
Gerhard Brandt
DESY

I/O Efficiency in
HEP Data Analysis

G. Brandt - Efficient I/O ESC10 2

Agenda

● Lecture

● Individual Excercises: Local Single File I/O on nodes
● Preparation + Basic Event Loop
● File Caching
● File Optimisation

● Influence of File Systems
● I/O Profiling with valgrind
● Persistent Model Complexity and Dictionaries

● Break

● Common Excercise:

 I/O on the school cluster GPFS and NFS using Torque

advanced

Look at
results
together

Feed
back

G. Brandt - Efficient I/O ESC10 3

Contents: What's in I/O Efficiency?

● When reading there are bottlenecks that limit the speed
● We'll look at some of them and remove/improve them
or at least try to understand/measure them

● Disk Mechanics
● Network Latency
● File Structure
● Zipping
● Data Interpretation / Object Building Algorithms

→ Complexity of Persistent Data Model

● Most applications in HEP are write once, read often
 Therefore we focus in the Input part here

I/O Efficiency

● But we will also
 rewrite a few files
 and look at that

G. Brandt - Efficient I/O ESC10 4

Quick Look at Some Bottlenecks ...
● Some storage benchmarks on my notebook using the Red Hat Disk Utility

External HDD connected via USB2.0
● Bottleneck: USB2.0 Speed – 35 Mb/s (Network Bandwidth)

Continued read

Random Access

G. Brandt - Efficient I/O ESC10 5

External HDD via eSATA

● Bottleneck:
 Disk Mechanics
 40 – 90 Mb/s

G. Brandt - Efficient I/O ESC10 6

Internal SSD

● Intel Postville X25-M on SATA II
● Bottleneck: Intel Controller – 180Mb/s / 290 Mb/s (empty part)

G. Brandt - Efficient I/O ESC10 7

• An I/O operation requires that the disk
– Move the head to the right circular track (seek time)
– Wait until the proper sector arrives (rotational delay)
– Then transfer the data

Disk rotation

Disk Mechanics

● Only small amount of time spent
 on reading
● Should prevent seek time and
 rotational delay

● Blocks to read should be close-by
 on the disk

● Random access is a performance
 killer

G. Brandt - Efficient I/O ESC10 8

Removing bottlenecks

• File system tries to hide disk slowness
– Memory caching to avoid disk I/O
– Also done in high-end disk controller caches
– Pre-reading to keep channel utilization high
– Done in the background to minimize impact

• Also done in some high-end RAID disk controllers

• Offset ordering
– Reduces seek time

• Also done in high-end disk controllers

These are recurring features
● Does not only apply to disk mechanics
● We will demonstrate these features using ROOT

Slide from ESC09 on how to fix disk latency:

Requires no
change to written
file

Requires change
to written
file

G. Brandt - Efficient I/O ESC10 9

Remote Files and Latency

Client Server

Latency

Latency
Response Time

Round Trip Time (RTT)
 =

2*Latency + Response Time

Runt Trip Time (RTT)

Client Process Time (CPT)

Client Process Time (CPT)

Client Process Time (CPT)

Total Time = 3 * [Client Process Time (CPT)] + 3*[Round Trip Time (RTT)]

Total Time = 3* (CPT) + 3 * (Response time) + 3 * (2 * Latency)

● Latency is not only an issue with disks
● The number of transactions matters in particular when reading remote files
● Ever transaction adds an overhead to due network/software response latency

G. Brandt - Efficient I/O ESC10 10

How to Remove the Latency

Client Server

Latency

Latency

Response Time

Client Process Time (CPT)

Total Time = 3* (CPT) + 3 * (Response time) + (2 * Latency)

● Solution:
● Same principle as for disk
● Perform only one big request instead of many small requests

G. Brandt - Efficient I/O ESC10 11

The Linux Boot Sequence
● How does it look in practice
● First I/O in the day: we boot up the computer ...
● Here's the evolution of my boot sequence 2008 – 2010

● bootchartd collects statistics every time you boot Ubuntu Linux

Hardy Heron 8.04

Intrepid Ibex 8.10

Lucid Lynx
10.04

Maverick
Meerkat
10.10

2008 2009

2010
Jaunty Jackalope 9.04

Karmic Koala 9. 10

G. Brandt - Efficient I/O ESC10 12

bootchartd

seekingreading

time

G. Brandt - Efficient I/O ESC10 13

2008

The beginning … June 2008

● After several years notebook-only
 I decided to buy a desktop again
 and recycle some old hardware

● Cost: 200€ (Shuttle K45 + Pentium Duo)
● Boots in 22 seconds
● I/O: ~5s @ 38 Mb/s
● S01readahead – some caching going on

After ~1 year … April 2009

● Still using the same cheapo hardware
● Software bloat begins to take its toll
● Boots in 35 seconds
● I/O: ~25s @ 5 Mb/s (peak: 36 Mb/s)
● Caching has become inefficient

G. Brandt - Efficient I/O ESC10 14

2009

October 2009

● bought new HDD
● I/O: ~5s @ ~5 Mb/s (Peak: 98 Mb/s)
● But faster I/O cannot help much

● Partition fragmented
● CPU bound at the end

● Still boots in 31 seconds!

April 2010

● Bought new CPU (Intel Core2 Quad)
● I/O: ~120s @ ~5 Mb/s (Peak: 120 Mb/s)
● ureadahead – advanced caching active now
● But helps little due to other effects
 (problem with graphics drivers)

● Booting takes 2 minutes 30 seconds!

G. Brandt - Efficient I/O ESC10 15

2010

May 2010

● Problem with driver fixed
● ureadahead – cached read now biggest
 part of boot process
● I/O: ~27s @ ~5 Mb/s (Peak: 98 Mb/s)
● Throtteled by disk fragmentation
● Still boots in 36 seconds!

Recently … October 2010

● Bought a 40 Gb SSD (Intel Postville)
● I/O: ~5s @ 180 Mb/s all the way
● Boots in <8 seconds!

G. Brandt - Efficient I/O ESC10 16

Summary – Linux Boot Sequence

So what do we learn already about efficient local I/O just from booting our computer?

● Wall clock time can stay pretty much the same if other factors (CPU / bloated software)
 are the limiting factor → see other lectures in this school

● Cacheing/readahead could speed things up – but is no panacea

● Disk fragmentation / random access can be a major brake

● It's not true that Linux FS don't have to be defragmented
They have to, they just can't be...

● Beyond that Hardware is the biggest factor
● Can improve only if we have the money or political power
● And only if the paradigm changes: HD → SSD
● This lecture cannot help with improving these –

but it can help you find out when they are the problem

But that was just my private desktop … now let's look at daily work ...

G. Brandt - Efficient I/O ESC10 17

Relevant Metrics

Times
● Walltime Overall time to do one turn on task at hand
● Time to start Waiting Time in Queue
● CPU Time Time spent processing the read data CPU/Wall = CPU Efficiency
● System Time Time spend reading the data
● Real Time For simplicity we assume RT = CT+ST
 Corresponds to Walltime in the case of a single job
Size

● MB processed

Speed
● Rate: Mb/s from Disk
● Events/s Useful to compare totally different setups

Other
● Transactions The number of calls to read, or the number of network packets needed

to transfer the files

When doing the excercises please document these numbers in a table/spreadsheet

Excercise TC Size [Mb] RT [s] CT [s] Transactions

G. Brandt - Efficient I/O ESC10 18

Where does efficient I/O matter in practice?
● Basic assumption of this lecture

● You are running a job that reads data files from your experiment = you are doing „Analysis“
● You want to do this as fast as possible

1 2 3 4 5

Typical time scale
 (my subjective experience...)
1 Submission Upload+brokerage 10 min.
2 TimeToStart waiting in batch queue on site 1-10 hours
3 Running Job ← I/O going on! 10 min.
4 Postprocessing Assembling+registering dataset, notifying user 10 min.
5 Downloading dq2-get/DaTrI + verifying 1-10 hours

● This lecture focusses on optimising I/O during running of the job
● We are not talking about grid upload/download times

● If you are running on the Grid I/O is typically not the bottleneck
● Still, I/O adds to the total turnaround and should be optimised

Job Turnaround TimeHere!

 Waiting times involved in a typical GRID analysis
job

G. Brandt - Efficient I/O ESC10 19

Where does efficient I/O come in?

● Waiting times involved in a typical local batch job

12 3

Typical time scale
 (my subjective experience...)
1 Submission 10 ms
2 TimeToStart waiting in batch queue on site 1 s
3 Running Job ← I/O going on! 10 min.
4 Postprocessing –
5 Downloading –

● I/O during running of the job could dominate the job turnaround

● If you are running on the Grid you have other problems
● Still, I/O adds to the total turnaround and should be optimised

G. Brandt - Efficient I/O ESC10 20

What is going on during one job

12 3

● In the following we assume
● One job = one core
● Reading one file, or several files sequentially
● Most typical case during analysis

a b a b a b

a Opening File Done once per file
b Reading File Focus of this lecture
c Writing Output Done once per job in the end

c

G. Brandt - Efficient I/O ESC10 21

Basic I/O API

Reading / writing
 a single buffer

Reading / writing
a vector of buffers

Open file
● Independent of device
● Many options

● Determine (non-) blocking I/O

Instead of testing these directly we will „wrap“ them in ROOT

G. Brandt - Efficient I/O ESC10 22

Basic I/O API Calls in ROOT

TDCacheFile::ReadBuffers()
dc_readv2()

●xrootd
● TFile f1(“root://machine1.xx.yy/file1.root”)

●dCache
● TFile f2(“dcap://machine2.uu.vv/file2.root”)

●httpd
● TFile f3(http://something.nikhef.nl/file3.root);
● uses a standard (eg apache2) web server

readv()

open()
●Transparent for user via Tfile::Open()
● Derived versions provide interface
 to various protocols used to access files:
● Dcache, http://, xrootd, ...

Examples...

http://myserver@nikhef.nl/file3.root

G. Brandt - Efficient I/O ESC10 23

ROOT I/O Landscape

Local

Disk file

Remote

Disk file

Zipped buffer

Unzipped buffer
Unzipped buffer

Zipped buffer
Zipped buffer

Netw
ork

Objects in memory

Unzipped buffer

G. Brandt - Efficient I/O ESC10 24

TFile

● Not very complicated structure
● Just a list of Tkey's + object pairs
● Can look at it using TFile::Map()

http://root.cern.ch/root/html/TFile.html

G. Brandt - Efficient I/O ESC10 25

A basic look into TFiles

File Structure:

● $ _file0­>Map()

Logical Structure:

● TBrowser: GUI to inspect ROOT objects (among other things...)
● $ new TBrowser

● I prefer: List directory – all TFiles are TDirectory's
● $.ls

● Loading TFiles
$ root ­l test.root

● Shortcut for
$ root
$> _file0 = TFile::Open(„test.root“);

Common pitfall: files not ending with .root are interpreted as scripts

How to inspect files

G. Brandt - Efficient I/O ESC10 26

TBrowser example
● Our default test file in the TBrowser
● /storage/software/brandt/D3PD.011.root

Objects on the file
We are only interested
In the TTree „physics“

Branches
Of the Ttree

G. Brandt - Efficient I/O ESC10 27

TTrees

Logical Structure
● TBranches

Structure on disk
● A series of Tbaskets (buffers)

● Each basket has a certain size
 Previous default: 32kb / basket

● Filled with events until full, then
● Basket is zipped and written

This is where it gets „interesting“

Can inspect the tree structure using
TTree::Print()

Can see the baskets using
TFile::Map()

G. Brandt - Efficient I/O ESC10 28

Where do the TBranches come from?

float a;
int b;
double c[5];
int N;
float* x; //[N]
float* y; //[N]
Class1 c1;
Class2 c2; //!
Class3 *c3;
std::vector<T>;
std::vector<T*>;
TClonesArray *tc;

17 June 201017 June 20102828

branch
buffers

● ROOT does Automatic branch creation from object model
● Some options exist to influence this

TBaskets

G. Brandt - Efficient I/O ESC10 29

Data Clustering on TTrees: Split Level

● Physics: Events belong
 together
● Ordering By Event

● But sometimes we do not
 need to read all objects

● For I/O then better to write
 objects close together
● ROOT: Can do this
 using TTree „Splitting“

● Full Splitting:
● Split also into members

of objects
● Then also better

compression

Eta | Eta | Eta | Eta | Eta
Phi | Phi | Phi | Phi | Phi
Pt | Pt | Pt | Pt | Pt

Split Level 1

TBranch

TBranch

TBranch

Split Level 99
TBranch
TBranch
TBranch

Split Level 0

Recently this big difference has become less important due to memberwise streaming

TBranch

G. Brandt - Efficient I/O ESC10 30

I/O Performance Analysis

void taodr(Int_t cachesize=10000000) {

 TFile *f = Tfile::Open("D3PD.011.root");
 TTree *T = (TTree*)f->Get("physics");
 Long64_t nentries = T->GetEntries();
 //T->SetCacheSize(cachesize);
 //T->AddBranchToCache("*",kTRUE);

 TTreePerfStats ps("ioperf",T);

 for (Long64_t i=0;i<nentries;i++) {
 T->GetEntry(i);
 }
 T->PrintCacheStats();
 ps.SaveAs("aodperf.root");
}

● Open the file
● Read all events in an event loop

Cache –
Stay tuned

Simplified version of the macro we use to measure I/O performance

G. Brandt - Efficient I/O ESC10 31

TTreePerfStat

● I/O benchmarking: TTreePerfStat (introduced in ROOT 5.26)
● Will be the workhorse used in the excercises

Cache

Transactions

Real Time
CPU Time
Disk Time
Disk Mb/s

G. Brandt - Efficient I/O ESC10 32

Reading an old, unoptimised File

● Default was for all buffers to have the same size.
● Branch buffers are not full at the same time.

● A branch containing one integer/event and with a buffer size of
32Kbytes will be written to disk every 8000 events.

● while a branch containing a non-split collection may be written at
each event.

● Many small reads.
● Backward seeks.
● Gap in reads.

Manual Ordering of Baskets
Is possible during fast cloning

Excercises

G. Brandt - Efficient I/O ESC10 33

Basket Optimsation and Auto Flush

Enforce “clustering”:
● Once a reasonable amount of data (default is 30 Mbytes) has been

written to the file, all baskets are flushed out and the number of
entries written so far is recorded in fAutoFlush.

● From then on for every multiple of this number of entries all the
baskets are flushed.

● This insures that the range of entries between 2 flushes can be read
in one single file read.

● The first time that FlushBaskets is called, we also call
OptimizeBaskets.

● The TTreeCache is always set to read a number of entries that is a
multiple of fAutoFlush entries.

No backward seeks needed to read file.

Dramatic improvement in the raw disk IO speed.

G. Brandt - Efficient I/O ESC10 34

Basket Optimsation and Auto Flush

Greater performance!

These solutions are available only in v5.26 and above.

Automatically tweak basket size.

Flush baskets at regular intervals.

G. Brandt - Efficient I/O ESC10 35

TTreeCache

● It groups into one buffer all blocks from the used branches.

● The blocks are sorted in ascending order and consecutive blocks merged

such that the file is read sequentially.

● It reduces typically by a factor 10000 the number of transactions with the

disk and in particular the network with servers like httpd, xrootd or dCache.

● Can partially compensate for bad/complex persistent model

● Typical size of the TreeCache is 30 Mbytes, but higher values will

always give better results.

G. Brandt - Efficient I/O ESC10 36

TTreeCache - Configuration

f = new TFile ("xyz.root");
T = (TTree*)f->Get("Events");
T->SetCacheSize(30000000);
T->AddBranchToCache("*");

T->SetCacheSize(cachesize);

if (cachesize != 0) {

 T->SetCacheEntryRange(efirst,elast);

 T->AddBranchToCache(data_branch,kTRUE); // Request all the sub branches too

 T->AddBranchToCache(cut_branch,kFALSE);

 T->StopCacheLearningPhase();

}

Possible Configuration

● Automatic (Learning Phase)
 Learn used branches from given

 number of entries

● Give branches explicitly
all

Just some

● Done via the TTree

G. Brandt - Efficient I/O ESC10 37

G. Brandt - Efficient I/O ESC10 38

Recap: What is going on during one file

12 3

a b a b a b

a) Opening TFile

● Read Header
● Read StreamerInfo

● „Instructions“ how to deserialize objects

c

b) Reading TFile
● Read buffers (TBaskets)
● Unzip buffers
● Deserialize objects

G. Brandt - Efficient I/O ESC10 39

What happens when reading a TFile/TTree?
● Load file from SSD – CPU bound (98% CPU Efficiency)
● Callee Map in valgrind when looping on Ttree::GetEntry() for 1000 Events

unzipping

TFile::Open()
● Read StreamerInfos
● Build dictionaries

● ~20% Opening file is non-negligible overhead
● use large files instead of many small ones – merge those!

●~50% Unzipping – usually 1 – 20%
● (don't try to use unzipped files next time …)

● Rest is taken by building EDM
● Nota bene: We are not actually doing anything with the data yet,
 just loading + building objects in memory!

Building Objects
TTree::GetEntry()

G. Brandt - Efficient I/O ESC10 40

And now for something more complex ...

G. Brandt - Efficient I/O ESC10 41

Reading Many Files with Many Jobs

1 2 3 4 5

Total Turnaround Time

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

● Assuming all jobs run on same site, parallel I/O will be going on

● Also the case for local batch systems or use of multiple cores
(eg. PROOF, AthenaMP)

● We will be able to test this using the setup provided by the school

G. Brandt - Efficient I/O ESC10 42

Infrastructure at this school

esc10-01 ...

GPFS
/storage/gpfs_esc10/

/storage/nfs_esc10/studxx
/storage/software

…..

10 Gbit/s

In the excercises
we will map the
I/O capabilities
of the cluster
set up for us:

Read Files from

● Local Disk on Nodes
● NFS Server
● GPFS Server

NFS Server

esc10-20

esc10-19esc10-19esc10-19

esc10-23

esc10-20

esc10-27
...

G. Brandt - Efficient I/O ESC10 43

Parallel I/O Test Setup

● Using a few simple scripts to profile a cluster

● Pick a set of files stored on a particular file system

● Send many reading jobs to the farm to read the files

● The reading jobs write out several statistics with time stamps.
 Using this it is possible to correlate the behaviour of different jobs

● The integral will show the behaviour of the total cluster

G. Brandt - Efficient I/O ESC10 44

Example output for batch tests

Jobs running (red)
Or waiting/not running (white)

Jobs running at same time Average CPU
Fraction

Total I/O rate

Time

Job

● Same layout for every plot
● 2D plots show behaviour
 of indiviual jobs

● 1D plots show integral

G. Brandt - Efficient I/O ESC10 45

Summary

● I/O can be achieved by identifying and eliminating on bottleneck after the other
● The order in which you are most likely to encounter I/O bottlenecks:

● Latency

Fix:
● Read big chunks only – use caching
● Do squential file access – use ordered or optimised files

● Bandwidth

Fix:
● Have to improve hardware

● CPU

Fix:
● Keep a simple file format / persistent model

G. Brandt - Efficient I/O ESC10 46

B A C K U P

G. Brandt - Efficient I/O ESC10 47

The Readahead Cache

● The readahead cache will read all non
consecutive blocks that are in the range of the
cache.

● It minimizes the number of disk access. This
operation could in principle be done by the OS,
but the fact is that the OS parameters are not
tuned for many small reads, in particular when
many jobs read concurrently from the same disk.

● When using large values for the TreeCache or
when the baskets are well sorted by entry, the
readahead cache is not necessary.

● Typical (default value) is 256 Kbytes, although 2
Mbytes seems to give better results on Atlas
files, but not with CMS or Alice.

G. Brandt - Efficient I/O ESC10 48

Memberwise Streaming

● Used for split collection inside a TTree.

● Now the default for streaming collections even
when not split.

● Better compression,
faster read time.

Results for CMS files,
 some fully split
 some unsplit

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

