) Second INFN International School on Architectures, tools and methodologies for /)
@10 developing efficient large scale scientific computing applications

Ce.U.B. - Bertinoro - Italy, 21 - 27 November 2010 L/

Introduction

Concepts of Performance and
Efficiency

22 November, 2010 ESCI10 - Peter Elmer, Princeton University 1

'School Goals

Large scale computing resources are routinely exploited nowadays to push the frontier of human knowledge beyond
the current limits, in an ever growing number of scientific application fields.

The gquest for access to larger and larger processing power and digital storage has been the key reason for the ongoing
growth of the number and size of computing centres. It has also represented the driving force for the developments
of new infrastructures, like the Grid, that enable scientists to share resources and services in a global highly
interconnected scenario.

However, extending the scale of scientific computing applications is a challenging task. Computing model may not
scale as foreseen, technology developments may not match expectations, projected amounts of resources may turn
out to have been severely underestimated, economical and technical constraints may pose insuperable limits to the
growth rates.

In such cases preserving or improving the application efficiency becomes a key element for success and it may require
the orchestration of coherent efforts in many areas of software and middleware development.

The goal of the school is to increase the awareness of the new generations of scientists that will face future challenges
in scientific computing, about establishing sound efficiency goals and to provide them basic knowledge on how to reach
them.

In this presentation | am going to give a basic
introduction to the topic of performance/efficiency
for scientific applications and give you an overview
of the topics you will see over the course of

the week.

22 November, 2010 ESC10 - Peter Elmer, Princeton University 2

Performance

= What do we mean by the software performance and efficiency of “large
scale scientific applications”? Different points of view:

= An individual scientific user may be interested in:
a0 Time to completion (from “start” to results)

= Computing center admins, experiments/projects, grid providers, etc. may
be more interested in:

0 Total throughput (for all users of the system)
0 Efficiency in the use of the resources (Is it all used? Or sitting idle?)
0 Total resource utilization by a user, experiment, etc.
0 The scalability of the throughput as new resources are added
= A funding agency (the “money man”) may be interested in:
a0 The total cost of the system (or cost/year)
0 The predictability of the cost evolution of the system

First lets explore the basic model of the last 10-15 years....

22 November, 2010 ESC10 - Peter Elmer, Princeton University 3

Single user

e

A single user working on a desktop workstation had until a few years ago a couple
of simple options to improve their “time to completion”:

Buy a new computer (CPU, memory, disk, etc.), in general each new generation
of machines usually brought a performance gain, even when simply rerunning
existing binary programs.

Make modifications to the program to make it run faster.

The machine perhaps sat idle when the user was away (on vacation, etc.), so
the throughput wasn't being maximized, but at this scale it isn't critical.

22 November, 2010 ESC10 - Peter Elmer, Princeton University 4

High Energy Physics (HEP)

HEP computing is embarrassingly
(data) parallel: N independent
instances of an application can be
started as simple unix processes,
each one processing an independent
sets of events. No real
communication is needed between
the separate processes.

b

e i - fi oz &

22 November, 2010 ESCI10 - Peter Elmer, Princeton University 5

Clusters (and Grids)

Any individual user can reduce
time to completion by using
a larger set of machines, if
the application is parallelizable

The cluster administrator can
improve throughput by adding
new or additional machines or
improve time to completion for
individual users by giving them
access to more of the common
resources

The throughput of the system
iIs however not necessarily
improved because users
parallelize their applications

D f
Both the throughput and the time

to completion can be improved if changes
can be made to make the application run faster

22 November, 2010 ESC10 - Peter Elmer, Princeton University

Trivial Example

= Suppose that a particular Geant4 simulation takes 1 minute
per event, plus a (one-time) job startup time of 5 minutes

= A single user wants to simulate 10000 total events

= |n a single job, the “time to completion” is 10005 minutes and
the total resource utilization (counting towards total
throughput) is 10005 CPU-minutes

= |f the job is run as 10000 separate jobs, each doing 1 event,
the user could (in principle) have a “time to completion” of 6
minutes, but the total resource utilization is now 60000 CPU-
minutes

= Similar considerations apply to the “serial” and “parallelizable”
portions of a particular application or workflow

22 November, 2010 ESC10 - Peter Elmer, Princeton University 7

Grids (and Clouds)

Pooling of ever
larger sets of
resources provides
individuals with even
better opportunities
to reduce their total
“time to completion”.

However the global
accounting for what
one has used is still
there, to satisfy the
needs of admins,
experiments/projects
and the money man.

Thus there is still a
need to focus on
improvements to the
actual application.

ceeereee
rfrrrfrr
rfrrrrrr

rfrrrrrr

rrfrrrrr

rrfrfrrr%
rrrrrrrr

rrrrrrrr

22 November, 2010

ESCI10 - Peter Elmer, Princeton University

Scaling

LECRLERLRLRLRRRRNLRRS

When using large sets of resources
one can also run into scaling limits

where adding more or newer resources .
doesn't result in more throughput. ‘

An example of an “external” constraint
is 1/0: access to disk or other storage,
databases, etc. If this is insufficient, the
use of CPU resources (for example)
may be very inefficient. Note that such
problems can be due to both inadequate

hardware as well as poorly behaving
Applications.

Scaling issues can also come out from
difficulties in making a given application
sufficiently parallelizable to exploit the
resources available.

Z ¢ T
R AHRBL R LS R
& AU & AU A & A

22 November, 2010

ESCI10 - Peter Elmer, Princeton University

@ 4 C4 4
- ” ¢ -
- - - -
/i . 8 o . o
N 2 N AN o At
L L 2 L . &L
P P P

\Lessons — circa 2005

Much of the performance (both in “time to completion™ and
“throughput”) boiled down to the art of improvements in the
single application performance.

“Time to completion” could be improved by trivial parallelism
and the use of ever larger pools of shared resources (i.e. large
clusters and the grid).

As the HEP problem, at least, is “embarrassingly parallel” and
no particular effort needs to be spent on achieving parallelism.
In fact “parallelism” wasn't even a term one often needed to
use.

Careful attention to 1/O with storage systems is needed to
iInsure scaling and single point scaling bottlenecks (e.g.
databases, catalogs) should be avoided or carefully managed.

These things are still true today, but from ~2005 an additional
fly in the ointment appeared....

22 November, 2010 ESC10 - Peter Elmer, Princeton University 10

The fly in the ointment — after 2005

= Around 2005 there was a significant change in the evolution
of commodity proceessors, as will be described in detail in
the talks later this morning.

Prior to that we could expect that each subsequent
generation of processor would be faster than the previous
generation, primarily due to clock frequency scaling.

However starting around 2005, technical limits (in particular
power) led to a plateau in the increase in clock frequencies.

Since Moore's Law continues unabated, the CPU producers
have turned instead to exploiting the increasing number of
transistors by providing multiple “cores” within a single CPU

Instead of getting a processor that is twice is fast at the same
price, for example, one effectively gets two processor units.

22 November, 2010 ESCI10 - Peter Elmer, Princeton University 11

LECRLERLRLRLRRRRNLRRS

Hardware evolution

(Through ~2005)

Machines purchased 3
years ago

Each box has 1GB
and perf =P

Machines purchased 1.5
years ago

Each box has 1GB
andperf=20P

Machines purchased
this year

Each box has 1GB
and perf=4.0P

N N
O oVt

22 November, 2010 ESCI10 - Peter Elmer, Princeton University

12

LECRLERLRLRLRRRRNLRRS

Hardware evolution

(Treating cores as independent processors)

Machines purchased 3
years ago

Each box has 1GB
and each core perf =P

Machines purchased 1.5 |

years ago (dual cores)
Each box has 2GB

and each core perf ~ P

Machines purchased Egigiigiggggi!
this year (quad cores)

Each box has 4GB

and each core perf ~ P

22 November, 2010

ESCI10 - Peter Elmer, Princeton University

Expectations (with multi/manycore)

= While treating multicore CPU's as if they are simply N
independent processors has worked for small numbers of
cores, it is expected that this will not scale forever.

= Memory needs are not amortized with each generation of
purchases, but instead increase as ~ Moore's Law

= A number of scaling issues arise from an exponentially
iIncreasing number of active (and independent) proceses in the
systems: |/O, access to services (databases), job and file
management

= Performance within a single multicore CPU may not scale
perfectly due to memory hierarchy

= Conclusion: the trivial “event” data parallelism is not enough,
we need to find other types of parallelism in our applications in
order to exploit multi/manycore CPU's.

22 November, 2010 ESCI10 - Peter Elmer, Princeton University 14

Lessons — after 2005

= Much of the performance (both in “time to completion” and
“throughput”) boiled down to the art of improvements in the
single application performance.

= “Time to completion” could be improved by trivial parallelism
and the use of ever larger pools of shared resources (i.e. large
clusters and the grid).

= Even though HEP problem, at least, is “embarrassingly
parallel” on events, that is probably insufficient to fully exploit
multi/manycore CPU's. Additional parallelism must be found
and exploited to avoid scaling issues and reduced efficiency.

= Careful attention to I/O with storage systems is needed to
iInsure scaling and single point scaling bottlenecks (e.g.
databases, catalogs) should be avoided or carefully managed.

22 November, 2010 ESC10 - Peter Elmer, Princeton University 15

‘The Art of Application Performance

= What kinds of things are relevant to improve the performance
of a single application?

A number of ingredients affect the realizable performance:
Hardware — CPU, Memory subystem, |/O

Software — Application code, compiler and operating system
Algorithms — Knuth/CS, Scientific, Parallelisation

22 November, 2010 ESC10 - Peter Elmer, Princeton University 16

'Amdahl's Law

= The improvement in the total time due to improvements to one
part is limited by the amount that part is used

= A similar restatement is: when parallelizing one part of an

application, you can never do better than the remaining serial
part.

Serial Parallelizable
Part Part
|
Time

22 November, 2010 ESC10 - Peter Elmer, Princeton University 17

High Level Algorithm choices

= Often the things which most directly determine the
performance are simple choices made as to what the program
Is actually doing, i.e. the high level algorithms.

= For example, if you are running a simulation: are you
simulating only the relevant things? Is the level of detalil
greater than what is needed or needed for all parts of the
simulation?

= Such high level considerations can often result in large factors
in the time to completion (or resources needed) for any given
task.

= |tis important to ask such questions near the beginning, and
confirm via profiling that the main performance drivers have
been identified, before rolling up one's sleeves and diving into
the more technical performance tuning.

22 November, 2010 ESC10 - Peter Elmer, Princeton University 18

Profiling tools

= You probably want to make sure that the time you dedicate to
working on software performance and efficiency will help

To do this you should be making decisions based on
performance profiles for your application(s)

In this school you will use several example profiling tools:
a Perfmon — CPU performance counters

a |gprof — simply statistical profiler and memory profiler

a Valgrind — general memory debugger/profile

a A variety of Linux system tools

In your experiment, institute or project you may use others

The important thing is to use profilers as a guide to where the
problems/opportunities are, don't guess!

22 November, 2010 ESC10 - Peter Elmer, Princeton University 19

\Hardware — CPU architecture/Memory

We of course compute on actual physical “computers” and
thus their evolving capabilities are the most basic component
of the achievable performance of some application

Moore's Law — number of transitors available per unit cost
doubles every 1.5 years

A number of factors conspired to make it possible for many
years (1990's through ~2005) to take applications (often
without recompiling!) and run them on the next generation of
hardware and see a performance gain out-of-the-box.

This easy ride is over, however. Without changes many
applications will not run faster on newer hardware (and many
at times actually run slower).

In addition to “multicore”, exploiting fully CPU's is a challenge.

Understanding the basics of how to best exploit the hardware
going forward will be the topic of several lectures this week.

22 November, 2010 ESC10 - Peter Elmer, Princeton University 20

‘Operating Systems

= For the most part Linux is the primary operating system
considered in these presentations

= The capabilities of the operating system and its runtime
environment have can have an important impact on
performance, for example:

a Virtual Memory subsystem — using or abusing this can affect
performance

0 Shared libraries and/or other details of “code packaging”
can have an impact on performance

a Math libraries — by default you may be taking the math
library (liom) from the system, unless you've made a
conscious decision to do otherwise

22 November, 2010 ESCI10 - Peter Elmer, Princeton University 21

Compilers

= The compiler is clearly one of the most important tools for
achieving optimum code performance

= Unless we want to hand-code everything in assembly, we
rely on it to take our code, written in a high-level language
like C++, and produce the fastest code possible.

= Usually we also want it to accomplish that in the shortest
time possible, to use as little memory as possible doing it, to
produce the smallest code possible, efc.

= Note however that compilers cannot always find and
optimize things that a human might immediately recognize.
In particular compilers are (usually) conservative and will
choose code that is guaranteed to be correct over code that
might be wrong in some cases.

22 November, 2010 ESCI10 - Peter Elmer, Princeton University 22

\GNU compiler collection (gcc)

= The workhorse open source compiler, used by most of us,
most of the time, these days...

= Front ends for C, C++, Fortran (Ada, Objective-C(++),
Java and others)

= Back ends for x86, x86 64 (Alpha, ARM, ia-64, PowerPC,
Sparc and many others)

= Most software today is easily configured to build with gcc

= Although most of work on linux/x86(_64) today, or at most
MacOSX/x86_64, at least in non-DAQ environments, the
wide availability of gcc for different OS/CPU combinations
once eased porting C/C++ from one to another.

22 November, 2010 ESC10 - Peter Elmer, Princeton University 23

\GCC version timeline/features

GCC 3.4.0 - 18 Apr, 2004
0 GCC 3.4.6 - 06 Mar, 2006 (~RHEL4/SL4 default)

= GCC 4.0.0 - 20 Apr, 2005 DSO Symbol Tree SSA
' Visibility
= GCC4.1.0-28 Feb, 2006 Autovectorization
2 GCC 4.1.2 - 13 Feb, 2007 (~RHEL5/SL5 default)
= GCC 4.3.0 - 05 Mar, 2008 OpenMP 2.5

C++0x

0 GCC4.3.2-27 Aug, 2008
0 GCC 4.3.4 - 04 Aug, 2009

= GCC4.4.0-21Apr. 2009 New Register OpenMP 3.0
' Allocator
o GCC4.4.1-22 Jul, 2009 New framework for
: . loop optimizations
= GCC4.5.0-14 Apr, 2010 Link Time
Optimizer

o GCC 4.5.1 31 Jul, 2010

Various banner improvements in recent gcc4.x compiler versions.
(See Release notes for full list, though!)

For C++, there is also the runtime library, libstdc++ (evening lecture
by Paolo Carlini this week...)

22 November, 2010 ESCI10 - Peter Elmer, Princeton University 24

\LLVM/Clang Compiler

Recent open source compiler project, aiming to build a set
of modular compiler components

= The initial versions replace the optimizer and code
generation of gcc, but still reuse the gcc front-end/parser
(compatible compiler options!)

= A separate project (Clang) aims to replace gcc front-end
for C/C++/Objective-C. As of version 2.8, this claims to be
“feature complete” relative to ISO C++ 1998 and 2003.

= Targets both static compilation as well as just-in-time (JIT)
compilation

= Sponsorship (in particular) by Apple

22 November, 2010 ESC10 - Peter Elmer, Princeton University 25

Intel Compiler (icc)

= Intel's showcase Fortran/C/C++ compiler(s)

= Arguably focused on demonstrating the best possible
performance to be obtained from their processors

= Independent compiler (language syntax, code quality)

= Generates code for all of the Intel processors, plus in
principle other x86/x86_64 compatible, i.e. AMD, processors

= Available for Linux/MacOSX/Windows, proprietary license

= The default behaviour for floating point may or may not be
what is desired (see presentations about floating point later
this week)

22 November, 2010 ESC10 - Peter Elmer, Princeton University 26

C++ programming

= |n the lectures at this school you will see primarily C++ as itis
the most common programming language used for the
performance-intensive scientific applications, especially in
HEP. (Perhaps a bit of C will make an appearance, too0.)

= C++ can be an extraordinarily powerful language, but it is also
a very complex language.

= Single lines of seemingly innocuous code can hide major
performance problems when compiled into machine code and
executed.

= Understanding the “gotchas” of C++ programming is an
important ingredient to writing performant applications (if you
are using C++, of course)

= A fun google game: try searching for “I hate XXX" for various
values of XXX...

22 November, 2010 ESC10 - Peter Elmer, Princeton University 27

Benchmarks

= |t should be clear that in a complex environment (CPU,
compiler, OS) the best benchmark you can make is simply to
run the actual application, with real inputs and configured to
make real outputs.

= At times “kernels” can be useful, i.e. small portions of code
extracted from a real application after being identified by
profiling as performance critical.

= Artificial benchmarks (e.g. specXXX) are less interesting for
performance work, except perhaps as means of exploring and
understanding the capabilities of processors.

22 November, 2010 ESC10 - Peter Elmer, Princeton University 28

Lecturers

Sverre Jarp (CERN Openlab)
Andrzej Nowak (CERN Openlab)
Alfio Lazzaro (CERN Openlab)
Sebastien Binet (LAL) - LHC/Atlas
Gerhard Brandt (DESY) — LHC/Atlas
Peter Elmer (Princeton) - LHC/CMS
Lassi Tuura (FNAL) - LHC/CMS
Vincenzo Innocente (CERN) - LHC/CMS
Tim Mattson (Intel)

Paolo Carlini (Oracle Italia)

Leone Bosi (Perugia)

22 November, 2010 ESC10 - Peter Elmer, Princeton University

Monday

After these two introductory talks today, the first focus is on the hardware

and in particular modern processors:

Monday 22 November 2010

08:30->20:00 Session 1

08:30
09:00
09:50
10:40
11:00
11:50
12:40
14:15
15:00
15:45
16:00
16:45

2030

Welcome and Opening of the School (309

Concepts of performance and efficiency (s

Modern processors and related optimisation topics - Part 1 (a5 (&
Coffee break (207
Modern processors and related optimisation topics - Part 2 459
Exercises - Introduction to Performance tuning tools (59
Lunch break (130
Introduction to GPUs/CPU accelerators (45
Exercises - Continued focus on Performance tuning tools 459
Coffee break (15
Exercises - Continued focus on Performance tuning tools 459
Exercises - Continued focus on Performance tuning tools 459

Dinner

Federico Ruggieri (RM3)
Peter Elmer (Princeton University)

Sverre Jarp (CEAN)

Sverre Jarp (CERN)
Sverre Jarp (CERN) , Andrze] Nowak (CERN)

Andrze] Mowak (GERN)
Sverre Jarp (CERN) , Andrze] Nowak (CERN)

Sverre Jarp (CERN) , Andrze] Nowak (CERN)
Sverre Jarp (CEAN) , Andrzej Nowak (CERN)

22 November, 2010 ESC10 - Peter Elmer, Princeton University

30

Tuesday

Tuesday

On Tuesday we switch to the software layer and focus on C++ programming
in the morning (and an evening guest lecture) and in the afternoon we will
cover memory issues, which tie together some hardware and software issues.

232 November 2010

08:30->20:00 Session 2

08:30
08:20
10:10
10:30
11:15
12:40
14:15
15:00
15:45
16:00
16:45
18:30

20:30

Efficient C++ coding 459
Efficient C++ coding 459

Coffee break (20
Exercises - Basic C++ optimisations @59
Exercises - Basic C++ optimisations (459

Lunch break (in30)
The Memory Crisis 459
How memory allocation works (459

Coffee break (15
Exercises - Memory Allocations w59
Exercises - Memory Allocations 45
Evening Lecture: "The new C++ runtime library: more and better” (Paclo Carlini, Oracle Italia) (1noo)

Dinner

Sebastien Binet (LALINZP3)
Sebastien Binet (LALANZP3)

Sebastien Binet (LALINZP3)
Sebastien Binet (LALANZP3)

Lassi Tuura (FNAL)
Lassi Tuura (FNAL)

Lassi Tuura (FNAL) , Peter Elmer (Princeton University)

Lassi Tuura (FNAL) , Peter Elmer (Princeton University)

22 November, 2010 ESC10 - Peter Elmer, Princeton University

31

‘Wednesday

Wednesday is devoted to mostly to a lecture and exercises with memory issues.
It will also be an opportunity to catch up on any exercises from the first two days

for which you did not have enough time.

Wednesday 24 November 2010

08:30->16:30 Session 3
08:30 How memory allocation works (s
08:20 Monitoring/Debugging Memory Usage (459
10:10 Coffee break (20
10:30 Exercises - Monitoring Memory Usage (s5)
1120 Exercises - Monitoring Memory Usage (45
12:20 Lunch break (1n3o7)
1400 Reducing Memory Usage (5
1450 Exercises - Reducing Memory Usage (15)
1540 Exercises - Reducing Memory Usage @5

17:30 Social tour (2n157
Guided tour to Casa Artusi (centre of gastronomic culture dedicated to falian home cooking).
Cooking demonstration and tasting of Piadina Romagnola

19:45 Saocial dinner
Casa Artusi Restaurant

Lassi Tuura (FNAL)

Peter Elmer (Princeton University)

Lassi Tuura (FNAL) , Peter Elmer (Princeton University)

Lassi Tuura (FNAL) , Peter Elmer (Princeton University)

Peter Elmer (Princeton University)
Peter Elmer (Princeton University) , Lassi Tuura (FNAL)

Lassi Tuura (FNAL) , Peter Elmer [Princeton University)

22 November, 2010 ESC10 - Peter Elmer, Princeton University

32

‘Thursday

Vectorization/floating point, with a related guest lecture on GPU's
in the evening, and efficient I/O are the topics for Thursday:

Thursday 25 November 2010 tops

08:30->20:00 Session 4

0830 Floating point computation (s Vincenzo Innocente (CERN)
08:220 Exercises - Optimizing floating point computation in C++ (59 Vincenzo Innocente (CEARN)
10:10 Coffee break (207

1030 Vectorization using SIMD (part I) 59 Vincenzo Innocente (CERN)
1115 \ectorization using SIMD (part II) @59 Vincenzo Innocente (CEARN)
1205 Exercises - Vectorization using gec 59 Vincenzo Innocente (CERN)
12:50 Lunch break (1 nao)

1430 [/O Efficiency @5 Gerhard Brandt (DESY)
15:15 Exercises - I/O Efficiency s Gerhard Brandt (DESY)
16:00 Coffes break (151

16:15 Exercises - I/0 Efficiency s Gerhard Brandt (DESY)

1830 Evening Lecture: "Exploiting GPU'sfor scientific computing” (Leone Bosi, INFN Perugia) (1noo}
20:30 Dinner

22 November, 2010 ESC10 - Peter Elmer, Princeton University 33

Friday
Parallel Programming is the topic on Friday:

Friday 26 November 2010

08:30->19:30 Session 5

08:30 Parallel programming theory @s)
Lecture

0820 An introduction to OpenMP @5
Lecture and exercises

10:10 Coffee break (20

10:30 Synchronization in OpenMP (o)
Lecture and exercises

1100 Work sharing constructs (s
Lecture and exercises

1150 The OpenMP data environment (59
Lecture and exercises

12:50 Lunch break (1n30]

1430 OpenMP tasks s5)
Lecture and exercises

1515 QOpenMP Memory model (5)
Lecture and exercises

16:00 Coffee break (15

1615 A survey of programming models (59
Lecture

18:30 Evening Lecture: "How to program a 1000 core processor” (Timothy G. Mattson, Intel Co.) (1noo)
19:30 Dinner

Tim Mattson (intel)

Tim Mattson (Intef)

Tim Mattson (intel)

Tim Mattson (Intef)

Tim Mattson (intel)

Tim Mattson (Intef)

Tim Mattson (intel)

Tim Mattson (Intef)

22 November, 2010 ESCI10 - Peter Elmer, Princeton University

34

By the end of the week...

= ... you should have a good working knowledge of performance
Issues related to:

a The evolution of CPU architectures
The memory subsystem

C++ programming

Vectorization and floating point
Efficient /O

a Parallelization

= And you will have seen various related tools and done
exercises for all of these topics.

= |tis a very large number of topics for a few days, but you
should be well positioned after this week to understand and
improve the performance of your own applications.

22 November, 2010 ESC10 - Peter Elmer, Princeton University 35

Saturday

And of course at the end we would like feedback on whether we have succeeded
plus there is a final examination to allow you to test your knowledge...

Saturday 27 November 2010

08:30->14:40 Session 6
0830 Students feedback (a0
09:00 Final examination (znoo
11:00 Coffee break (307
1130 Delivery of certificates of attendance o)
12:00 Lunch (inis
1430 Shuttle departure

22 November, 2010 ESC10 - Peter Elmer, Princeton University 36

Code lifetimes

= | arge scientific projects by definition will extend over many
years and sometimes decades
= Technologies change over time and in any regime where

underlying laws are exponential (i.e. Moore's Law), the one
thing you can guarantee is that new challenges will arise...

22 November, 2010 ESC10 - Peter Elmer, Princeton University 37

'Code evolution - BaBar

SLOC

3.5e+06 T | BI 600
HPLIX BaBar
O5F/Dec ——
% LN
BE+DE | = L n ' : #_ E.Dﬂ
SLDC —_— "
Int Lumi (1/fb) ——=—
2.5e+06 — - L
++
Standard /— — 400
2e+06 I '
First /I-'Iini /
Callisions _ E / = 300
1 5e+06 | .r/ RW to 511 |E0M
+ 4 migration
-(——I—)- - — 200
1e+06 — 5. g
500000 / g
/ sinZbeta
F..c"' result irek
0 IIJEI:I'E'I' | | 0
.
%, @, @, @ Qo W W W W D R R,
7 .r Zn PF
NN f"‘a% %, Y, %, 2, Y5 Y, o>

1/pb

22 November, 2010

ESCI10 - Peter Elmer, Princeton University

38

‘Code evolution - BaBar

180

160 -

140
120
100

80 -

60 -

40 -

20

Unique developers People
committing to CVS Papersiyear
1 during each month BaBar
1 Total 857 over
1-entire time period
M,
Tl
(4 (4 [[(4 [[[(4 [[(4 [¥ w
'5*?; '5*?; '5..;;; '5...:;; '5,.:;; ':?..;,; '53:;; ':32;-." tP’?‘_‘r !:P,?e ':P’?‘_‘; tP’Z_:u .:p,?e tp’?‘:- 1:32:3
® %‘? %ﬁ" B 0. "% "% 0, Y, b, Gy, Y, s Gy O

22 November, 2010

ESCI10 - Peter Elmer, Princeton University

39

Code Evolution — CDF Run II

3e+06 X s
Linux
2.56+06 — f ' 1 ’f %
SLOC —=——v
Int Lumi {(1/pb) ——— = 2500
2e+06 —
— 2000
S =
Q 1.5e+06 - 5
m -
— 1500
1e+06 t
Track d
g e - 1000
_Munn reco
500000 EDM | ' ' — 500
(Run1) First CDF R
| un 2
. .,$_I | —“',,/ Pap:.er | 0
W U U U U LA
S, B, B B B B By By By B B,
¢ PN PN
B % B % e%é‘ %ﬁ' %, é‘?d* %‘%‘ eﬂf”' 9%1?

22 November, 2010 ESCI10 - Peter Elmer, Princeton University 40

Code Evolution — CDF Run II

140

120 -

100 -

80 -

60 -

40 -

20

Unique developers People
committing to CVS Papersfyear
during each month CDF Run 2

Total 408 .over
entire time period

| |
T

(¥ o (¥ (¥ o o o o o
D, D, B, Yy By Dy Wy By By D
7%, 0%, S0, %0, 0, %0, %, 0,

> G G G G G

22 November, 2010

ESCI10 - Peter Elmer, Princeton University

41

‘Conclusions

Have a productive week!

22 November, 2010 ESC10 - Peter Elmer, Princeton University

42

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

