
Efficient use of modern CPU architectures

“The 7 dimensions of performance”

Sverre Jarp
CERN

openlab
CTO

Bertinoro, 22 November 2010

Second INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 22 – 27 November 2010

Sverre Jarp - CERN2

Contents
 The driving force: Moore’s law
 Review of fundamental architectural principles
 Addressing performance “dimensions”
 Scaling “inside-a-core”:
 First 3 dimensions
 Causes of execution delays
 Performance monitoring

 Scaling “across-cores”
 Next set of dimensions
 Parallel programming paradigms
 Achieving better memory footprints
 C++ parallelization support
 Example of parallelization: Track fitting and others

 Conclusions

Sverre Jarp - CERN3

Moore’s law

 We continue to double the number of
transistors every other year
 The consequences
 CPUs

 Single core  Multicore  Manycore
 Vectors
 Hardware threading

 GPUs
 Huge number of FMA units

 Today we commonly acquire chips
with 1’000’000’000 transistors!

Adapted from WikipediaFrom Wikipedia

Sverre Jarp - CERN4

Real consequence of Moore’s law

 We are being “drowned” by transistors:

 More (and more complex) execution units
 Hundreds of new instructions

 Longer SIMD/SSE vectors
 More hardware threading
 More and more cores

 In order to profit we need to “think parallel”

 Data parallelism
 Task parallelism

Sverre Jarp - CERN5

“Intel platform 2015” (and beyond)
 Today’s silicon processes:

 45 nm
 32 nm

 On the roadmap:
 22 nm (2011/12)
 16 nm (2013/14)

 In research:
 11 nm (2015/16)
 8 nm (2017/18)

– Source: Bill Camp/Intel HPC

 Each generation will push the core count:
 We are entering the many-core era (whether we like it or not) !

LHC data

We are here

S. Borkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005.

Sverre Jarp - CERN6

The holy grail: Forward scalability
 Not only should a program be written in such a way that it

extracts maximum performance from today’s hardware

 On future processors, performance should scale
automatically
 In the worst case, one would have to recompile or relink

 Additional CPU/GPU hardware, be it cores/threads or
vectors, would automatically be put to good use

 Scaling would be as expected:
 If the number of cores (or the vector size) doubled:

 Scaling would be close to 2x, but certainly not just a few percent

 We cannot afford to “rewrite” our software for every
hardware change!

Sverre Jarp - CERN7

Evolution of CERN’s
computing capacity
 During the LEP era (1989 –

2000):
 Doubling of total computing

capacity every year
 Initiated with the move from

mainframes to RISC systems

 The PC has been with us for
15 years!
 At CHEP-95 I made the first

recommendation to move to
PCs
 After a set of encouraging

benchmark results

From L.Robertson

Sverre Jarp - CERN8

Frequency scaling

 The 7 “fat” years of easy frequency scaling in HEP

 The Pentium Pro in 1996: 150 MHz

 The Pentium 4 in 2003: 3.8 GHz (~25x)

 Since then
 Core 2 systems:

 ~3 GHz
 Multi-core

 Recent CERN purchase:
 Intel L5640 CPUs

 2.26 GHz From A. Nowak/CERN openlab

Sverre Jarp - CERN9

The Power Wall

 For example, the CERN Computer Centre can supply
2.9 MW of electric power
 Plus 2.3 MW to remove the corresponding heat!

 Spread over a complex infrastructure:
 CPU servers; Disk servers
 Tape servers + robotic equipment
 Database servers
 Infrastructure.
 Network

 We are hovering
around the limit!

Sverre Jarp - CERN10

Performance: A complicated story!

 We start with a concrete, real-life problem to solve
 For instance, simulate the passage of elementary particles

through matter

 We write programs in high level languages
 C++, JAVA, Python, etc.

 A compiler (or an interpreter) transforms the high-level code to
machine-level code

 We link in external libraries

 A sophisticated processor with a complex architecture and
even more complex micro-architecture executes the code

 In most cases, we have little clue as to the efficiency of this
transformation process

Sverre Jarp - CERN11

A Complicated Story (in layers!)

Problem
Algorithms, abstraction

Source program

System architecture
Instruction set
µ-architecture

Circuits
Electrons

Adapted from Y.Patt, U-Austin

 We must avoid being fenced into a single layer!

Compiled code, libraries

Sverre Jarp - CERN12

Let’s start with the basics!

Sverre Jarp - CERN13

Von Neumann architecture

 From Wikipedia:
 The von Neumann

architecture is a computer
design model that uses a
processing unit and a single
separate storage structure to
hold both instructions and
data.

 It can be viewed as an entity
into which one streams
instructions and data in order
to produce results

 Our goal is to produce results
as fast as possible

DataInstructions

Results

Sverre Jarp - CERN14

Simple processor layout

 A simple processor with
four key components:
 Control Logic

 Instruction Counter
 Program Status Word

 Register File

 Functional Unit
 Data Transfer Unit

 Data bus
 Address bus

R1

R0

R15

Registers

IC

PSW

Control

Data
transfer
unit

FU

Data

Address

Keeps the state of execution

Flags

Sverre Jarp - CERN15

Simple server diagram

 Multiple components which
interact during the execution
of a program:
 Processors/cores
 Caches

 Instructions (I-cache)
 Data (D-cache)

 Memory Controllers
 Memory (non-uniform)
 I/O subsystem

 Network attachment
 Disk subsystem

Interconnect

I/O bus

Cache

C0 C1
C2 C3

Mem-ctl
Cache

C0 C1
C2 C3

Mem-ctl

MemoryMemory

Socket 0 Socket 1

C0T0
C0T1

Sverre Jarp - CERN16

Initial premise

 We want the process to complete in the shortest possible time
 Our compute job (a process) will require the execution of a

given number of (machine-level) instructions
 Dictated by the algorithms inside (and the compiler)

 This time corresponds to a given number of machine cycles

 Simple example:
 A program consists of 1010 instructions
 We measure an execution time of 6 seconds

on a processor running at 2.0 GHz
 We can now compute a key value:

 Cycles per Instruction (CPI)
 Our result: (6 * 2.0 * 109) / 1010 = 1.2

DataInstructions

Results

Sverre Jarp - CERN17

Seven dimensions of performance
 First three dimensions:
 Superscalar
 Pipelining
 Computational width/SIMD

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

SIMD width

Superscalar

Pipelining

SIMD = Single Instruction Multiple Data

Nodes

Multicore

Sockets

Multithreading

Sverre Jarp - CERN18

Seven multiplicative dimensions:
 First three dimensions:
 Superscalar
 Pipelining
 Computational width/SIMD

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

Data parallelism
(Vectors/Scalars)

Task parallelism
(Events/Tracks)

Task/process
parallelism

Sverre Jarp - CERN19

Concurrency in HEP
 We are “blessed” with lots of it:
 Entire events
 Particles, tracks and vertices
 Physics processes
 I/O streams (ROOT trees, branches)
 Buffer handling (also data compaction, etc.)
 Fitting variables
 Partial sums, partial histograms
 and many others …..

 Usable for both data and task parallelism!

 But, fine-grained parallelism is not well exposed in
today’s software frameworks

Sverre Jarp - CERN20

Autoparallelization/Autovectorization

 Would it not be wonderful if the compilers could do all
the (vectorization/parallelisation) work automatically?

 Intel compiler (10.1 or later):
 Autovectorization: YES, included in “-O”

– “-vec-reportN” for reports
 Autoparallelization: YES with “-parallel”

– “-par-reportN” for reports

 GNU compiler (4.3.0 or later):
 Autovectorization: YES, but needs “-ftree-vectorize”

– “-ftree-vectorizer-verbose=[0-7]” for reports
 Autoparallelization support in preparation

– OpenMP support available

In addition, both compilers support intrinsics:
“higher-level assembly instructions” for explicit vectorization

Sverre Jarp - CERN21

Part 1: Opportunities for scaling
performance inside a core
 Here are the first three dimensions

 The resources:
 Superscalar: Fill the ports
 Pipelined: Fill the stages
 SIMD: Fill the computational width

 Best approach: data parallelism

 In HEP, we probably extract only
10-15% of peak execution
capability!

SIMD width

Superscalar

Pipelining

Sverre Jarp - CERN22

First: Superscalar architecture

 In this simplified design,
instructions are decoded
in sequence, but
dispatched to two
Function Units.
 The decoder and

dispatcher must be
able to handle two
instructions per cycle

 The FUs can have
identical or different
execution capabilities

Decode

Dispatch

FU 0 FU 1

Results

Instruction stream

Port 0 Port 1

Sverre Jarp - CERN23

Enhanced superscalar architecture

 A more realistic
architecture will have
multiple FUs hanging
off the same port
 An instruction can be

dispatched to either
matching execution
unit on a given port,
but not to both units
on the same port in a
given cycle

Dispatch

FU 0
(i-add)

FU 1
(i-add)

Results

Instruction stream

Port 0 Port 1

FU 2
(i-shift)

FU 3
(i-mul)

Sverre Jarp - CERN24

Today’s superscalar architecture

 For instance,
Intel’s Nehalem
microarchitecture
can
dispatch/execute/
retire four
instructions in
parallel (across
six ports) in each
cycle:

Issue ports in the Core micro-architecture
(from Intel Manual No. 248966-020)

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Int. SIMD
Alu

x87 FP
Multiply

SSE FP
Multiply

FSS Move
& Logic

Int. SIMD
Shuffle

Integer
Alu

Int. SIMD
Multiply

Integer
Alu

Int. SIMD
Alu

FSS Move
& Logic

Int. SIMD
Shuffle

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Integer
Load

Store
Address

Integer
Store

FP
Load

Jump Exec
Unit

DIV
SQRT

x87 FP
Add

SSE FP
Add

Integer
Shift

FP Shuffle

Integer
MUL

Integer
LEA

Int. SIMD
Shift

PSAD

String
Compare

Integer
Shift

FP
Store

Sverre Jarp - CERN25

Mulmul example

 For a given algorithm, we can understand exactly which
functional execution units are needed
 For instance, in the innermost loop of matrix multiplication

for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {

for (int k = 0; k < N; ++k) {
c[i * N + j] += a[i * N + k] * b[k * N + j];

}
}

}

MulAdd LoadLoadStore

Sverre Jarp - CERN26

Next topic: Instruction pipelining

 Instructions are broken up into stages.
 With a one-cycle execution latency (simplified):

 With a three-cycle execution latency:

I-fetch I-decode Execute Write-back
I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3
I-fetch I-decode Exec-1 Write-backExec-2 Exec-3

Sverre Jarp - CERN27

Real-life latencies
 Most integer/logic instructions have a one-cycle execution

latency:
 For example:

 ADD, AND, SHL (shift left), ROR (rotate right)

 Amongst the exceptions:
 IMUL (integer multiply): 3
 IDIV (integer divide): 13 – 23

 Floating-point latencies are typically multi-cycle
 FADD (3), FMUL (5)

 Same for both x87 and SIMD double-precision variants

 Exception: FABS (absolute value): 1
 Many-cycle: FSQRT (27), FDIV (20)

Latencies in the Core micro-architecture (Intel Manual No. 248966-020 or later).
AMD processor latencies are similar.

Sverre Jarp - CERN28

Latencies and serial code (1)
 In serial programs, we

typically pay the penalty of a
multi-cycle latency during
execution:
 In this example:

 Statement 2 cannot be
started before statement 1
has finished
 Statement 3 cannot be

started before statement 2
has finished

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c; // Statement 1

d = a + e; // Statement 2

f = fabs(d); // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1

Sverre Jarp - CERN29

Latencies and serial code (2)

 Observations:
 Even if the processor can fetch and decode a new

instruction every cycle, it must wait for the previous
result to be made available
 Fortunately, the result takes a ‘bypass’, so that the write-back

stage does not cause even further delays

 The result here:
 9 execution cycles are needed for three instructions!

– CPI is equal to 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1

Sverre Jarp - CERN30

Mini-example of real-life serial code
 Suffers long latencies:

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

if (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%rsi), %xmm0
subsd 48(%rdi), %xmm0 // load & subtract
andpd _2il0floatpacket.1(%rip), %xmm0 // and with a mask
comisd 24(%rdi), %xmm0 // load and compare
jbe ..B5.3 # Prob 43% // jump if FALSE

High level C++ code 

Machine instructions 

Same
instructions
laid out
according to
latencies on
the Core 2
processor 

NB: Out-of-
order
scheduling
not taken
into account.

Sverre Jarp - CERN31

Other causes of execution delays (1)

 We already stated that the aim is to
keep instructions and data flowing,
so that results are generated
optimally

 First issue:
 Instructions and/or data stop flowing

 Instructions are not found in the I-cache
 Data is not found in the D-cache

 Before execution can continue,
instructions and data must be fetched
from a lower level of the memory
hierarchy

Instructions

Results

Data

Sverre Jarp - CERN32

Other causes of execution delays (2)

 Second issue:

 Instructions are not ready in time for
execution (Front-end stalls)
 Typically caused by branching
 If the branch is mispredicted, we suffer a

stall (cycles add up, but no work gets
done)
 We typically find that 10% of all

instructions are branch instructions
– Or even more

Instructions

Results

Data

Sverre Jarp - CERN33

Memory Hierarchy
 From CPU to

main
memory on a
Nehalem
processor
 With

multicore,
memory
bandwidth is
shared
between
cores in the
same
processor
(socket)

c = cycle

Processor Core
(Registers)

L1D
(32 KB)

L2
(256 KB)

Local memory
(large)

64 B/2c, 10 c latency

~24 B/c for all cores
> 200 c latency

L1I
(32 KB)

64 B/1c, 4 c latency

Shared L3
(8192 KB)

64 B/2c for all cores
> 35 c latency

Sverre Jarp - CERN34

Cache lines (1)

 When a data element or an instruction is requested by
the processor, a cache line is ALWAYS moved (as the
minimum quantity) to Level-1

 Cache lines are typically 64B (8 * double)
 A 32KB level-1 cache holds 512 (64B) lines

 When cache lines have to be moved come from memory
 Latency is long (>150 cycles, as already mentioned)

 It is even longer if the memory is remote

 Memory controller stays busy (~8-10 cycles)

requested

Sverre Jarp - CERN35

Cache lines (2)

 Space locality is vital
 When only one element (4B or 8B) element is used inside

the cache line:
 A lot of bandwidth is wasted!

 Multidimensional arrays should be accessed with the last
index changing fastest:

 Pointer chasing (in linked lists) can easily lead to cache
thrashing

Programming the memory hierarchy is an art in itself.

requested

for (i = 0; i < rows; ++i)
for (j = 0; j < columns; ++j)

mymatrix [i] [j] += increment;

Sverre Jarp - CERN36

Third topic: Registers for SSE

 16 “XMM” registers with 128 bits each in 64-bit mode

E3 E2 E1 E0

E1 E0

E7 E6 E5 E4 E3 E2 E1 E0

Bit 0Bit 127

E15 E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E016 Bytes

8 Words

4 DWords/Single

2 QWords/Double

SSE = Streaming SIMD extensions

Sverre Jarp - CERN37

Four floating-point data flavours

 Single precision
 Scalar single (SS)
 Packed single (PS)

 Double precision
 Scalar Double (SD)
 Packed Double (PD)

 Note:
 1) Today, “scalar” means running at ½ or ¼ of the peak speed
 2) Intel and AMD have announced Advanced Vector eXtensions

(AVX) with 256-bit registers (available next year !)
 “scalar” will mean 1/4 or 1/8 of peak!

 3) even longer vectors are coming!

E3 E2 E1 E0

- - - E0

E1 E0

- E0

Sverre Jarp - CERN38

Scalable programming
for a single core
 Easiest way to fill the

execution capabilities is to
use vectorization

 Either, vector syntax, à la
Fortran-90

 Or, loop syntax which the
compiler can “vectorize”
automatically

 Or, explicit intrinsics
 See CBM example later.

REAL U(100), V(100)

U = 0.0

U = SIN(V)

U(1:50) = V(2:100:2)

float u[100], v[100];

for (int i = 0; i<50; ++i) u[i] = 0.0;

for (i = 0; i<50; ++i) u[i] = sin(v[i]);

for (int i = 0; i<50; ++i) u[i] = v[i*2+1];

Sverre Jarp - CERN39

HEP and vectors

 Too little common ground
 And, practically all attempts in the past failed!

 w/Cyber-205, CRAY, IBM 3090-Vector Facility, etc.

 From time to time, we see a good vector example
 For example: Track Fitting code from ALICE trigger

  See the next slide

 Interesting development from ALICE (Matthias Kretz):
 Vc (Vector Classes)

 http://www.kip.uni-heidelberg.de/~mkretz/Vc/

 Other examples: Use of STL vectors; small matrices

Sverre Jarp - CERN40

Examples of parallelism:
CBM/ALICE track fitting
 Extracted from their High

Level Trigger (HLT) Code
 Originally ported to IBM’s

Cell processor

 Tracing particles in a
magnetic field
 Embarrassingly parallel

code

 Re-optimization on x86-64
systems
 Using vectors instead of

scalars
“Compressed Baryonic Matter”

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit”
http://www-linux.gsi.de/~ikisel/17_CPC_178_2008.pdf

Sverre Jarp - CERN41

CBM/ALICE track fitting

 Re-optimization on x86-64 systems
 First: use SSE vectors instead of scalars

 Operator overloading allows seamless change of data types
 Intrinsics (from Intel/GNU header file): Map directly to

instructions:
– __mm_add_ps corresponds directly to ADDPS, the instruction

that operates on four packed, single-precision FP numbers
● 128 bits in total

 Classes
– P4_F32vec4 – packed single class with overloaded operators

● F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) {
return _mm_add_ps(a,b); }

 Result: 4x speed increase from x87 scalar to packed SSE
(single precision)

Sverre Jarp - CERN42

Performance monitoring in hardware
 Most modern CPUs are able to provide real-time statistics

concerning executed instructions..
 Via a Performance Monitoring Unit (PMU)

 The PMU is observing your application in real-time!
 And everything else that uses the CPU

 Limited number of counters (sentries) available
 But they are quite versatile

 Recorded occurences are called events

 On the Core i7 (Nehalem):
 4 universal counter: #0, #1, #2, #3
 3 specialised counters: #16, #17, #18
 Eight “uncore” counters: #20 - #27

Sverre Jarp - CERN43

Pfmon overview
 Console-based interface to

libpfm/perfmon2

 Provides convenient access to
performance counters

 Wide range of functionality
 Counting events
 Sampling in regular intervals
 Flat profile
 System-wide mode
 Triggers
 Different data read-out “plug-in”

modules available

Kernel

perfmon2

Userspace
libpfm

pfmon

Sverre Jarp - CERN44

Events

 Many events in the CPU can be monitored
 A comprehensive list is dependent on the CPU and can be

extracted from the manufacturers’ manuals or from
relevant tools

 On some CPUs (i.e. Intel Core), some events have bit-
masks which limit their range
 “unit masks” or “umasks”

 Example: instructions retired: all / loads only / stores only

 In pfmon:
 Getting a list of supported events: pfmon –l

 Getting information about an event: pfmon –i eventname

Sverre Jarp - CERN45

Important performance counters
(that can tell you if things go wrong)

 Related to what we have
discussed:
 The total cycle count (C)
 The total instruction count (I)
 Derived value: CPI

 Bubble/Stall count: Cycles when
no execution occurred

 Total number of executed
branch instructions

 Total number of mispredicted
branches

 Plus:
 Total number of cache

accesses
 Total number of (last-level)

cache misses

 The total number (and the
type) of computational SSE
instructions

 The total number of SSE
instructions

Sverre Jarp - CERN46

Part 2: Parallel execution across
hw-threads and cores

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

 Multiple nodes will not be
discussed here
 Our focus is scalability inside

a node

Compute nodes

Processor cores

Sockets

Multithreading

Sverre Jarp - CERN47

Definition of a hardware core/thread

 Core
 A complete ensemble of

execution logic, and cache
storage as well as register
files plus instruction
counter (IC) for executing a
software process or thread

 Hardware thread
 Addition of a set of register

files plus IC

Execution logic

State: Registers, IC

Caches,
etc.

State: Registers, IC

The sharing of the execution logic can
be coarse-grained or fine-grained.

Sverre Jarp - CERN48

The move to many-core systems

 Examples of “dispatch slots”: Sockets * Cores * HW-threads
 Basically what you observe in “cat /proc/cpuinfo”

 Conservative:
 Dual-socket AMD six-core (Istanbul): 2 * 6 * 1 = 12
 Dual-socket Intel six-core (Westmere): 2 * 6 * 2 = 24

 Aggressive:
 Quad-socket AMD Magny-Cours (12-core) 4 * 12 * 1 = 48
 Quad-socket Nehalem-EX “octo-core”: 4 * 8 * 2 = 64

 In the near future: Hundreds of CPU slots !
 Quad-socket Oracle/Sun Niagara (T3) processors

w/16 cores and 8 threads (each): 4 * 16 * 8 = 512

 And, by the time new software is ready: Thousands !!

Sverre Jarp - CERN49

Accelerators (1): Intel MIC

 Many Integrated Core architecture:
 Announced at ISC10 (June 2010)
 Based on the x86 architecture, 22nm (in 2012?)
 Many-core (> 50 cores) + 4-way multithreaded + 512-bit

vector unit
 Limited memory: A few Gigabytes

In Order, 4
threads, SIMD-16

M
em

or
y

C
on

tro
lle

r

S
ys

te
m

In
te

rfa
ce

D
is

pl
ay

In
te

rfa
ce

M
em

or
y

C
on

tro
lle

r

Te
xt

ur
e

Lo
gi

c
Fi

xe
d

Fu
nc

tio
n

In Order, 4
threads, SIMD-16

I$ D$

In Order, 4
threads, SIMD-16

I$ D$

. . .

. . .

L2 Cache

In Order, 4
threads, SIMD-16

I$ D$

In Order, 4
threads, SIMD-16

I$ D$

Sverre Jarp - CERN50

Accelerators (2): Nvidia Fermi GPU

 Streaming Multiprocessing
(SM) Architecture

 32 “CUDA cores” per SM (512 total)

 Peak single precision floating point
performance (at 1.15 GHz”:
 Above 1 Tflop

 Double-precision: 50%

 Dual Thread Scheduler

 64 KB of RAM for shared memory and
L1 cache (configurable)

 A few Gigabytes of main memory

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16
Special Func Units x 4

Interconnect Network

64K Configurable
Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Adapted from Nvidia

Lots of
interest in the
HEP on-line
community

Sverre Jarp - CERN51

Definition of a software
process and thread
 Process (OS process):
 An instance of a computer program that is being executed

(sequentially). It typically runs as a program with its
private set of operating system resources, i.e. in its own
“address space” with all the program code and data, its
own file descriptors with the operating system
permissions, its own heap and its own stack.

 Thread:
 A process may have multiple threads of execution. These

threads run in the same address space, share the same
program code, the operating system resources as the
process they belong to. Each thread gets its own stack.

Adapted from Wikipedia

Sverre Jarp - CERN52

HEP programming paradigm

 Event-level parallelism has been used for decades

 And, we should not lose this advantage:
 Large jobs can be split into N efficient “chunks”, each

responsible for processing M events
 Has been our “forward scalability”

 Disadvantage with current approach:
 Memory must be made available to each process

 A dual-socket server with six-core processors needs 24 – 36 GB
(or more)
 Today, SMT is often switched off in the BIOS (!)

 We must not let memory limitations decide our ability to
compute efficiently!

Sverre Jarp - CERN53

What are the multi-core options?

 There is currently a discussion in the community about
the best way forward:

1) Stay with event-level parallelism (and entirely
independent processes)
 Assume that the necessary memory remains affordable
 Or rely on tools, such as KSM, to help share pages

2) Rely on forking:
 Start the first process; Run through the first “event”
 Fork N other processes
 Rely on the OS to do “copy on write”, in case pages are modified

3) Move to a fully multi-threaded paradigm
 Still using coarse-grained (event-level) parallelism

– But, watch out for increased complexity

Sverre Jarp - CERN54

Reentrant
code

Magnetic
field

Physics
processes

Global
data

Event
specific

data

Core 0

Event-
specific

data

Core 1

Event-
specific

data

Core 2

Event-
specific

data

Core 3

Achieving efficient memory footprint
 As follows:

Single copy
of all data
that can be
shared

Sverre Jarp - CERN55

HEP and Symmetric Multi-Threading
 Because we have “thin” instruction streams, we ought to

profit from SMT, provided the memory issue is under control
 It would seem that we could easily tolerate up to 4 hardware

threads!

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-
packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-
packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

SMT (Symmetric Multi-Threading)

Unfortunately,
on Xeon 5600,
we currently
get max 25%
from the
second
hardware
thread !

Sverre Jarp - CERN56

Let’s look more closely at parallelism

Sverre Jarp - CERN57

From Concurrency to
Parallel Execution

 Multiple steps must be kept in mind:
 Concurrency
 Decomposition
 Communication
 Synchronization
 Mapping
 Execution

 Keeping Amdahl’s law for max speedup in mind

n
ppp nS

+−
=

1
1max)(where:

p (parallel portion)
s (serial portion)
p + s = 1.0

Sverre Jarp - CERN58

Designing Threaded Programs
 Partition

 Divide problem into
tasks

 Communicate
 Determine amount

and pattern of
communication

 Agglomerate
 Combine tasks

 Map
 Assign

agglomerated tasks
to created threads

The
Problem

Initial tasks

Communication

Combined Tasks

Final Program

Sverre Jarp - CERN59

More on decomposition

 Divide the total work into smaller parts,
 Which can be executed concurrently

 Some techniques:
 Data decomposition

 Partition the data domain

 Task/functional decomposition
 Split according to “logical” tasks/functions

 Recursive decomposition
 Divide-and-conquer strategy

 Exploratory decomposition
 Search for a configuration space for a solution

– Not guaranteed to reduce amount of work

Sverre Jarp - CERN60

C++ parallelization support

 Large selection of tools (inside the compiler or as
additions):
 Native: pthreads/Windows threads
 Forthcoming C++ standard: std::thread
 OpenMP
 Intel Array Building Blocks (beta version from Intel;

integrating RapidMind)
 Intel Threading Building Blocks (TBB)
 CUDA (from Nvidia)  Not exactly C++, but…
 MPI (from multiple providers), etc.

We must also keep a close eye on
OpenCL (www.khronos.org/opencl)

Sverre Jarp - CERN61

Examples of parallelism:
CBM/ALICE track fitting
 Re-optimization on x86-64 systems
 Part1: Data parallelism using SIMD instructions
 Part 2: use TBB (or OpenMP) to scale across cores

From H.Bjerke/CERN openlab, I.Kisel/GSI

Sverre Jarp - CERN62

Examples of parallelism: GEANT4
 Initially: ParGeant4 (Gene Cooperman/NEU)
 implemented event-level parallelism to simulate separate

events across remote nodes.

 New prototype re-implements thread-safe event-level
parallelism inside a multi-core node

 Done by NEU PhD student Xin Dong: Using FullCMS and TestEM
examples
 Required change of lots of existing classes (10% of 1 MLOC):

– Especially global, “extrn”, and static declarations
– Preprocessor used for automating the work.

 Major reimplementation:
– Physics tables, geometry, stepping, etc.

 Additional memory: Only 25 MB/thread (!)
Dong, Cooperman, Apostolakis: “Multithreaded Geant4: Semi-Automatic
Transformation into Scalable Thread-Parallel Software”, Europar 2010

Sverre Jarp - CERN63

Multithreaded GEANT4 benchmark
 Excellent scaling on 32 (real) cores

 With a 4-socket server

From A.Nowak/CERN openlab

Sverre Jarp - CERN64

end

Input
Files Output

Files

OS-fork merge

$> Athena.py --nprocs=4 -c EvtMax=100 Jobo.py

firstEvnts

output-
tmp
files

output
tmp
files

Output
tmp
files

Output
tmp
files

init

Maximize the
shared

memory!

PARALLEL: workers event loopSERIAL:
parent-init-fork

SERIAL:
parent-merge and finalize

64

AthenaMP: event level parallelism

core-0

WORKER 0:
Events: [0, 4, 5,…]

core-1

WORKER 1:
Events: [1, 6, 9,…]

core-2

WORKER 2:
Events: [2, 8, 10,…]

core-3

WORKER 3:
Events: [3, 7, 11,…]

Random event order

From: Mous TATARKHANOV/May 2010

Sverre Jarp - CERN65
65

AthenaMP ~0.5 GB physical memory saved per process

Memory footprint of AthenaMP

From
~1.5 GB

To
~1.0 GB

From: Mous TATARKHANOV/May 2010

Sverre Jarp - CERN66

Examples of thread parallelism: JANA

 Each thread in JANA is
composed of its own event
processing loop and a
complete set of factories

 Reconstruction of a given
event is done entirely inside
of a single thread

 No mutex locking is
required by authors of
reconstruction code

 Threads work
asynchronously to
maximize rates at the
expense of not maintaining
the event order on output

Developed by D.Lawrence/JLAB

Sverre Jarp - CERN67

Example: ROOT minimization and fitting

 Minuit parallelization is independent of user code

 Log-likelihood parallelization (splitting the sum) is quite efficient

 Example on a 32-core server:

 In principle, we can have combination of:
 parallelization via multi-threading in a multi-core CPU
 multiple processes in a distributed computing environment

complex
BaBar fitting
provided by
A. Lazzaro
and
parallelized
using MPI

Sverre Jarp - CERN68

CUDA in the PANDA experiment
 Track propagation in the PANDA

experiment
 Runge-Kutta propagator from Geant3

 All tracks propagated in parallel

 Preliminary results from Feb.2010
 M. Al Turany (ACAT2010)

68

#tracks CPU (single
core)

GPU emul.
(on CPU)

Tesla C1060

100 210 160 5
1000 210 177 1.9

Time in microseconds/track

Sverre Jarp - CERN69

Recommendations
(based on observations in openlab)

Sverre Jarp - CERN70

Shortlist

1) Broad Programming Talent

2) Holistic View with a clear split:
Prepare to compute – Compute

3) Controlled Memory Usage

4) C++ for Performance

5) Best-of-breed Tools

Sverre Jarp - CERN71

Broad Programming Talent
 In order to cover as many layers as possible

Problem
Algorithms, abstraction

Source program

System architecture
Instruction set
µ-architecture

Circuits
Electrons

Compiled code, libraries

Solution
specialists

Technology
specialists

Adapted from Y.Patt, U-Austin

Sverre Jarp - CERN72

Performance guidance (cont’d)
 Take the whole program and its execution behaviour

into account
 Get yourself a global overview as soon as possible

 Via early prototypes
 Influence early the design and definitely the implementation

 Foster clear split:
 Prepare to compute
 Do the heavy computation

 Where you go after the available parallelism

 Post-processing

 Consider exploiting the entire server
 Using affinity scheduling

Heavy compute

PostPre

Sverre Jarp - CERN73

Performance guidance (cont’d)
 Control memory usage (both in a multi-core and an

accelerator environment)
 Optimize malloc/free
 Forking is good; it may cut memory consumption in half
 Don’t be afraid of threading; it may perform miracles !
 Optimize the cache hierarchy
 NUMA: The “new” blessing (or curse?)

 C++ for performance
 Use light-weight C++ constructs
 Prefer SoA over AoS
 Minimize virtual functions
 Inline whenever important
 Optimize the use of math functions

– SQRT, DIV; LOG, EXP, POW; ATAN2, SIN, COS

Sverre Jarp - CERN74

Organization of data: AoS vs SoA

 In general, compilers
and hardware prefer
the latter!

 Arrays of Structures:

 Structure of Arrays:

Z1 Z2 Z3 Z4 Z5 Z6

Spacepoints

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6

SP1
X,Y, Z

SP2
X,Y, Z

SP3
X,Y, Z

SP4
X,Y, Z

SP5
X,Y, Z

SP6
X,Y, Z

Sverre Jarp - CERN75

C++ parallelization support

 Large selection of tools (inside the
compiler or as additions):
 Native: pthreads/Windows threads
 Forthcoming C++ standard: std::thread
 OpenMP
 Intel Array Building Blocks (beta version

from Intel; integrating RapidMind)
 Intel Threading Building Blocks (TBB)
 TOP-C (from NE University)
 MPI (from multiple providers), etc.
 . . .

We must also keep a close eye on
OpenCL (www.khronos.org/opencl)

Sverre Jarp - CERN76

Performance guidance (cont’d)

 Surround yourself with good tools:
 Compilers
 Libraries
 Profilers
 Debuggers
 Thread checkers
 Thread profilers

Sverre Jarp - CERN77

If you think that all of this is “crazy”

 Please read:

 “Optimizing matrix multiplication for a short-vector
SIMD architecture – CELL processor”
 J.Kurzak, W.Alvaro, J.Dongarra
 Parallel Computing 35 (2009) 138–150

In this paper, single-precision matrix multiplication kernels
are presented implementing the C = C – A x BT operation and
the C = C – A x B operation for matrices of size 64x64
elements. For the latter case, the performance of 25.55
Gflop/s is reported, or 99.80% of the peak, using as little as
5.9 kB of storage for code and auxiliary data structures.

Sverre Jarp - CERN78

Concluding remarks

 The aim of these lectures was to help understand:
 Changes in modern computer architecture
 Impact on our programming methodologies
 Keeping in mind that there is not always a straight path to

reach (all of) the available performance by our
programming community.

 In most HEP programming domains event-level
processing will (continue to) dominate
 Provided we get the memory requirements under control

 Will you be ready for 100+ cores and long vectors?

 It helps to know the seven hardware dimensions and
how appropriate software constructs can help!

Sverre Jarp - CERN79

Further reading:
 “Designing and Building Parallel Programs”, I. Foster, Addison-Wesley,

1995

 “Foundations of Multithreaded, Parallel and Distributed Programming”, G.R.
Andrews, Addison-Wesley, 1999

 “Computer Architecture: A Quantitative Approach”, J. Hennessy and D.
Patterson, 3rd ed., Morgan Kaufmann, 2002

 “Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004

 “Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2nd

edition, Addison Wesley, 2006

 “The Software Vectorization Handbook”, A.J.C. Bik, Intel Press, 2006

 “The Software Optimization Cookbook”, R. Gerber, A.J.C. Bik, K.B. Smith
and X. Tian; Intel Press, 2nd edition, 2006

 “Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor
Parallelism”, J. Reinders, O’Reilly, 1st edition, 2007

 “Inside the Machine”, J. Stokes, Ars Technica Library, 2007

Sverre Jarp - CERN80

Thank you!

Sverre Jarp - CERN81

BACKUP I

Sverre Jarp - CERN82

Derived performance events

 Too much information available?

 Low level and fine grained events can be combined to
produce ratios (so called “derived events”)

 Extensive information: Intel Manual 248966-020
 Intel Manual 248966-020 “Intel 64 and IA-32 Architectures

Optimization Reference Manual”
 AMD CPU-specific manuals, i.e. #32559 “BIOS and Kernel

Developer’s Guide for AMD NPT Family 0Fh Processors”

Sverre Jarp - CERN83

Basic modes
 Counting

 Example: How many instructions did my application execute?
 Example: How many times did my application have to stop and wait

for data from the memory?

 Sampling
 Reporting results in “regular” intervals
 Example: every 100’000 cycles record the number of SSE operations

since the last sample

 Profiling
 Example: how many cycles are spent in which function?
 Example: how many cache misses occur in which function?
 Example: which code address is the one most frequently visited?

(looking for hotspots)

Sverre Jarp - CERN84

Enabling different modes

 Different modes are triggered by the presence of certain
command line switches

 Counting
default mode

 Sampling
--smpl-module=compact

 Profiling
--long-smpl-period=NUM

Sverre Jarp - CERN85

Triggers
 Automatically start or stop

monitoring

 Trigger types:
 Code
 Data

 A symbol name…
 i.e. “foobar”

 …or an address
 i.e. 0x8103b91e

! Limitation: symbol names are
available only within the first
binary

Code Data

Sverre Jarp - CERN86

Perfmon 2 resources
 Resources:

 http://cern.ch/openlab
 http://sf.net/projects/perfmon2
 http://perfmon2.sourceforge.net (documentation)
 http://perfmon2.sourceforge.net/pfmon_usersguide.html
 http://www.intel.com (manuals)
 http://cern.ch/andrzej.nowak (gpfmon)

 Intel Software Products:
 VTune, Thread checker, Thread Profiler: http://intel.com/software
 PTU: http://softwarecommunity.intel.com/articles/eng/1437.htm

 HP Caliper
 http://h21007.www2.hp.com/portal/site/dspp

http://intel.com/software�
http://softwarecommunity.intel.com/articles/eng/1437.htm�
http://h21007.www2.hp.com/portal/site/dspp�

Sverre Jarp - CERN87

BACKUP – basic pfmon options
 Event specification with umasks

–e INST_RETIRED:STORES:LOADS

 Follow all execution splits
–-follow-all

 System wide mode
–-system-wide

 Displaying the header
–-with-header

 Aggregating results
–-aggregate-results

Sverre Jarp - CERN88

Pfmon output formatting
 EU counter format (--eu-c)

1.567.123 instead of 1567123

 US counter format (--us-c)
1,567,123 instead of 1567123

 Hex counter format (--hex-c)
0xdeadbeef instead of 3735928559

 Show execution time (--show-time)
real 0h00m00.252s user 0h00m00.000s sys 0h00m00.000s

 Suppress monitored command output (--no-cmd-output)

Sverre Jarp - CERN89

Advanced pfmon options

 Specifying triggers
–-trigger-code-start-address=...

–-trigger-code-stop-address=...

–-trigger-data-start-address=...

–-trigger-data-start-address=...

 Multiplexing
–e EVENT1,EVENT2,… -e EVENTa,EVENTb,… --switch-
timeout=NUM

Sverre Jarp - CERN90

Pfmon sampling/profiling options
 Specifying sampling periods (the unit is reference event

occurrences)
–-long-smpl-period=NUM

–-short-smpl-period=NUM

 Resetting counters back to zero when sampling
–-reset-non-smpl-periods

 Limit the sampling entries buffer (useful!)
–-smpl-entries=NUM

 Translating addresses into symbol names
–-resolve-addresses

 Show results per function rather than per address
–-smpl-per-function

Sverre Jarp - CERN91

Example profiling results

cnt %self %cum addr symbol
80 20.83% 20.83% 0x… do_lookup_x</lib64/ld-2.3.4.so>

53 13.80% 34.64% 0x… do_page_fault<kernel>
32 8.33% 42.97% 0x… _init</bin/ls>
20 5.21% 48.18% 0x… __GI_strlen</lib64/tls/libc-2.3.4.so>
19 4.95% 53.12% 0x… _int_malloc</lib64/tls/libc-2.3.4.so>
18 4.69% 57.81% 0x… strcmp</lib64/ld-2.3.4.so>
17 4.43% 62.24% 0x… __GI___strcoll_l</lib64/tls/libc-2.3.4.so>
13 3.39% 65.62% 0x… __GI_memcpy</lib64/tls/libc-2.3.4.so>

Sverre Jarp - CERN92

Example sampling results
description of columns:
column 1: entry number
column 2: process id
column 3: thread id
column 4: cpu number
column 5: instruction pointer
column 6: unique timestamp
column 7: overflowed PMD index
column 8: event set
column 9: initial value of overflowed PMD (sampling period)
followed by optional sampled PMD values in command line order

1 2 3 4 5 6 7 8 9 10
0 32442 32442 2 0x3061230d6a 0x0004d5f49c2a8e57 17 0 -26670 0x556
1 32442 32442 2 0x3061292980 0x0004d5f49c2b4851 17 0 -26670 0xd66
2 32442 32442 2 0x3061226363 0x0004d5f49c2c04dc 17 0 -26670 0x1aaa
3 32442 32442 2 0x3061010159 0x0004d5f49c2c39cb 17 0 -26670 0x6942
4 32442 32442 2 0x306126b5f0 0x0004d5f49c2c9a1c 17 0 -26670 0x171c

Sverre Jarp - CERN93

False sharing

Thread 1

tab[0]++;

tab[0]++;

Thread 2

tab[1]++;

tab[1]++;

L2 cache

int global_tab[2];

MEM_UNCORE_RETIRED.OTHER_CORE_L2_HITM

Sverre Jarp - CERN94

BACKUP-II

Sverre Jarp - CERN95

Items not covered today

 Systematic tuning approach

 Performance tuning versus correctness
 FP accuracy and reproducibility

 Amdahl’s law (in detail)
 Also: Gustafson’s law

 Parallel programming languages

 Detailed compiler “control”
 Including regression avoidance

Sverre Jarp - CERN96

OpenMP overview

 De-facto standard for writing
shared-memory parallel
applications in C, C++ or
FORTRAN

 Consists of:
 Compiler directives
 Run-time routines
 Environmental variables

 http://www.openmp.org/
 Current version: 3.0
 Still in active development

#pragma omp parallel for \
shared (n, a, b, c) \
private(i)

for (i = 0; i < n; i++) c[i] = a[i] + b[i];

gcc –fopenmp –O –oaprog aprog.c
setenv OMP_NUM_THREADS 4
./aprog

Master thread

Worker
threads

Synchronization

http://www.openmp.org/�

Sverre Jarp - CERN97

Array Building Blocks (ArBB)

 Effort by Intel to extend C++ for Throughput Computing
 Initially called Ct

 Features:
 Addition of new data types (parallel vectors) & operators

 NeSL/SASAL-inspired: irregularly nested and sparse/indexed vectors

 Abstracting away architectural details
 Vector width/Core count/Memory Model: Virtual Intel Platform

– Forward-scaling (Future-proof!)
 Nested data parallelism and deterministic task parallelism

 Incremental adoption path:
 Dedicated Ct-enabled libraries
 Rewritten “kernels” in Ct
 Pervasive use of Ct

See: CERN/IT seminar on 11/10/2007 by A.Ghuloum/Intel:
Programming Challenges for Manycore Computing

1
0
0
0

0

0

2

4

5

3

0
0
0 6

0

7

1 2 4 5
3 6

7

Sverre Jarp - CERN98

Intel TBB 2.0 overview

 Key features:
 Open source extension to C++ (GPL)
 Task patterns instead of threads

 Focus on the work, not the workers

 Designed for scalable performance
 Automatic scaling to use available resources

 Components
 Generic parallel algorithms: parallel_for, parallel_reduce, etc.
 Low-level synchronisation primitives: atomic, mutex, etc.
 Concurrent containers: concurrent_vector, concurrent_hash_map, etc.
 Task scheduler
 Memory allocation: cache_aligned_allocator
 Timing

#include "tbb/task_scheduler_init.h"
#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"
using namespace tbb;
//
task_scheduler_init init;
tasks = atoi(argv[1]);

//
parallel_for(blocked_range<int>(0,
NTracksV, NTracksV / tasks),
ApplyFit(TracksV, vStations, NStations));

More features in preparation

Sverre Jarp - CERN99

MPI overview

 MPI – Message Passing Interface
 A language independent communications API
 Point-to-point message passing and global operations
 No shared memory concept in MPI-1 (v 1.2)
 MPI-2 (v. 2.1) introduces numerous enhancements

 Limited shared memory concept
 Parallel I/O
 Dynamic management
 Remote memory support

 Numerous implementations exist
– Including the combination of OpenMP and MPI

	�
	Contents
	Moore’s law
	Real consequence of Moore’s law
	“Intel platform 2015” (and beyond)
	The holy grail: Forward scalability
	Evolution of CERN’s computing capacity
	Frequency scaling
	The Power Wall
	Performance: A complicated story!
	A Complicated Story (in layers!)
	Let’s start with the basics!
	Von Neumann architecture
	Simple processor layout
	Simple server diagram
	Initial premise
	Seven dimensions of performance
	Seven multiplicative dimensions:
	Concurrency in HEP
	Autoparallelization/Autovectorization
	Part 1: Opportunities for scaling performance inside a core
	First: Superscalar architecture
	Enhanced superscalar architecture
	Today’s superscalar architecture
	Mulmul example
	Next topic: Instruction pipelining
	Real-life latencies
	Latencies and serial code (1)
	Latencies and serial code (2)
	Mini-example of real-life serial code
	Other causes of execution delays (1)
	Other causes of execution delays (2)
	Memory Hierarchy
	Cache lines (1)
	Cache lines (2)
	Third topic: Registers for SSE
	Four floating-point data flavours
	Scalable programming for a single core
	HEP and vectors
	Examples of parallelism:�CBM/ALICE track fitting
	CBM/ALICE track fitting
	Performance monitoring in hardware
	Pfmon overview
	Events
	Important performance counters�(that can tell you if things go wrong)
	Part 2: Parallel execution across hw-threads and cores
	Definition of a hardware core/thread
	The move to many-core systems
	Accelerators (1): Intel MIC
	Accelerators (2): Nvidia Fermi GPU
	Definition of a software process and thread
	HEP programming paradigm
	What are the multi-core options?
	Achieving efficient memory footprint
	HEP and Symmetric Multi-Threading
	Let’s look more closely at parallelism
	From Concurrency to Parallel Execution
	Designing Threaded Programs
	More on decomposition
	C++ parallelization support
	Examples of parallelism:�CBM/ALICE track fitting
	Examples of parallelism: GEANT4
	Multithreaded GEANT4 benchmark
	AthenaMP: event level parallelism
	Memory footprint of AthenaMP
	Examples of thread parallelism: JANA
	Example: ROOT minimization and fitting
	CUDA in the PANDA experiment
	Recommendations�(based on observations in openlab)
	Shortlist
	Broad Programming Talent
	Performance guidance (cont’d)
	Performance guidance (cont’d)
	Organization of data: AoS vs SoA
	C++ parallelization support
	Performance guidance (cont’d)
	If you think that all of this is “crazy”
	Concluding remarks
	Further reading:
	Thank you!
	BACKUP I
	Derived performance events
	Basic modes
	Enabling different modes
	Triggers
	Perfmon 2 resources
	BACKUP – basic pfmon options
	Pfmon output formatting
	Advanced pfmon options
	Pfmon sampling/profiling options
	Example profiling results
	Example sampling results
	False sharing
	BACKUP-II
	Items not covered today
	OpenMP overview
	Array Building Blocks (ArBB)
	Intel TBB 2.0 overview
	MPI overview

