I/O Efficiency in
HEP Data Analysis

Gerhard Brandt
DESY

)

Second L.N.F.N. International School on
INFN, y : "
~ "Architectures, tools and methodologies for developing
efficient large scale scientific computing applications"

Centro Universitario Residenziale Bertinoro o
Bertinoro (FC)
22 - 27 November 2010 :

e Lecture

e Individual Excercises: Local Single File I1/O on nodes
* Preparation + Basic Event Loop

Look at |3))

results |\ * File Caching

together ™ = * File Optimisation
advanced

* Influence of File Systems
e /O Profiling with valgrind
 Persistent Model Complexity and Dictionaries

* Break

e Common Excercise:

I/O on the school cluster GPFS and NFS using Torque

G. Brandt - Efficient I/0 ESC10 2

* Most applications in HEP are write once, read often
Therefore we focus in the Input part here

N /0 Efficiency

/-V'Vhen reading there are bottlenecks that limit the speed

* We'll look at some of them and remove/improve them
or at least try to understand/measure them

* But we will also
rewrite a few files
and look at that

* Disk Mechanics
* Network Latency
» File Structure
« Zipping

« Data Interpretation / Object Building Algorithms
— Complexity of Persistent Data Model

G. Brandt - Efficient I/0 ESC10 3

» Some storage benchmarks on my notebook using the Red Hat Disk Ultility

External HDD connected via USB2.0

 Bottleneck: USB2.0 Speed — 35 Mb/s (Network Bandwidth)

40 MEB/'=s

Continued read

40 ms

VTV B e o o e P e e S i SR L i e B

-Random Access

20 MBis
| i
' : ! |
20 ME/s = _ 1
.! - _:
10 MEJs
0% 10% 20% 20% 40%

Minimum Read Rate: 21.3 MB/s
Maximum Read Rate: 36.0 MB/s
fyerage Read Rate: 35.4 MB/s

Last Benchmark: 1 minute ago

| =) Start Read-Only Benchmark

Measure read rate and access time

Edﬂ El:i!l‘. '.I'l:i'.l‘. El:i'.l‘. Sti'.i
Minimum Write Rate: -
Maximum Write Rate: -

Average Write Rate:
Average Access Time!

4 Start ReadfWrite Benchmark

Measure read rate, write rate and access time

20 ms

120 ms

10 ms

0 ms
100%

30 MB/s - - - - - - - - - 45 ms

40 s

135 mis

» Bottleneck:
Disk Mechanics
40 — 90 Mb/s

130 ms

123 ms

120 ms

15 ms

10 ms

Flatter 'S ms

Actuator Arm

Actuator Axis

0 ME/s | 1 | | 1 | 1 | | 0 ms
0% 10% 20% 30% 40% 50% 50% T0% 20% 0% 100%
Minimum Read Rate: 43.8 MB/s Minimum Write Rate: -
Bawe) Cannectil Maximum Read Rate: 88.0 MB/s Maximum Write Rate: -
Actiator JumperBlock fverage Read Rate: 69.9 MB/s Ayerage Write Rate:
IDE Connector Last Benchmark: 27 minutes ago Average Access Tirn
*’ Start Read-Only Benchmark : ~& Start Read/Write Benchmark

Measure read rate and access time [Measura read rate, write rate and access time

G. Brandt - Efficient I1/0O ESC10 5

* Intel Postville X25-M on SATA I
« Bottleneck: Intel Controller — 180Mb/s / 290 Mb/s (empty part)

300 ME/s : : : : : : : : : 1 ms
270 MBfs | | | | | | | | |] 0.9 ms
240 MB/s | ! ! ! ! ! ! - ! - |3.2 ms
| | | | | | | | | 0.7 ms
150 Mels | | | | | | | | | 1 | 0.5 ms
120 MEB/s | : . : {3.4 ms
90 MEfs | | | | | | | | | | 0.3 s

0.2 m=
0.1 ms
10% 20% 30% 40% 50% 60% 70% 20% 30% 1ok

Minimum Read Rate: 142.5 MB/s Minimum Write Rate: -

Maximum Read Rate: 278.6 MB/s Maximum Write Rate: -

fyerage Read Rate: 191.9 MBJs Average Write Rate:

Last Benchmark: 1 minute ago Average Access Tirn

| & start Read-Only Benchmark ~# Start Read/Write Benchmark

Measure read rate and access time Measure read rate, write rate and access time

G. Brandt - Efficient 1/0 ESC10 (§)

An /O operation requires that the disk
- Move the head to the right circular track (seek time)
- Wait until the proper sector arrives (rotational delay)

- Then transfer the data

Spindle ooy

Actuatar Arm

Actuator Axis

Power Connector

Jumper Block
Actuatar

IDE Connector

Seagate Barracuda 180

]

-t 0 1 2 3 4 2 6 7 8 9

G. Brandt - Efficient I/0

Seek time 1.4ms | :> Rat Delay 4.17mj

Track and Sectgr Arrangement on a Platter

Disk rotation

Track

* Only small amount of time spent
on reading

» Should prevent seek time and
rotational delay

 Blocks to read should be close-by
on the disk

« Random access is a performance
Killer

ESC10 7

10

Slide from ESC09 on how to fix disk latency:

File system tries to hide disk slowness

- Memory caching to avoid disk 1/0
Also done in high-end disk controller caches

Pre-reading to keep channel utilization high
Done in the background to minimize impact
* Also done in some high-end RAID disk controllers

Offset ordering
- Reduces seek time
* Also done in high-end disk controllers

These are recurring features
* Does not only apply to disk mechanics
* We will demonstrate these features using ROOT

G. Brandt - Efficient I/0 ESC10

Requires no
change to written
file

Requires change
to written
file

 Latency is not only an issue with disks
* The number of transactions matters in particular when reading remote files
 Ever transaction adds an overhead to due network/software response latency

Client Server

I Latency

Response Time

I Latency
Client Process Time (CPT {

I Round Trip Time (RTT))

2*Latency + Response Time

Client Process Time (CPT T

I tRunt Trip Time (RTT) |

Client Process Time (CPT I

Total Time = 3 * [Client Process Time (CPT)] + 3*[Round Trip Time (RTT)]
Total Time = 3* (CPT) + 3 * (Response time) +3 * (2 * Latency)

G. Brandt - Efficient I1/0O ESC10 9

» Solution:

e Same principle as for disk
» Perform only one big request instead of many small requests

Client Server

\ I Latency

Response Time

- I Latency

Client Process Time (CPT)

Total Time = 3* (CPT) + 3 * (Response time) + (2 * Latency)

G. Brandt - Efficient I1/0O ESC10 10

 How does it look in practice
* First I/0 in the day: we boot up the computer ...
» Here's the evolution of my boot sequence 2008 — 2010

 bootchartd collects statistics every time you boot Ubuntu Linux 2 01 0 m\é‘:l:i:tk

10.10

Jaunty Jackalope 9.04
Hardy Heron 8.042008

2009 1000

.1 m.mh..\«mfulnu.w

Intrepid Ibex 8.10 sl

Karmic Koala 9. 10

uuuuuuu

G. Brandt - Efficient I1/0O ESC10 11

Boot chart for maus (Sun Jun 15 10:21:42 CEST 2008)
uname: Linux 2.6.24-18-generic #1 SMP Wed May 28 20:27:26 UTC 2008 ie8&

release; Ubuntu 8.04

CPU: InteliR) Pentiumi(R) Dual CPL) E2180 (@ 2.00GHz
kernel options: root=UUID=380fa5d1-dbc3-4012-bdd5-1cf7fa0Bd2aT ro splash vga=794 rootflags=data=writeback

tirme: 0:22 M .
time

LU CPU (user+sys) | IJO (wait)

“+ Disk throughput || Disk utilization reading Seeking
W Running (%%cpu) Unint.sleep (1/O) Sleeping B Zombie
5= 10s 15= 20s
init
busvbox
usplash
usplash
Exe
udewd
modprobe
rc
S0lreadahead

readahead-list
S0Tlinux-restri
Irm-manager
Sl0udewv

el e s] —

G. Brandt - Efficient I1/0O ESC10

12

Boot chart for maus (Sun Jun 15 10:21:42 CEST 2008)

uname: Linux 2.6.24-18-generic #1 SMP Wed May 28 20:27:26 UTC 2008 i686
release: Ubuntu 8.04
CPU: InteliR) Pentium(R) Dual CPU E2180 @ 2.00GH=

kernel options: root=UUID=380f65d1-dbc3-4012-bdd5-1cf7fa08d2a7 ro splash wga=794 rootflags=data=writel Th b i i J 2008
time: 0:22 e e Innln LRI une

I CPU fuser+sys) L] I/O (wait)

AT

- Disk throughput [Disk utilization

 After several years notebook-only
,) | decided to buy a desktop again
[b s 4 fadl A and recycle some old hardware
S funning acpu) - nintslesp (/o) Fieeeine i » Cost: 200€ (Shuttle K45 + Pentium Duo)

init

» Boots in 22 seconds
- *1/0: ~5s @ 38 Mb/s
masncohs » SO1readahead — some caching going on

readahead-list
SOT7linux-restri
Irm-manager
SlOudew
udewvadm
sh Boot chart for maus (Wed Apr 29 19:01:03 CEST 2009)

sleep ~ uname : Linux 2.6.27-9-generic #1 SMP Thu Mov 20 21:57:00 UTC 2008 i686
bootclean

cpu Inte |u=.: Pentlum(RJ Dual CPU E2180 @ 2.00GHz
waras kernel optio ot=UUID=380f65d1-dbc3-4012-bddS-1cf7fa0sd2a7 r
time: 0:35
udegl - :
CPU (user+sys] [/O (wait)
odprobe ¥
sh

logsawve
qethy

After ~1 year ... April 2009 T e

» Still using the same cheapo hardware

» Software bloat begins to take its toll - -
» Boots in 35 seconds

+ 1/0: ~25s @ 5 Mbl/s (peak: 36 Mb/s) o
« Caching has become inefficient ESU U 15

Boot chart for maus (Sat Oct 31 17:01:56 CET 2009)
uname: Linux 2.6.28-16-generic #55-Ubuntu SMP Tue Oct 20 19:48:24 UTC 2009 i686

release: Ubuntu 9.04

CPU: Intel(R) Pentium(R) Dual CPU E2180 @ 2.00GHzmodel name]: Intel(R) Pentium(R) Dual CPU E2180 @ 2.00GHz (2)
kernel options: root=UUID=380f65d1-dbc3-4012-bdd5-1cf7fa08d2a7 ro
time: 00:31.68

B CPU (user+sys) /O (wait)
'. ' | | ||l‘| October 2009
L. W I P Ll.}j.lh_n_l_l_uh_ul_l_.n_l_ '
== Disk throughput © Disk utilization 94MB/s
e bought new HDD

|
el BLLUVIE L_,\.IIL._' I_ nlrr"'w.\ﬁ _.u'll-»-l_||"'[lﬂ'«~--‘:w\"a‘. HSSTEN ol

L. i~ P ,_,‘.Mnﬁ_}ﬂ.,w-p_..”.i,v\,-uihﬁl] e |/O: ~5s @ ~5 Mb/s (Peak: 98 Mb /S)
o Running (%cpu) - Unint.sleep (1/0) lo?leeplng 15250mb|e 2o b .
it » But faster I/O cannot help much

collector

 Partition fragmented
£l CPU bound at the end
| o Still boots in 31 seconds!

April 2010

* Bought new CPU (Intel Core2 Quad)

* 1/O: ~120s @ ~5 Mb/s (Peak: 120 Mb/s)

» ureadahead — advanced caching active now -
» But helps little due to other effects

= (problem with graphics drivers)

» Booting takes 2 minutes 30 seconds!

Boot chart for maus (Sat May 29 07:57:59 CEST 2010)
uname: Linux 2.6.32-22-generic #33-Ubuntu SMP Wed Apr 28 13:27:30 UTC 2010 i686
release: Ubuntu 10.04 LTS

CPU: Intel(R) Core(TM)2 Quad CPU Q9505 @ 2.83GHzmodel name): Intel(R) Core(TM)2 Quad CPU Q9505 @ 2.83GHzmodel name: Intel(R) Core(TM)2 Quad CPU

kernel options: root=UUID=380f65d1-dbc3-4012-bdd5-1cf7fa08d2a7 ro
time: 00:36.81

W CPU (user+sys) /O (wait)

hll.J VY Y T PR S PR Y S P PO PR P PO Y TE IS P Y
== Disk throughput Disk utilization 98MBY/s
W
|"|"“"'-'-"ﬂ- , | Iy
L by I " -ﬂﬂl'“ Ir'-_..lu,,lﬁP ‘I“-4,,-4“_W_JML‘M‘I‘ ANDARs ~-m‘"‘.n‘h-"h,J-}»"JL_-'J1|Ifll'w',\.~.dl‘-_ii"-rji! I""-J‘H‘-.«"I'.-d‘ }"J\‘.’-_ﬁ__.___) T R O B
W Running (%cpu) Unint.sleep (1/0) Sleeping Zombie
Os 5s 10s 155 20s 255 30s 355
init
collector
udevd
modprobe
blkid
init
modprobe
dmraid
hostname
plymouthd
hwclock
ureadahead
mountall
maunt
upstart-udev-br
udevd
modprobe
sh
modprobe
modprobe
modprobe

console-setup-t
udisks-part-id

Recently ... October 2010
* Bought a 40 Gb SSD (Intel Postville)

* 1/0: ~56s @ 180 Mb/s all the way
* Boots in <8 seconds!

G. Brandt - Efficient I/0

1Y RO g o 1) 0 P “.WNMIM.MM)

May 2010

* Problem with driver fixed

» ureadahead — cached read now biggest
part of boot process

* 1/0O: ~27s @ ~5 Mb/s (Peak: 98 Mb/s)

 Throtteled by disk fragmentation

« Still boots in 36 seconds!

Boot chart for maus (Sat Oct 30 19:38:56 CEST 2010)

uname: Linux 2.6.32-25-generic-pae #45-Ubuntu SMP Sat Oct 16 21:01:33 UTC 2010 i686

release: Ubuntu 10.04.1 LTS

CPU: Intel(R) Core(TM)2 Quad CPU Q9505 @ 2.83GHzmodel name]: Intel(R) Core(TM)2 Quad CPU
kernel options: BOOT_IMAGE =/bootfvmlinuz-2.6.32-25-generic-pae roct=UUID=91805cd8-e3e0-47da-a
time: 00:07.86

W CPU (user+sys) /O (wait)

el .

== Disk throughput © Disk utilization

f . ¥ b . l:"ll'r: M B/
fi AR
FAUY IS

B Running (%cpu) Unint.sleep (1/0) = Sleeping Zombie
0s 55 10s
init
collector
udewd
modprobe

in

modprobe
ureadahead
plyrmouthd

upstart-udev-br
udewvd

modprobe
console-setup-t
ndisks-nart-ir

ESC10 15

So what do we learn already about efficient local I/O just from booting our computer?

» Wall clock time can stay pretty much the same if other factors (CPU / bloated software)
are the limiting factor — see other lectures in this school

» Cacheing/readahead could speed things up — but is no panacea
 Disk fragmentation / random access can be a major brake

* It's not true that Linux FS don't have to be defragmented
They have to, they just can't be...

* Beyond that Hardware is the biggest factor
« Can improve only if we have the money or political power
« And only if the paradigm changes: HD — SSD
» This lecture cannot help with improving these —
but it can help you find out when they are the problem

But that was just my private desktop ... now let's look at daily work ...]

G. Brandt - Efficient I/0 ESC10 16

Times

« Walltime Overall time to do one turn on task at hand

» Time to start Waiting Time in Queue

« CPU Time Time spent processing the read data CPU/Wall = CPU Efficiency
» System Time Time spend reading the data

e Real Time For simplicity we assume RT = CT+ST

Corresponds to Walltime in the case of a single job
Size
 MB processed

Speed

e Rate: Mb/s from Disk

» Events/s Useful to compare totally different setups

Other

e Transactions The number of calls to read, or the number of network packets needed

to transfer the files

When doing the excercises please document these numbers in a table/spreadsheet

Excercise | TC Size [Mb] RT [s] | CT[s] | Transactions

G. Brandt - Efficient I1/0O ESC10 17

« Basic assumption of this lecture
* You are running a job that reads data files from your experiment = you are doing ,Analysis”

e You want to do this as fast as possible

Waiting times involved in a typical GRID analysis

Here! Job Turnaround Time
Typical time scale
(my subjective experience...)

1 Submission Upload+brokerage 10 min.
2 TimeToStart waiting in batch queue on site 1-10 hours
3 Running Job «— /0 going on! 10 min.
4 Postprocessing Assembling+registering dataset, notifying user 10 min.

1-10 hours

5 Downloading

dqg2-get/DaTrl + verifying

 This lecture focusses on optimising |/O during running of the job
« \We are not talking about grid upload/download times

« If you are running on the Grid 1/O is typically not the bottleneck
o Still, I/0 adds to the total turnaround and should be optimised

G. Brandt - Efficient I/0

ESC10

18

» Waiting times involved in a typical local batch job

12 3
>

Typical time scale
(my subjective experience...)

1 Submission 10 ms
2 TimeToStart waiting in batch queue on site 1s
3 Running Job — /0 going on! 10 min.

4 Postprocessing
5 Downloading —

G. Brandt - Efficient I/0

e |/O during running of the job could dominate the job turnaround

« If you are running on the Grid you have other problems
o Still, I/0 adds to the total turnaround and should be optimised

ESC10 19

.
B . - o - W,
a Opening File Done once per file
b Reading File Focus of this lecture
¢ Writing Output Done once per job in the end

* In the following we assume
* One job = one core
* Reading one file, or several files sequentially
* Most typical case during analysis

G. Brandt - Efficient I1/0O ESC10 20

#include <sys/types.h> Open file
#include <sys/stat.h> * Independent of device

#include <fentl.h> « Many options
* O_RDONLY, O_WRONLY, or O_RDWR

— How the file will be accessed

int open(const char *pathname, int flags,

[mode t mode]) ;
- « O_CREAT, O_EXCL, and O_TRUNC

— File creation disposition

* Determine (non-) blocking I/0

+ #include <unistd.h>
— gegize t read(int fd, wvoid *buf, size t count):; . ven
- - Reading / writing

— ssize t write(int fd, weoid *buf, size t count); a Sing|e buffer

* #include <sys/uio.h>

— ssgize t readv(int fd, const struct iovec *iov,

Reading / writing
a vector of buffers

int iovcont);

— ssize t writev(int fd, const struct iovec *iov,

int iovecnt) ;

Instead of testing these directly we will ,wrap® them in ROOT

G. Brandt - Efficient I1/0O ESC10 21

&

Examples...

Open() TDCacheRle

TMetAle - THMetFAle
*Transparent for user via Tfile::Open() TWebFle

» Derived versions provide interface TXMLFile
to various protocols used to access files:
* Dcache, http://, xrootd, ...

TRle :

TDCacheFile::ReadBuffers()
readV() dc_readv2()

exrootd =
241 Bool_t TDCacheFile::ReadBuffersichar *buf, LongS4_t *pos\ Int_t *len, Int_t nbuf)

» TFile f1(“root://machine1.xx.yy/file1.root”) [P ——————.

244 /f where pos[i] is the seek position of block i of lengtMylen[i].
245 7/ Note that for nbuf=1, this call is equivalent to TFile\ReafBuffer.
246 // This function is overloaded by TNetFile, TwebFile, etc.

4 /{ Returns kTRUE in case of failure.
«dCache
- 29| #ifdef _IOVECZ
250
H 111 - . 7 .
- TFile f2(“dcap://machine2.uu.vv/file2.root
e cap. acnineZ.uu.vv/tieZ.roo o
253 vector = (iovec2 *)malloc(sizeof(iovec2)*nbuf);
254
255 Int_t total_len = O;
h 256 for (Int_t 1 = 0; 1 < nbuf; i++) {
L tt[! 57 vector[i] .buf = &buf[total_lenl:
5 vector[i] .offset = pos[i] + farchiveOffset;
5!

. TFile f3(); } il o
« uses a standard (eg apache?2) web server R e e ot

if (re=0) {
fBytesRead += total_len:
SetFileBytesRead(GetFileBytesRead(] + total_len);
return kFALSE;
T
271

G. Brandt - Efficient I/0O ESC10 2r2| #endf —

http://myserver@nikhef.nl/file3.root

Objects in memory

.
halsrahat aVal

Unzipped hysé

771.“1"\r\11]'\11#1\10
771.“1"\r\11]'\11#1\10

Zipped buffer

Local
Disk file

Remote
Disk file

G. Brandt - Efficient I1/0O ESC10 23

* Not very complicated structure http://root.cern.ch/root/ntml/TFile.html

 Just a list of Tkey's + object pairs
» Can look at it using TFile::Map()

ROOT File description

| v | v
2 2 2
. g — 8 — 8 | 8 e
2§ |28 Object 3 ted |23 - I—
“2 |52 Data 52 ect |82 52
g g g g
- - : -
L e [, 1
fBEGIN e fEND
File Header Logical Record Header (TKEY)
"root": Root File Identifier fNbytes: Length of compressed object
fVersion: File version identifier g‘;’f_“’“: l'_‘“" ::"’;"“ identifier d object
fBEGIN: Pointer to first data record o :I en: De::_n o UILcomprri::sset o tje
fEND: Pointer to first free word at EOF fK:yl':: . N:mber‘:f\zﬂs:for tf,'; ::;, ore
fSeekFree: Pointer to FREE data record fCycle : Cycle number
fNbytesFree: Number of bytes in FREE fSeekKey: Pointer to object on file
fNfree: Number of free data records fSeekPdir: Pointer to directory on file
fNbytesName: Number of bytes in nameltitle fClassName: class name of the object
fUnits: Number of bytes for pointers fName: name of the object
fCompress: Compression level fTitle: title of the object

G. Brandt - Efficient 1/0 ESC10 24

» Loading TFiles
S root -1 test.root

» Shortcut for
S root

$> file0 = TFile::Open(,test.root”);

Common pitfall: files not ending with .root are interpreted as scripts

How to inspect files

File Structure:
e $§ file0O->Map()
Logical Structure:

» TBrowser: GUI to inspect ROOT objects (among other things...)
e S new TBrowser

* | prefer: List directory — all TFiles are TDirectory's
e $.1s

G. Brandt - Efficient I1/0O ESC10 25

* Qur default test file in the TBrowser

* /storage/software/brandt/D3PD.011.root

Branches
Of the Ttree

G. Brandt - Efficient I/0

File View Options

Objects on the file
We are only interested
In the TTree ,physics”

Help

|a D3PD.011.root

R (=l i

{hl[}l{ﬂ y{l Optinnl j

| &l Folders

| Contents of "/ROOT Files/D3PD.01 1/r|:u:|t"

[Jroat o | | marne [Titte | |
EPHDDF Sessions % |CollectionTree;1 CollectionTree
fstoragessoftwarefdrandt (1 Lurvii; 1 Lurni
""" (dhatch D Schema; 1
""" (files ! ¥ | physics physics
-4 D3FDs | # |physics;& physics
""" Cltutorial | physics;7 physics
""" I:lhatc:h_tutcurial [:Iphysicshdetaﬂ physics Meta
F-AROAT Files
Sl D3P0 .01 1 root
----- Dphysicshﬂetaﬂ }
=Y physics7
\ ----- I:lel_ietn:nne_dr
----- [:lel_ietcnne_signele‘
----- Del_ietn:n:une;utrel
----- [Jel_jetcone_indes -
_'*I_I
| 14 Objects. | 4
ESC10 26

Collection

Tree Data Structure

ol Trees

Tree

fBranches = TObjArray of TBranch

T3canField

TMaxEventLoop [
TMaxVirtual Size”

_Branch0

Branch 1

Branch 2

Branch 3}---

TEntries

g
fDimensior’
5

fSeIecftédRows

,f;! eawrsf = TObjArray of Tleaf

! ll
:
¢
E ll
f =
¢ -7

Leaf O |—p |Leaf 1}|—p [Leaf 2

fBasketSize
fEventOffsetLen
THaxBaskets
TEntries

fAddress of Leafl

g TlLen:

bher of fixed el
TLenType: number of hytes of data type
TO1fzel: relative 1o Leafld- fAddress

THhytesl0: number of bytes usel for 110
TlzMoinler: True if poinkter
fIsRange: True if leaf has a range
TIsnsined: True if unsigned
*FLeafCouni: poinis to Leaf counter

|
| fType codes I—

C ¢ a character stang
: an B bit siyned integer
: an 8 hit nnsigned integer
: & 1G hit siyned short inkerer

a 32 bit signed inleger
a 32 bit unsigned integer

THame: Branchnaing ;
fTitle: leaflist

THame - Leal name
1Tille - Leaf lype {see Type codes)

: & 32 hit floaling pond
: a 64 it Aoading poind
TAO00A 1 a class name TXC

x|

b

8

= ! & 16 bit nnsigned short interper
I:

i:

r

]

e oesd _._Lw”’:

fBaskeltvent

—

First event of each basket
Array of fMaxBaskets Integers

fBasketls = TObjArray of TRaskel

Basket 0| —) [Basket 1|— [Basket 2

'f_Hllytes: Bize of compressed Daskel
T0hjLen: Size of uncompressed Daskel

TKeyken: Humber of bytes for the key
1Cycle : Cycle numhber

13eekkKey: Pointer 1o Baskel on file
T5eeklilir: Moinder to directory on file
TClassName: TDaskel’

THame: Branch name

TTille: Tree name

TDatime: DaterMime when wrilten 1o siore

2 IZipButter

THev Buf: Number of evenis in Basket

'
TLasi: poinder bo last used byte in Daskel N

5
i
i

J;Buffer

s

G. Brandt - Efficient I/0

FEventOffset

Oifael of crenta in fHuiTer
Arvay of FEventOffaciLen ntegers
fif vaviablc lenglh atmclue)

Basket buffer
Array of fBasketSize chars

>

Baaket compreaacl bafier

{if compre2aion)

Baskets m
Stores

ESC10

This is where it gets ,interesting”

Logical Structure
e TBranches

Can inspect the tree structure using
TTree::Print()

Structure on disk
* A series of Tbhaskets (buffers)

 Each basket has a certain size

Previous default: 32kb / basket

 Filled with events until full, then
» Basket is zipped and written

Can see the baskets using
TFile::Map()

27

Where do the TBranches come from?

* ROOT does Automatlc branch creatlonfrom object model

float a;

int b;
double c[5];
int N;

I

G. Brandt - Efficient I1/0

|
|
\

gy

17 June 20710

28

* Physics: Events belong : , :
together How are data objects written to disk

» Ordering By Event - By event (most Raw Data Streams) Split Level 0

e But sometimes we do not
need to read all objects

- By object, splitting events (most ROOT files)

* For I/O then better to write « Allows to read subset of event data

objects close together
« ROOT: Can do this

QN Teranch

using TTree ,Splitting" Clusters | Clusters | Clusters|Clusters TBranch

Split Level 1
TrackColl TrackColl | TrackColl TBranch

* Full Splitting:
« Split also into members

. -?—LZ?Z?;@ better Eta | Eta | Eta | Eta | Eta TBranch
compression Phi | Phi | Phi | Phi | Phi TBranch Split Level 99
Pt| Pt|Pt|Pt]| Pt TBranch

6

Recently this big difference has become less important due to memberwise streaming

G. Brandt - Efficient I/0 ESC10 29

* Open the file
* Read all events in an event loop

void taodr (Int t cachesize=10000000) ({

TFile *f = Tfile::Open("D3PD.01l1l.root");
TTree *T = (TTree*)f->Get("physics") ;

Long64 t nentries = T->GetEntries(); Cache —
//T->SetCacheSize (cachesize) ; / Stay tuned
//T->AddBranchToCache ("*" ,kTRUE) ;

TTreePerfStats ps("ioperf",T);

for (Long64 t i=0;i<nentries;i++) {
T->GetEntry (i) ;

}

T->PrintCacheStats () ;

ps.SaveAs ("aodperf.root") ;

}

Simplified version of the macro we use to measure I/O performance
G. Brandt - Efficient I/O ESC10 30

* |/O benchmarking: TTreePerfStat (introduced in ROOT 5.26)
* Will be the workhorse used in the excercises

Cache

Transactions

Real Time
CPU Time
Disk Time
Disk Mb/s

atlasFlushed.root/CollectionTree

120
TreaCache = 39 MBytes

H leaves = 8T05

1000

ReadTotal = 1070.72 MBytes 100

ReadUnZip = 39352 MBytes

ReadCalls = 532 BDO 80

Read5ize = 2012637 KBEytea/read

Readahead = 256 KByles

=]
=2
=

60

file position (MBytes)

Readextra = 0.00 per cent
Real Time = 109859 seconds

CPU Time = 95800 seconds 400 40

Disk Time = 14.527 seconds

Disk IO = 73.705 MBylesls

200 20

ReadUZRT = 35830 MBytes/s

ReadUZCP = 41.049 MEytes/s

ReadRT = 9.746 MBylesis 0

ReadCP = 11.166 MBytes/s

||i||||i||||i||||i||||i||||i||||i||||i||||i||
0 500 1000 1500 2000 2500 3000 3500 4000

Tree entry number

Darwin guest216.Inf. Root5.25/05, SVN 31401 Wed Nov 25 14:20:27 2009

G. Brandt - Efficient I/0 ESC10

RealTime (s)

31

each event.

Many small reads.
Backward seeks.
Gap in reads.

Manual Ordering of Baskets
Is possible during fast cloning

Excercises

G. Brandt - Efficient I/0

Default was for all buffers to have the same size.

Branch buffers are not full at the same time.

A branch containing one integer/event and with a buffer size of
32Kbytes will be written to disk every 8000 events.

while a branch containing a non-split collection may be written at

=Y
-9
=]
o

=y
[
(=]
o

file position (MBytes)

o

()

RealTime (s)

1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 . 1 1
1500 2000 2500 3000 3500 4000
Tree entry number

Enforce “clustering”

Once a reasonable amount of data (default is 30 Mbytes) has been
written to the file, all baskets are flushed out and the number of
entries written so far is recorded in fAutoFlush.

From then on for every multiple of this number of entries all the
baskets are flushed.

This insures that the range of entries between 2 flushes can be read
in one single file read.

The first time that FlushBaskets is called, we also call
OptimizeBaskets.

The TTreeCache is always set to read a number of entries that is a
multiple of fAutoFlush entries.

No backward seeks needed to read file.

Dramatic improvement in the raw disk 10 speed.

G. Brandt - Efficient I1/0O ESC10 33

These solutions are available only in v5.26 and above.

Automatically tweak basket size.
Flush baskets at regular intervals.

[Greater performance! J

-
L=
(=]

1000 f—-- S — g o
A : 390

Rea\Time (s)

=]
L=
=

B0
380

=]
S
|

file position (MBytes)
file position (MBytes)

60

[
~
=]

400 [B el
AT T -

200 : R 20

350

340

D 500 1000 1500 2000 2500 3000 3500 4000 1200 1250 1300 1350 1400 1450 1500

Tree entry number Tree entry number

G. Brandt - Efficient I1/0O ESC10 34

* |t groups into one buffer all blocks from the used branches.

* The blocks are sorted in ascending order and consecutive blocks merged
such that the file is read sequentially.

* It reduces typically by a factor 10000 the number of transactions with the
disk and in particular the network with servers like htipd, xrootd or dCache.

* Can partially compensate for bad/complex persistent model

* Typical size of the TreeCache is 30 Mbytes, but higher values will

always give better results.

G. Brandt - Efficient I1/0O ESC10 35

* Done via the TTree

f = new TFile ("xyz.root"); Possible Configuration
T = (TTree*)f->Get ("Events") ;

+ Automatic (Learning Ph
T->SetCacheSize (30000000) ; utomatic (Learning Phase)

Learn used branches from given

T->AddBranchToCache ("*") ; number of entries
\Give branches explicitly
all
Just some

&

T->SetCacheSize (cachesize) ;
if (cachesize '= 0) {
T->SetCacheEntryRange (efirst,elast) ;
T->AddBranchToCache (data_branch,kTRUE) ; // Request all the sub branches too
T->AddBranchToCache (cut_branch, kFALSE) ;
T->StopCachelLearningPhase() ;

}

G. Brandt - Efficient I/0 ESC10

36

900

800

700

Unordered

Ordered

AOD - Direct root read

Real

HDD
TTCache Rogt
00
s Unordered CPU
Optimized Ordered
TTCache
100% Root
Optimized
100% 1%
Unordered Ordered TTCache Root Optimized Unordered Ordered TTCache Root Optimized

ECPU 305 254 255 199 19 19 20 59
“ HDD 633 70 138 74 309 180 116 60
& Real 818 255 344 240 323 195 122 92

G. Brandt - Efficient I1/0

ESC10 37
e

\J

a) Opening TFile

« Read Header
 Read Streamerinfo
 ,Instructions” how to deserialize objects

b) Reading TFile
» Read buffers (TBaskets)
* Unzip buffers
» Deserialize objects

G. Brandt - Efficient I1/0O ESC10 38

e Load file from SSD — CPU bound (98% CPU Efficiency)
 Callee Map in valgrind when looping on Ttree::GetEntry() for 1000 Events

Ox0000delDd

int TStreamer
InfoActions:...

TTree::GetEntry() TFile::Open()
unzipping Building Objects « Read Streamerinfos
* Build dictionaries

» ~20% Opening file is non-negligible overhead
e use large files instead of many small ones — merge those!
*~50% Unzipping — usually 1 — 20%
» (don't try to use unzipped files next time ...)
 Rest is taken by building EDM
* Nota bene: We are not actually doing anything with the data yet,
just loading + building objects in memory! 39

And now for something more complex ...

G. Brandt - Efficient I1/0O ESC10 40

Total Turnaround Time

» Assuming all jobs run on same site, parallel I/0O will be going on

* Also the case for local batch systems or use of multiple cores
(eg. PROOF, AthenaMP)

 We will be able to test this using the setup provided by the school

G. Brandt - Efficient I1/0O ESC10 41

In the excercises
we will map the
I/O capabilities
of the cluster

set up for us:

Read Files from
* Local Disk on Nodes

* NFS Server
» GPFS Server

esc10-01

G. Brandt - Efficient I/0

esc O_-__23

GPFS
/storage/gpfs_esc10/

|

e

|

® |

esc10-27

ESC10

10 Gbit/s

/storage/nfs_esc10/studxx
/storage/software

€eSC

eSC

10-20

10-19

NFS Server

42

» Using a few simple scripts to profile a cluster

* Pick a set of files stored on a particular file system

« Send many reading jobs to the farm to read the files

» The reading jobs write out several statistics with time stamps.
Using this it is possible to correlate the behaviour of different jobs

 The integral will show the behaviour of the total cluster

G. Brandt - Efficient I1/0O ESC10 43

Jobs running (red) Jobs running at same time Average CPU
Or waiting/not running (white) Fraction

[Files beeing Processed | [Number of Jobs Reading Files at the Same Time [Average CPU Fraction |
I

70 :_ T I— T T T T T T 3 07 1 T T T T T T
F ZMN_dCache.10)]
sof- = .

50 -

a0 —

30 —

A e: 24.15 min Awg. CPU Fraction: 0.37
=l L . . L . M L 1. L . . 1 L L L
15h10 15010 15h20

" | " " " L | " L
15h10 15h20

J O 3| Raw I/O Rate per File | . [Average Raw 10 Rates per Running Job |

10 =10
200 T T T T T T T T T T —— iy T T T T T T T T

1 /331.73 Mbis
L L L I ! | L L
15h10 15h20

Time
e Same layout for every plot
2D plots show behaviour
of indiviual jobs Total 1/O rate

* 1D plots show integral
G. Brandt - Efficient /0 ESC10 44

umman

* /0O can be achieved by identifying and eliminating on bottleneck after the other
» The order in which you are most likely to encounter 1/O bottlenecks:

 Latency
Fix:
* Read big chunks only — use caching
* Do squential file access — use ordered or optimised files

 Bandwidth

Fix:
 Have to improve hardware

- CPU

Fix:
« Keep a simple file format / persistent model

G. Brandt - Efficient I1/0O ESC10 45

BACKUP

G. Brandt - Efficient I1/0O ESC10 46

The will read all non
consecutive blocks that are in the range of the
cache.

It minimizes the number of disk access. This
operation could in principle be done by the OS,
but the fact is that the OS parameters are not
tuned for many small reads, in particular when

many jobs read concurrently from the same disk.

When using large values for the or
when the baskets are well sorted by entry, the
is not necessary.

Typical (default value) is 256 Kbytes, although 2
bytes seems to give better results on Atlas
files, but not with CMS or Alice.

G. Brandt - Efficient I1/0O ESC10

file position (MBytes)

700

690

680

670

660

650

640

630

L L L | 1 L L L
1937
Tree entry number

47

« Used for split collection inside a TTree.

* Now the default for streaming collections even

when not split.

e Better compression,
faster read time.

Results for CMS files,
+ some fully split
+ some unsplit

G. Brandt - Efficient I1/0O

-
(=]

-

File Size Gain In Percent

N

B cmsi.root

cms2.root
cms3.root
cmsd.root

cms3S.root

ESC10

10

1 | 1 1 1 1 I 1 1 1
15 20
Read Time Gain In Percent

25

30

35

48

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

