function
> compilation coupling
> potential compilation time increase

November 23, 2010 38/48

cross-call optimizations

int main (int, charxx)

{

FourMom mom;

mom.set_px (20.xGeV) ;

std::cout << "px: " << mom.px()
<< std::endl;

return 0;

}

@ inlining is most nutritious with cross-call optimizations

November 23, 2010 39/48

cross-call optimizations

int main (int, charxx)

{

FourMom mom;

mom.m_px = 20.xGeV;

std::cout << "px: " << mom.m_px
<< std::endl;

return 0;

}

@ inlining is most nutritious with cross-call optimizations

November 23, 2010 40/48

cross-call optimizations

int main (int, charxx)

{

FourMom mom;

mom.m_px 20.xGeV;

std::cout << "px: " << mom.m_px
<< std::endl;

return 0O;

}

@ inlining is most nutritious with cross-call optimizations

int main (int, charx~x)
{
std::cout << "px: " << 20.xGeV
<< std::endl;
return 0O;

}

November 23, 2010 41/48

why not inline

@ code expansion
> disk space
> memory size
> cache size, increase cache fault
> code size
@ compilation coupling

@ recursive methods

November 23, 2010

42/48

Standard Template Library (STL)

@ a powerful combination of containers and generic algorithms

@ performance guarantees of the asymptotic complexity of containers and
algorithms:

> an approximation of algorithm performance - big-O notation
» O(N), O(N*N),...

@ choosing the right container is based on the type of frequent and critical
operations applied on it

> various trade-offs
> no one true best container
> only best compromise for task at hand

@ containers manage storage space for their elements
@ provide methods to access elements, directly or through iterators

0 November 23, 2010 43 /48

a sequence container

organize data into a strictly linear arrangement

contiguous storage

good locality of reference

allow O (1) random access

inefficient at removing/inserting elements other than at the end: O (N)

do not forget to give adequate hint size before push_back calls:

std: :vector<T> v;
v.reserve (n);
v.push_back (make_t ());

@ prefertouse container: :empty () instead of container::size ()==0

0 November 23,2010 44/48

std::list

@ a sequence container
@ doubly linked list
o efficient insertion and removal anywhere in the container: O (1)

@ efficient at moving (blocks of) elements within the container or between
containers (O (1))

0 November 23, 2010 45/48

associative containers

@ std::map<K,V,Cmp,Alloc>
> unique key-values
> elements follow a strict weak ordering (at all time)
» efficient access of elements by key (logarithmic complexity)
> logarithmic complexity for insertion
@ std::trl::unordered_map<K,V,Hash,Pred,Alloc> (hash_map)

> unique key-values
> constant time insertion/access

0 November 23, 2010 46/ 48

better than STL ?

@ STL is generic

@ if you know something about the problem’s domain, you can squeeze some perfs
wrt STL.

e.g. compare strings of a known format “aaaal” and “aaaa2”

@ the STL is an uncommon combination of abstraction, flexibility and efficiency
(curtosy of generic programming)

@ depending on your application, some containers are more efficient than others for
a particular usage pattern

@ unless you know something about the problem domain that STL doesn't, it is
unlikely you will beat STL by a wide enough margin

@ outperforming STL is still possible in some specific scenarios

0 November 23, 2010 47/ 48

Concluding remarks

@ C++ is a wide and powerful language, difficult to really master entirely

be wary of using fancy constructs and features
> when in doubt, choose simplicity

pay attention to compiler warnings

strive for warning-free builds

innocently looking C++ code can be treacheous

profile before sprinkling your code with optimizations

remember the code the C++ compiler automatically generates for you

remember the trade-offs of inlining

Remember, with great power, comes great responsibility

0 November 23, 2010 48 /48

