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Moore’s law

 We continue to double the number of 
transistors every other year
 The consequences
 CPUs

 Single core  Multicore  Manycore
 Vectors
 Hardware threading

 GPUs
 Huge number of FMA units

 Today we commonly acquire chips 
with 1’000’000’000 transistors!

Adapted from WikipediaFrom Wikipedia
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Real consequence of Moore’s law

 We are being “drowned” by transistors:

 More (and more complex) execution units
 Hundreds of new instructions

 Longer SIMD/SSE vectors
 More hardware threading
 More and more cores

 In order to profit we need to “think parallel”

 Data parallelism
 Task parallelism
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“Intel platform 2015” (and beyond)
 Today’s silicon processes: 

 45 nm
 32 nm

 On the roadmap:
 22 nm (2011/12)
 16 nm (2013/14)

 In research:
 11 nm (2015/16)
 8 nm (2017/18)

– Source: Bill Camp/Intel HPC

 Each generation will push the core count:
 We are entering the many-core era (whether we like it or not) !

LHC data

We are here

S. Borkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005.
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The holy grail: Forward scalability
 Not only should a program be written in such a way that it 

extracts maximum performance from today’s hardware

 On future processors, performance should scale 
automatically
 In the worst case, one would have to recompile or relink

 Additional CPU/GPU hardware, be it cores/threads or 
vectors, would automatically be put to good use

 Scaling would be as expected:
 If the number of cores (or the vector size) doubled:

 Scaling would be close to 2x, but certainly not just a few percent

 We cannot afford to “rewrite” our software for every 
hardware change!
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Evolution of CERN’s 
computing capacity
 During the LEP era (1989 –

2000):
 Doubling of total computing 

capacity every year
 Initiated with the move from 

mainframes to RISC systems

 The PC has been with us for 
15 years!
 At CHEP-95 I made the first 

recommendation to move to 
PCs
 After a set of encouraging 

benchmark results

From L.Robertson
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Frequency scaling

 The 7 “fat” years of easy frequency scaling in HEP

 The Pentium Pro in 1996: 150 MHz

 The Pentium 4 in 2003: 3.8 GHz (~25x)

 Since then
 Core 2 systems:

 ~3 GHz
 Multi-core

 Recent CERN purchase:
 Intel L5640 CPUs

 2.26 GHz From A. Nowak/CERN openlab
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The Power Wall

 For example, the CERN Computer Centre can supply 
2.9 MW of electric power
 Plus 2.3 MW to remove the corresponding heat!

 Spread over a complex infrastructure:
 CPU servers; Disk servers
 Tape servers + robotic equipment
 Database servers
 Infrastructure.
 Network

 We are hovering
around the limit!
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Performance: A complicated story!

 We start with a concrete, real-life problem to solve
 For instance, simulate the passage of elementary particles 

through matter

 We write programs in high level languages
 C++, JAVA, Python, etc.

 A compiler (or an interpreter) transforms the high-level code to 
machine-level code

 We link in external libraries

 A sophisticated processor with a complex architecture and 
even more complex micro-architecture executes the code 

 In most cases, we have little clue as to the efficiency of this 
transformation process
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A Complicated Story (in layers!)

Problem
Algorithms, abstraction

Source program

System architecture
Instruction set
µ-architecture

Circuits
Electrons

Adapted from Y.Patt, U-Austin

 We must avoid being fenced into a single layer!

Compiled code, libraries
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Let’s start with the basics!
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Von Neumann architecture

 From Wikipedia:
 The von Neumann 

architecture is a computer 
design model that uses a 
processing unit and a single 
separate storage structure to 
hold both instructions and 
data.

 It can be viewed as an entity 
into which one streams 
instructions and data in order 
to produce results

 Our goal is to produce results 
as fast as possible

DataInstructions

Results
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Simple processor layout

 A simple processor with 
four key components:
 Control Logic

 Instruction Counter
 Program Status Word

 Register File

 Functional Unit 
 Data Transfer Unit

 Data bus
 Address bus

R1

R0

R15

Registers

IC

PSW

Control

Data 
transfer 
unit

FU

Data

Address

Keeps the state of execution

Flags
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Simple server diagram

 Multiple components which 
interact during the execution 
of a program:
 Processors/cores
 Caches

 Instructions (I-cache)
 Data (D-cache)

 Memory Controllers
 Memory (non-uniform)
 I/O subsystem

 Network attachment
 Disk subsystem

Interconnect

I/O bus

Cache

C0 C1
C2 C3

Mem-ctl
Cache

C0 C1
C2 C3

Mem-ctl

MemoryMemory

Socket 0 Socket 1

C0T0
C0T1
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Initial premise

 We want the process to complete in the shortest possible time
 Our compute job (a process) will require the execution of a 

given number of (machine-level) instructions
 Dictated by the algorithms inside (and the compiler)

 This time corresponds to a given number of machine cycles

 Simple example:
 A program consists of 1010 instructions
 We measure an execution time of 6 seconds

on a processor running at 2.0 GHz
 We can now compute a key value:

 Cycles per Instruction (CPI)
 Our result: (6 * 2.0 * 109) / 1010 = 1.2

DataInstructions

Results
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Seven dimensions of performance
 First three dimensions:
 Superscalar
 Pipelining
 Computational width/SIMD

 Next dimension is a “pseudo” 
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes 

SIMD width

Superscalar

Pipelining

SIMD = Single Instruction Multiple Data

Nodes

Multicore

Sockets

Multithreading



Sverre Jarp - CERN18

Seven multiplicative dimensions:
 First three dimensions:
 Superscalar
 Pipelining
 Computational width/SIMD

 Next dimension is a “pseudo” 
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes 

Data parallelism
(Vectors/Scalars)

Task parallelism
(Events/Tracks)

Task/process 
parallelism
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Concurrency in HEP
 We are “blessed” with lots of it:
 Entire events
 Particles, tracks and vertices
 Physics processes
 I/O streams (ROOT trees, branches)
 Buffer handling (also data compaction, etc.)
 Fitting variables
 Partial sums, partial histograms
 and many others …..

 Usable for both data and task parallelism!

 But, fine-grained parallelism is not well exposed in 
today’s software frameworks
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Autoparallelization/Autovectorization

 Would it not be wonderful if the compilers could do all 
the (vectorization/parallelisation) work automatically?

 Intel compiler (10.1 or later):
 Autovectorization: YES, included in “-O”

– “-vec-reportN” for reports
 Autoparallelization: YES  with “-parallel”

– “-par-reportN” for reports

 GNU compiler (4.3.0 or later):
 Autovectorization: YES, but needs “-ftree-vectorize”

– “-ftree-vectorizer-verbose=[0-7]” for reports
 Autoparallelization support in preparation

– OpenMP support available

In addition, both compilers support intrinsics:
“higher-level assembly instructions” for explicit vectorization
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Part 1: Opportunities for scaling 
performance inside a core
 Here are the first three dimensions

 The resources:
 Superscalar: Fill the ports
 Pipelined: Fill the stages
 SIMD: Fill the computational width

 Best approach: data parallelism

 In HEP, we probably extract only 
10-15% of peak execution 
capability!

SIMD width

Superscalar

Pipelining
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First: Superscalar architecture

 In this simplified design, 
instructions are decoded 
in sequence, but 
dispatched to two 
Function Units.
 The decoder and 

dispatcher must be 
able to handle two 
instructions per cycle

 The FUs can have 
identical or different 
execution capabilities

Decode

Dispatch

FU 0 FU 1

Results

Instruction stream

Port 0 Port 1
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Enhanced superscalar architecture

 A more realistic 
architecture will have 
multiple FUs hanging 
off the same port
 An instruction can be 

dispatched to either 
matching execution 
unit on a given port, 
but not to both units 
on the same port in a 
given cycle

Dispatch

FU 0
(i-add)

FU 1
(i-add)

Results

Instruction stream

Port 0 Port 1

FU 2
(i-shift)

FU 3
(i-mul)
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Today’s superscalar architecture

 For instance, 
Intel’s Nehalem 
microarchitecture
can 
dispatch/execute/
retire four
instructions in 
parallel (across 
six ports) in each 
cycle:

Issue ports in the Core micro-architecture
(from Intel Manual No. 248966-020)

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Int. SIMD
Alu

x87 FP
Multiply

SSE FP
Multiply

FSS Move
& Logic

Int. SIMD
Shuffle

Integer
Alu

Int. SIMD
Multiply

Integer
Alu

Int. SIMD
Alu

FSS Move
& Logic

Int. SIMD
Shuffle

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Integer
Load

Store
Address

Integer
Store

FP
Load

Jump Exec
Unit

DIV
SQRT

x87 FP
Add

SSE FP
Add

Integer
Shift

FP Shuffle

Integer
MUL

Integer
LEA

Int. SIMD
Shift

PSAD

String
Compare

Integer
Shift

FP
Store
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Mulmul example

 For a given algorithm, we can understand exactly which 
functional execution units are needed
 For instance, in the innermost loop of matrix multiplication

for ( int i = 0; i < N; ++i ) { 
for ( int j = 0; j < N; ++j ) { 

for ( int k = 0; k < N; ++k ) { 
c[ i * N + j ]  +=   a[ i * N + k ]  *   b[ k * N + j ]; 

} 
} 

}

MulAdd LoadLoadStore
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Next topic: Instruction pipelining

 Instructions are broken up into stages.
 With a one-cycle execution latency (simplified):

 With a three-cycle execution latency:

I-fetch I-decode Execute Write-back
I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3
I-fetch I-decode Exec-1 Write-backExec-2 Exec-3
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Real-life latencies
 Most integer/logic instructions have a one-cycle execution 

latency:
 For example: 

 ADD, AND, SHL (shift left), ROR (rotate right)

 Amongst the exceptions:
 IMUL (integer multiply): 3
 IDIV (integer divide): 13 – 23

 Floating-point latencies are typically multi-cycle
 FADD (3), FMUL (5)

 Same for both x87 and SIMD double-precision variants

 Exception: FABS (absolute value): 1
 Many-cycle: FSQRT (27), FDIV (20)

Latencies in the Core micro-architecture (Intel Manual No. 248966-020 or later).
AMD processor latencies are similar.
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Latencies and serial code (1)
 In serial programs, we 

typically pay the penalty of a 
multi-cycle latency during 
execution:
 In this example:

 Statement 2 cannot be 
started before statement 1 
has finished
 Statement 3 cannot be 

started before statement 2 
has finished 

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c;  // Statement 1

d = a + e;  // Statement 2

f = fabs(d);   // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1
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Latencies and serial code (2)

 Observations:
 Even if the processor can fetch and decode a new 

instruction every cycle, it must wait for the previous 
result to be made available
 Fortunately, the result takes a ‘bypass’, so that the write-back 

stage does not cause even further delays

 The result here:
 9 execution cycles are needed for three instructions!

– CPI is equal to 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1
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Mini-example of real-life serial code
 Suffers long latencies:

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

if (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%rsi), %xmm0
subsd 48(%rdi), %xmm0   // load & subtract
andpd _2il0floatpacket.1(%rip), %xmm0 // and with a mask
comisd 24(%rdi), %xmm0 // load and compare
jbe ..B5.3      # Prob 43% // jump if FALSE

High level C++ code 

Machine instructions 

Same 
instructions 
laid out 
according to 
latencies on 
the Core 2 
processor 

NB: Out-of-
order 
scheduling 
not taken 
into account. 
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Other causes of execution delays (1)

 We already stated that the aim is to 
keep instructions and data flowing, 
so that results are generated 
optimally

 First issue:
 Instructions and/or data stop flowing

 Instructions are not found in the I-cache
 Data is not found in the D-cache

 Before execution can continue, 
instructions and data must be fetched 
from a lower level of the memory 
hierarchy

Instructions

Results

Data
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Other causes of execution delays (2)

 Second issue:

 Instructions are not ready in time for 
execution (Front-end stalls)
 Typically caused by branching
 If the branch is mispredicted, we suffer a 

stall (cycles add up, but no work gets 
done)
 We typically find that 10% of all 

instructions are branch instructions
– Or even more

Instructions

Results

Data
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Memory Hierarchy
 From CPU to 

main 
memory on a 
Nehalem 
processor
 With 

multicore, 
memory 
bandwidth is 
shared 
between 
cores in the 
same 
processor 
(socket)

c = cycle

Processor Core
(Registers)

L1D
(32 KB)

L2
(256 KB)

Local memory
(large)

64 B/2c, 10 c latency

~24 B/c for all cores
> 200 c latency

L1I
(32 KB)

64 B/1c, 4 c latency

Shared L3
(8192 KB)

64 B/2c for all cores
> 35 c latency
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Cache lines (1)

 When a data element or an instruction is requested by 
the processor, a cache line is ALWAYS moved (as the 
minimum quantity) to Level-1

 Cache lines are typically 64B (8 * double)
 A 32KB level-1 cache holds 512 (64B) lines

 When cache lines have to be moved come from memory
 Latency is long (>150 cycles, as already mentioned)

 It is even longer if the memory is remote

 Memory controller stays busy (~8-10 cycles)

requested
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Cache lines (2)

 Space locality is vital
 When only one element (4B or 8B) element is used inside 

the cache line:
 A lot of bandwidth is wasted!

 Multidimensional arrays should be accessed with the last 
index changing fastest:

 Pointer chasing (in linked lists) can easily lead to cache 
thrashing

Programming the memory hierarchy is an art in itself.

requested

for (i = 0; i < rows; ++i)
for (j = 0; j < columns; ++j) 

mymatrix [i] [j]   += increment;
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Third topic: Registers for SSE

 16 “XMM” registers with 128 bits each in 64-bit mode

E3 E2 E1 E0

E1 E0

E7 E6 E5 E4 E3 E2 E1 E0

Bit 0Bit 127

E15 E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E016 Bytes

8 Words

4 DWords/Single

2 QWords/Double

SSE = Streaming SIMD extensions
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Four floating-point data flavours

 Single precision
 Scalar single (SS)
 Packed single (PS)

 Double precision
 Scalar Double (SD)
 Packed Double (PD)

 Note:
 1) Today, “scalar” means running at ½ or ¼ of the peak speed
 2) Intel and AMD have announced Advanced Vector eXtensions

(AVX) with 256-bit registers (available next year !)
 “scalar” will mean 1/4 or 1/8 of peak!

 3) even longer vectors are coming!

E3 E2 E1 E0

- - - E0

E1 E0

- E0
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Scalable programming 
for a single core
 Easiest way to fill the 

execution capabilities is to 
use vectorization

 Either, vector syntax, à la 
Fortran-90

 Or, loop syntax which the 
compiler can “vectorize” 
automatically

 Or, explicit intrinsics
 See CBM example later.

REAL U(100), V(100)

U = 0.0

U = SIN(V)

U(1:50) = V(2:100:2)

float  u[100], v[100];

for (int i = 0; i<50; ++i) u[i] = 0.0;

for (i = 0; i<50; ++i) u[i] = sin(v[i]);

for (int i = 0; i<50; ++i) u[i] = v[i*2+1];
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HEP and vectors

 Too little common ground
 And, practically all attempts in the past failed!

 w/Cyber-205, CRAY, IBM 3090-Vector Facility, etc.

 From time to time, we see a good vector example
 For example: Track Fitting code from ALICE trigger

  See the next slide

 Interesting development from ALICE (Matthias Kretz):
 Vc (Vector Classes)

 http://www.kip.uni-heidelberg.de/~mkretz/Vc/

 Other examples: Use of STL vectors; small matrices
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Examples of parallelism:
CBM/ALICE track fitting
 Extracted from their High 

Level Trigger (HLT) Code
 Originally ported to IBM’s 

Cell processor

 Tracing particles in a 
magnetic field 
 Embarrassingly parallel 

code

 Re-optimization on x86-64 
systems
 Using vectors instead of 

scalars
“Compressed Baryonic Matter”

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit”
http://www-linux.gsi.de/~ikisel/17_CPC_178_2008.pdf
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CBM/ALICE track fitting

 Re-optimization on x86-64 systems
 First: use SSE vectors instead of scalars

 Operator overloading allows seamless change of data types
 Intrinsics (from Intel/GNU header file): Map directly to 

instructions:
– __mm_add_ps corresponds directly to ADDPS, the instruction 

that operates on four packed, single-precision FP numbers
● 128 bits in total

 Classes
– P4_F32vec4 – packed single class with overloaded operators

● F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) { 
return _mm_add_ps(a,b); }

 Result: 4x speed increase from x87 scalar to packed SSE 
(single precision)
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Performance monitoring in hardware
 Most modern CPUs are able to provide real-time statistics 

concerning executed instructions..
 Via a Performance Monitoring Unit (PMU)

 The PMU is observing your application in real-time!
 And everything else that uses the CPU

 Limited number of counters (sentries) available
 But they are quite versatile

 Recorded occurences are called events

 On the Core i7 (Nehalem):
 4 universal counter: #0, #1, #2, #3
 3 specialised counters: #16, #17, #18
 Eight “uncore” counters: #20 - #27
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Pfmon overview
 Console-based interface to 

libpfm/perfmon2

 Provides convenient access to 
performance counters

 Wide range of functionality
 Counting events
 Sampling in regular intervals
 Flat profile
 System-wide mode
 Triggers
 Different data read-out “plug-in” 

modules available

Kernel

perfmon2

Userspace
libpfm

pfmon
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Events

 Many events in the CPU can be monitored
 A comprehensive list is dependent on the CPU and can be 

extracted from the manufacturers’ manuals or from 
relevant tools

 On some CPUs (i.e. Intel Core), some events have bit-
masks which limit their range
 “unit masks” or “umasks”

 Example: instructions retired: all / loads only / stores only

 In pfmon:
 Getting a list of supported events: pfmon –l

 Getting information about an event: pfmon –i eventname
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Important performance counters
(that can tell you if things go wrong)

 Related to what we have 
discussed:
 The total cycle count (C)
 The total instruction count (I)
 Derived value: CPI

 Bubble/Stall count: Cycles when 
no execution occurred

 Total number of executed 
branch instructions

 Total number of mispredicted 
branches

 Plus:
 Total number of cache 

accesses
 Total number of (last-level) 

cache misses

 The total number (and the 
type) of computational SSE 
instructions

 The total number of SSE 
instructions
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Part 2: Parallel execution across 
hw-threads and cores

 Next dimension is a “pseudo” 
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

 Multiple nodes will not be 
discussed here
 Our focus is scalability inside 

a node

Compute nodes

Processor cores

Sockets

Multithreading
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Definition of a hardware core/thread

 Core
 A complete ensemble of 

execution logic, and cache 
storage as well as register 
files plus instruction 
counter (IC) for executing a 
software process or thread

 Hardware thread
 Addition of a set of register 

files plus IC

Execution logic

State: Registers, IC

Caches,
etc.

State: Registers, IC

The sharing of the execution logic can 
be coarse-grained or fine-grained.
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The move to many-core systems

 Examples of “dispatch slots”: Sockets * Cores * HW-threads
 Basically what you observe in “cat /proc/cpuinfo”

 Conservative:
 Dual-socket AMD six-core (Istanbul): 2 * 6 * 1 = 12
 Dual-socket Intel six-core (Westmere): 2 * 6 * 2 = 24

 Aggressive:
 Quad-socket AMD Magny-Cours (12-core) 4 * 12 * 1 = 48
 Quad-socket Nehalem-EX “octo-core”: 4 * 8 * 2 =   64

 In the near future: Hundreds of CPU slots !
 Quad-socket Oracle/Sun Niagara (T3) processors

w/16 cores and 8 threads (each): 4 * 16 * 8 = 512

 And, by the time new software is ready: Thousands !! 
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Accelerators (1): Intel MIC

 Many Integrated Core architecture:
 Announced at ISC10 (June 2010)
 Based on the x86 architecture, 22nm ( in 2012?)
 Many-core (> 50 cores) + 4-way multithreaded + 512-bit 

vector unit
 Limited memory: A few Gigabytes

In Order, 4 
threads, SIMD-16
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L2 Cache

In Order, 4 
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Accelerators (2): Nvidia Fermi GPU

 Streaming Multiprocessing 
(SM) Architecture

 32 “CUDA cores” per SM (512 total)

 Peak single precision floating point 
performance (at 1.15 GHz”:
 Above 1 Tflop

 Double-precision: 50%

 Dual Thread Scheduler

 64 KB of RAM for shared memory and  
L1 cache (configurable)

 A few Gigabytes of main memory

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16
Special Func Units x 4

Interconnect Network

64K Configurable
Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Adapted from Nvidia

Lots of 
interest in the 
HEP on-line 
community
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Definition of a software 
process and thread
 Process (OS process):
 An instance of a computer program that is being executed 

(sequentially). It typically runs as a program with its 
private set of operating system resources, i.e. in its own 
“address space” with all the program code and data, its 
own file descriptors with the operating system 
permissions, its own heap and its own stack.

 Thread:
 A process may have multiple threads of execution. These 

threads run in the same address space, share the same 
program code, the operating system resources as the 
process they belong to. Each thread gets its own stack.

Adapted from Wikipedia
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HEP programming paradigm

 Event-level parallelism has been used for decades

 And, we should not lose this advantage:
 Large jobs can be split into N efficient “chunks”, each 

responsible for processing M events
 Has been our “forward scalability”

 Disadvantage with current approach:
 Memory must be made available to each process

 A dual-socket server with six-core processors needs 24 – 36 GB 
(or more)
 Today, SMT is often switched off in the BIOS (!)

 We must not let memory limitations decide our ability to 
compute efficiently!
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What are the multi-core options?

 There is currently a discussion in the community about 
the best way forward:

1) Stay with event-level parallelism (and entirely  
independent processes)
 Assume that the necessary memory remains affordable
 Or rely on tools, such as KSM, to help share pages

2) Rely on forking:
 Start the first process; Run through the first “event”
 Fork N other processes
 Rely on the OS to do “copy on write”, in case pages are modified

3) Move to a fully multi-threaded paradigm
 Still using coarse-grained (event-level) parallelism

– But, watch out for increased complexity
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Reentrant
code

Magnetic
field

Physics
processes

Global
data

Event
specific

data

Core 0

Event-
specific

data

Core 1

Event-
specific

data

Core 2

Event-
specific

data

Core 3

Achieving efficient memory footprint 
 As follows:

Single copy 
of all data 
that can be 
shared
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HEP and Symmetric Multi-Threading
 Because we have “thin” instruction streams, we ought to 

profit from SMT, provided the memory issue is under control
 It would seem that we could easily tolerate up to 4 hardware 

threads!

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-
packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-
packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

SMT (Symmetric Multi-Threading)

Unfortunately, 
on Xeon 5600,
we currently 
get max 25% 
from the 
second 
hardware 
thread !
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Let’s look more closely at parallelism
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From Concurrency to 
Parallel Execution

 Multiple steps must be kept in mind:
 Concurrency
 Decomposition
 Communication
 Synchronization
 Mapping
 Execution

 Keeping Amdahl’s law for max speedup in mind

n
ppp nS

+−
=

1
1max )( where:

p (parallel portion)
s (serial portion)
p + s = 1.0
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Designing Threaded Programs
 Partition

 Divide problem into 
tasks

 Communicate
 Determine amount 

and pattern of 
communication

 Agglomerate
 Combine tasks

 Map
 Assign 

agglomerated tasks 
to created threads

The
Problem

Initial tasks

Communication

Combined  Tasks

Final Program



Sverre Jarp - CERN59

More on decomposition

 Divide the total work into smaller parts,
 Which can be executed concurrently

 Some techniques:
 Data decomposition

 Partition the data domain

 Task/functional decomposition
 Split according to “logical” tasks/functions

 Recursive decomposition
 Divide-and-conquer strategy

 Exploratory decomposition
 Search for a configuration space for a solution

– Not guaranteed to reduce amount of work
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C++ parallelization support

 Large selection of tools (inside the compiler or as 
additions):
 Native: pthreads/Windows threads
 Forthcoming C++ standard: std::thread
 OpenMP
 Intel Array Building Blocks (beta version from Intel; 

integrating RapidMind)
 Intel Threading Building Blocks (TBB)
 CUDA (from Nvidia)      Not exactly C++, but…
 MPI (from multiple providers), etc.

We must also keep a close eye on 
OpenCL (www.khronos.org/opencl)
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Examples of parallelism:
CBM/ALICE track fitting
 Re-optimization on x86-64 systems
 Part1: Data parallelism using SIMD instructions
 Part 2: use TBB (or OpenMP) to scale across cores

From H.Bjerke/CERN openlab, I.Kisel/GSI
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Examples of parallelism: GEANT4
 Initially: ParGeant4 (Gene Cooperman/NEU)
 implemented event-level parallelism to simulate separate 

events across remote nodes.

 New prototype re-implements thread-safe event-level 
parallelism inside a multi-core node

 Done by NEU PhD student Xin Dong: Using FullCMS and TestEM
examples
 Required change of lots of existing classes (10% of 1 MLOC):

– Especially global, “extrn”, and static declarations
– Preprocessor used for automating the work.

 Major reimplementation:
– Physics tables, geometry, stepping, etc.

 Additional memory: Only 25 MB/thread (!)
Dong, Cooperman, Apostolakis: “Multithreaded Geant4: Semi-Automatic 
Transformation into Scalable Thread-Parallel Software”,  Europar 2010
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Multithreaded GEANT4 benchmark
 Excellent scaling on 32 (real) cores

 With a 4-socket server

From A.Nowak/CERN openlab
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end

Input 
Files Output 

Files

OS-fork merge

$> Athena.py  --nprocs=4  -c  EvtMax=100  Jobo.py

firstEvnts

output-
tmp
files

output
tmp
files

Output
tmp
files

Output
tmp
files

init

Maximize the 
shared 

memory!

PARALLEL: workers event loopSERIAL: 
parent-init-fork

SERIAL:
parent-merge and finalize

64

AthenaMP: event level parallelism

core-0

WORKER 0:
Events: [0, 4, 5,…]

core-1

WORKER 1:
Events: [1, 6, 9,…]

core-2

WORKER 2:
Events: [2, 8, 10,…]

core-3

WORKER 3:
Events: [3, 7, 11,…]

Random event order

From: Mous TATARKHANOV/May 2010
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AthenaMP ~0.5 GB physical memory saved per process

Memory footprint of AthenaMP

From 
~1.5 GB

To
~1.0 GB

From: Mous TATARKHANOV/May 2010
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Examples of thread parallelism: JANA

 Each thread in JANA is 
composed of its own event 
processing loop and a 
complete set of factories

 Reconstruction of a given 
event is done entirely inside 
of a single thread

 No mutex locking is 
required by authors of 
reconstruction code

 Threads work 
asynchronously to 
maximize rates at the 
expense of not maintaining 
the event order on output 

Developed by D.Lawrence/JLAB 
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Example: ROOT minimization and fitting

 Minuit parallelization is independent of user code

 Log-likelihood parallelization (splitting the sum) is quite efficient

 Example on a 32-core server:

 In principle, we can have combination of:
 parallelization via multi-threading in a multi-core CPU 
 multiple processes in a distributed computing environment

complex 
BaBar fitting 
provided by  
A. Lazzaro
and 
parallelized 
using MPI
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CUDA in the PANDA experiment
 Track propagation in the PANDA 

experiment
 Runge-Kutta propagator from Geant3

 All tracks propagated in parallel

 Preliminary results from Feb.2010
 M. Al Turany (ACAT2010)

68

#tracks CPU (single 
core)

GPU emul. 
(on CPU)

Tesla C1060

100 210 160 5
1000 210 177 1.9

Time in microseconds/track
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Recommendations
(based on observations in openlab)
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Shortlist

1) Broad Programming Talent

2) Holistic View with a clear split: 
Prepare to compute – Compute

3) Controlled Memory Usage

4) C++ for Performance

5) Best-of-breed Tools
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Broad Programming Talent
 In order to cover as many layers as possible

Problem
Algorithms, abstraction

Source program

System architecture
Instruction set
µ-architecture

Circuits
Electrons

Compiled code, libraries

Solution
specialists

Technology
specialists

Adapted from Y.Patt, U-Austin
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Performance guidance (cont’d)
 Take the whole program and its execution behaviour 

into account
 Get yourself a global overview as soon as possible

 Via early prototypes
 Influence early the design and definitely the implementation

 Foster clear split:
 Prepare to compute
 Do the heavy computation

 Where you go after the available parallelism

 Post-processing

 Consider exploiting the entire server
 Using affinity scheduling

Heavy compute

PostPre
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Performance guidance (cont’d)
 Control memory usage (both in a multi-core and an 

accelerator environment)
 Optimize malloc/free
 Forking is good; it may cut memory consumption in half
 Don’t be afraid of threading; it may perform miracles !
 Optimize the cache hierarchy
 NUMA: The “new” blessing (or curse?)

 C++ for performance
 Use light-weight C++ constructs
 Prefer SoA over AoS
 Minimize virtual functions
 Inline whenever important
 Optimize the use of math functions

– SQRT, DIV; LOG, EXP, POW; ATAN2, SIN, COS
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Organization of data: AoS vs SoA

 In general, compilers 
and hardware prefer 
the latter!

 Arrays of Structures:

 Structure of Arrays:

Z1 Z2 Z3 Z4 Z5 Z6

Spacepoints

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6

SP1
X,Y, Z

SP2
X,Y, Z

SP3
X,Y, Z

SP4
X,Y, Z

SP5
X,Y, Z

SP6
X,Y, Z
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C++ parallelization support

 Large selection of tools (inside the 
compiler or as additions):
 Native: pthreads/Windows threads
 Forthcoming C++ standard: std::thread
 OpenMP
 Intel Array Building Blocks (beta version 

from Intel; integrating RapidMind)
 Intel Threading Building Blocks (TBB)
 TOP-C (from NE University)
 MPI (from multiple providers), etc.
 . . .

We must also keep a close eye on 
OpenCL (www.khronos.org/opencl)



Sverre Jarp - CERN76

Performance guidance (cont’d)

 Surround yourself with good tools:
 Compilers
 Libraries
 Profilers
 Debuggers
 Thread checkers
 Thread profilers
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If you think that all of this is “crazy”

 Please read:

 “Optimizing matrix multiplication for a short-vector 
SIMD architecture – CELL processor”
 J.Kurzak, W.Alvaro, J.Dongarra
 Parallel Computing 35 (2009) 138–150

In this paper, single-precision matrix multiplication kernels 
are presented implementing the C = C – A x BT operation and 
the C = C – A x B operation for matrices of size 64x64 
elements. For the latter case, the performance of 25.55 
Gflop/s is reported, or 99.80% of the peak, using as little as 
5.9 kB of storage for code and auxiliary data structures.
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Concluding remarks

 The aim of these lectures was to help understand:
 Changes in modern computer architecture
 Impact on our programming methodologies
 Keeping in mind that there is not always a straight path to 

reach (all of) the available performance by our 
programming community.

 In most HEP programming domains event-level 
processing will (continue to) dominate
 Provided we get the memory requirements under control

 Will you be ready for 100+ cores and long vectors?

 It helps to know the seven hardware dimensions and 
how appropriate software constructs can help!
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Further reading:
 “Designing and Building Parallel Programs”, I. Foster, Addison-Wesley, 

1995

 “Foundations of Multithreaded, Parallel and Distributed Programming”, G.R. 
Andrews, Addison-Wesley, 1999

 “Computer Architecture: A Quantitative Approach”, J. Hennessy and D. 
Patterson, 3rd ed., Morgan Kaufmann, 2002

 “Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004

 “Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2nd

edition, Addison Wesley, 2006

 “The Software Vectorization Handbook”, A.J.C. Bik, Intel Press, 2006

 “The Software Optimization Cookbook”, R. Gerber, A.J.C. Bik, K.B. Smith 
and X. Tian; Intel Press, 2nd edition, 2006

 “Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor 
Parallelism”, J. Reinders, O’Reilly, 1st edition, 2007

 “Inside the Machine”, J. Stokes, Ars Technica Library, 2007
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Thank you!
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BACKUP I
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Derived performance events

 Too much information available?

 Low level and fine grained events can be combined to 
produce ratios (so called “derived events”)

 Extensive information: Intel Manual 248966-020
 Intel Manual 248966-020 “Intel 64 and IA-32 Architectures 

Optimization Reference Manual”
 AMD CPU-specific manuals, i.e. #32559 “BIOS and Kernel 

Developer’s Guide for AMD NPT Family 0Fh Processors”
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Basic modes
 Counting

 Example: How many instructions did my application execute?
 Example: How many times did my application have to stop and wait 

for data from the memory?

 Sampling
 Reporting results in “regular” intervals
 Example: every 100’000 cycles record the number of SSE operations 

since the last sample

 Profiling
 Example: how many cycles are spent in which function?
 Example: how many cache misses occur in which function?
 Example: which code address is the one most frequently visited? 

(looking for hotspots)
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Enabling different modes

 Different modes are triggered by the presence of certain 
command line switches

 Counting
default mode

 Sampling
--smpl-module=compact

 Profiling
--long-smpl-period=NUM



Sverre Jarp - CERN85

Triggers
 Automatically start or stop 

monitoring

 Trigger types:
 Code
 Data

 A symbol name…
 i.e. “foobar”

 …or an address
 i.e. 0x8103b91e

! Limitation: symbol names are 
available only within the first 
binary

Code Data
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Perfmon 2 resources
 Resources:

 http://cern.ch/openlab
 http://sf.net/projects/perfmon2
 http://perfmon2.sourceforge.net (documentation)
 http://perfmon2.sourceforge.net/pfmon_usersguide.html
 http://www.intel.com (manuals)
 http://cern.ch/andrzej.nowak (gpfmon)

 Intel Software Products:
 VTune, Thread checker, Thread Profiler: http://intel.com/software
 PTU: http://softwarecommunity.intel.com/articles/eng/1437.htm

 HP Caliper
 http://h21007.www2.hp.com/portal/site/dspp

http://intel.com/software�
http://softwarecommunity.intel.com/articles/eng/1437.htm�
http://h21007.www2.hp.com/portal/site/dspp�


Sverre Jarp - CERN87

BACKUP – basic pfmon options
 Event specification with umasks

–e INST_RETIRED:STORES:LOADS

 Follow all execution splits
–-follow-all

 System wide mode
–-system-wide

 Displaying the header
–-with-header

 Aggregating results
–-aggregate-results
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Pfmon output formatting
 EU counter format (--eu-c)

1.567.123 instead of 1567123

 US counter format (--us-c)
1,567,123 instead of 1567123

 Hex counter format (--hex-c)
0xdeadbeef instead of 3735928559

 Show execution time (--show-time)
real 0h00m00.252s user 0h00m00.000s sys 0h00m00.000s

 Suppress monitored command output (--no-cmd-output)
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Advanced pfmon options

 Specifying triggers
–-trigger-code-start-address=...

–-trigger-code-stop-address=...

–-trigger-data-start-address=...

–-trigger-data-start-address=...

 Multiplexing
–e EVENT1,EVENT2,… -e EVENTa,EVENTb,… --switch-
timeout=NUM
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Pfmon sampling/profiling options
 Specifying sampling periods (the unit is reference event 

occurrences)
–-long-smpl-period=NUM

–-short-smpl-period=NUM

 Resetting counters back to zero when sampling
–-reset-non-smpl-periods

 Limit the sampling entries buffer (useful!)
–-smpl-entries=NUM

 Translating addresses into symbol names
–-resolve-addresses

 Show results per function rather than per address
–-smpl-per-function



Sverre Jarp - CERN91

Example profiling results

cnt %self   %cum addr symbol
80 20.83% 20.83% 0x… do_lookup_x</lib64/ld-2.3.4.so>

53 13.80% 34.64% 0x… do_page_fault<kernel>
32  8.33% 42.97% 0x… _init</bin/ls>
20  5.21% 48.18% 0x… __GI_strlen</lib64/tls/libc-2.3.4.so>
19  4.95% 53.12% 0x… _int_malloc</lib64/tls/libc-2.3.4.so>
18  4.69% 57.81% 0x… strcmp</lib64/ld-2.3.4.so>
17  4.43% 62.24% 0x… __GI___strcoll_l</lib64/tls/libc-2.3.4.so>
13  3.39% 65.62% 0x… __GI_memcpy</lib64/tls/libc-2.3.4.so>
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Example sampling results
# description of columns:
# column  1: entry number
# column  2: process id
# column  3: thread id
# column  4: cpu number
# column  5: instruction pointer
# column  6: unique timestamp
# column  7: overflowed PMD index
# column  8: event set
# column  9: initial value of overflowed PMD (sampling period)
# followed by optional sampled PMD values in command line order

1   2     3   4      5                6          7 8    9     10
0 32442 32442 2 0x3061230d6a 0x0004d5f49c2a8e57 17 0 -26670 0x556 
1 32442 32442 2 0x3061292980 0x0004d5f49c2b4851 17 0 -26670 0xd66 
2 32442 32442 2 0x3061226363 0x0004d5f49c2c04dc 17 0 -26670 0x1aaa 
3 32442 32442 2 0x3061010159 0x0004d5f49c2c39cb 17 0 -26670 0x6942 
4 32442 32442 2 0x306126b5f0 0x0004d5f49c2c9a1c 17 0 -26670 0x171c 
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False sharing

Thread 1

tab[0]++;

tab[0]++;

Thread 2

tab[1]++;

tab[1]++;

L2 cache

int global_tab[2];

MEM_UNCORE_RETIRED.OTHER_CORE_L2_HITM
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BACKUP-II
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Items not covered today

 Systematic tuning approach

 Performance tuning versus correctness
 FP accuracy and reproducibility

 Amdahl’s law (in detail)
 Also: Gustafson’s law

 Parallel programming languages

 Detailed compiler “control”
 Including regression avoidance
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OpenMP overview

 De-facto standard for writing 
shared-memory parallel 
applications in C, C++ or 
FORTRAN

 Consists of:
 Compiler directives
 Run-time routines
 Environmental variables

 http://www.openmp.org/
 Current version: 3.0
 Still in active development

#pragma omp parallel for \
shared (n, a, b, c) \
private(i)

for (i = 0; i < n; i++) c[i] = a[i] + b[i];

gcc –fopenmp –O –oaprog aprog.c
setenv OMP_NUM_THREADS 4
./aprog

Master thread

Worker
threads

Synchronization

http://www.openmp.org/�
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Array Building Blocks (ArBB)

 Effort by Intel to extend C++ for Throughput Computing
 Initially called Ct

 Features:
 Addition of new data types (parallel vectors) & operators

 NeSL/SASAL-inspired: irregularly nested and sparse/indexed vectors

 Abstracting away architectural details
 Vector width/Core count/Memory Model: Virtual Intel Platform

– Forward-scaling (Future-proof!)
 Nested data parallelism and deterministic task parallelism

 Incremental adoption path:
 Dedicated Ct-enabled libraries
 Rewritten “kernels” in Ct
 Pervasive use of Ct

See: CERN/IT seminar on 11/10/2007 by A.Ghuloum/Intel:
Programming Challenges for Manycore Computing

1
0
0
0

0

0

2

4

5

3

0
0
0 6

0

7

1 2 4 5
3 6

7
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Intel TBB 2.0 overview

 Key features:
 Open source extension to C++ (GPL)
 Task patterns instead of threads

 Focus on the work, not the workers

 Designed for scalable performance
 Automatic scaling to use available resources

 Components
 Generic parallel algorithms: parallel_for, parallel_reduce, etc.
 Low-level synchronisation primitives: atomic, mutex, etc.
 Concurrent containers: concurrent_vector, concurrent_hash_map, etc.
 Task scheduler
 Memory allocation: cache_aligned_allocator
 Timing

#include "tbb/task_scheduler_init.h"
#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"
using namespace tbb;
//
task_scheduler_init init;
tasks = atoi( argv[1] );

//
parallel_for(blocked_range<int>(0, 
NTracksV, NTracksV / tasks), 
ApplyFit(TracksV, vStations, NStations));

More features in preparation
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MPI overview

 MPI – Message Passing Interface
 A language independent communications API
 Point-to-point message passing and global operations
 No shared memory concept in MPI-1 (v 1.2)
 MPI-2 (v. 2.1) introduces numerous enhancements

 Limited shared memory concept
 Parallel I/O
 Dynamic management
 Remote memory support

 Numerous implementations exist
– Including the combination of OpenMP and MPI
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