

H2020-MSCA-RISE-2016 G.A. 734303

Fermilab 2022 Summer Student School

Developing DAQ Systems for Particle Physics Experiments

E. Pedreschi F. Spinella

Where do we do electronics in FNAL?

Feynman
Computing
Center

High Rise, 14° floor

Readout electronics

- Front-end electronics is the electronics directly connected to the detector (sensitive element)
- Its purpose is to
 - acquire an electrical signal from the detector (usually a short, small current pulse)
 - tailor the response of the system to optimize
 - the minimum detectable signal
 - energy measurement (charge deposit)
 - eventrate
 - time of arrival
 - · in-sensitivty to sensor pulse shape
 - digitize the signal and store it for further treatment

How do we build electronics?

Old ways of implementing digital circuits:

SN 7400N 7645

- Discrete logic based on gates or small packages containing small digital building blocks (at most a 1-bit adder)
- De Morgan's theorem theoretically we only need 2-input NAND or NOR gates to build anything
- Tedious, expensive, slow, prone to wiring errors

Modern way: Field Programmable Gate Array (FPGA)

- Integrate millions of simple gates but given to the user the possibility to interconnects these gates in a programmable way.
- The interconnects can be readily reprogrammed allowing an FPGA to accommodate changes to a design or even support a new application during the lifetime of the part.

FPGA

- Millions of simple blocks named CLB (Configurable Logic Blocks)
- Millions of configurable inteconnect structures
- Something more ...

How do we program FPGA:

```
Example: VHDL
architecture behavioral of VMEReg is
 signal vme_en_i : std_logic;
 signal Q : std_logic_vector(15 downto 0);
                                                                           Looks like a
begin -- behavioral
                                                                             programming
 vme_addr_decode : process (vme_addr, vme_en) is
   variable my_addr_vec : std_logic_vector(vme_addr'high downto 0);
                                                                             language
   variable selected : boolean;
  begin -- process vme_addr_decode
   my_addr_vec := std_logic_vector( TO_UNSIGNED ( my_vme_base_address, vme_addr'high+1 ) );
    selected := my_addr_vec(vme_addr'high downto 1) = vme_addr(vme_addr'high downto 1);
   vme_en_i <= '0';</pre>
   if selected then
     vme_en_i <= vme_en;</pre>

    All statements

   end if:
  end process vme_addr_decode;
                                                                             executed in
  reg: process (vme_clk, reset) is
                                                                             parallel, except
  begin -- process reg
   if reset = '1' then
                                    -- asynchronous reset
                                                                             inside
       Q <= init_val;
       vme_en_out <= '0';</pre>
    elsif vme_clk'event and vme_clk = '1' then -- rising clock edge
                                                                             processes
     vme_en_out <= vme_en_i;</pre>
     if vme_en_i = '1' and vme_wr = '1' then
       Q <= vme_data;
     end if;
   end if:
  end process reg;
  data <= 0:
  vme_data_out <= 0;
end behavioral;
```

Introduction

- Electronics is strongly linked to the physical processes that we want to study
- Electronic problems are very complex because:
 - Very high data flow
 - Harsh environment:
 - Temperature
 - Radiative stresses
 - Mechanical stresses

AMS-02 -ISS

Harsh environment: Radiation, Vacuum, Temperature and Vibration

TOTEM – CMS @ LHC IP5

Harsh environment:

Radiation Dose ≈ 100 Mrad

NA62 – CERN SPS

Harsh environment:

- Electronics near the beam → sensitive to radiation
- Very high data flow → high trigger efficiency

The Mu2e Calorimeter

- Crystal calorimeter
 - Compact
 - Radiation hard
 - Operated in vacuum

INFN is in charge of the design and of the construction

E, t measurements – Why a digitizer?

calorimeter

Typical 1.7 μs Mu2e event

Very intense particle flux expected in the calorimeter

Example of Front-End output

We need high-sampling rate digitizers to resolve pile-up

Digitizer requirements

- Digitization requirements are determined by the calorimeter requirements
- Particle identification:
 - $> \sigma_{t} < 500 \text{ ps } @ 100 \text{ MeV}$
 - $> \sigma_{\rm F}/{\rm E} < 10\% @ 100 {\rm MeV}$

- We require the additional contribution due to the digitization procedure itself to be:
 - ≻σ, < 200 ps @ 100 MeV

Analog input: signal waveform

From Analog to Digital: ADC converters

- What is an ADC?
 - An electronic integrated circuit which transforms a signal from analog (continuous) to digital (discrete) form
 - Analog signals are directly measurable quantities
 - Digital signals have only two states
- Why ADC is needed?
 - ADC provides a link between the analog world of transducers and the digital word of signal processing
- Application of ADC
 - ADC are used virtually everywhere an analog signal has to be processed

From Analog to Digital: ADC converters

- 2 steps:
 - Sampling and Holding
 - Quantizing and Encoding
- 2 ways to improve the accuracy of A/D Conversion:
 - increasing the resolution
 which improves the accuracy
 in measuring the amplitude
 of the analog signal
 - increasing the sampling rate which increases the maximum frequency that can be measured

Calorimeter digitization scheme

- Sampling frequency and number of ADC readout bits impact time and energy resolution
- Thresholds impact the total data throughput and Energy resolution

Time resolution versus sampling frequency and ADC-bits

Time is reconstructed by fitting the leading edge

	150 MHz	200 MHz	250 MHz
8 bits	470 ps	440 ps	440 ps
10 bits	370 ps	250 ps	250 ps
12 bits	300 ps	170 ps	170 ps

Energy resolution versus sampling frequency and ADC-bits

 Energy is reconstructed from the total number of ADC counts

	150 MHz	200 MHz	250 MHz
8 bits	9.8 MeV	8.0 MeV	7.8 MeV
10 bits	6.5 MeV	5.5 MeV	5.5 MeV
12 bits	6.2 MeV	5.5 MeV	5.5 MeV

Mu2e environment

- Radiation (not too high but present) 0,5 Krad/y and high neutron flux (~ 6x10^11 / cm^2 * year) → select rad-hard components
- High magnetic field (1T) → problems for magnetic nuclei of DC-DC converters
- All the electronics is in vacuum
 degassing problems and need to use only conductive thermal dissipation.
- Maintenance complicated → cryostat will not be opened more often than once per year

Project must be realized in "high reliability mode", like an experiment in the space

Mu2e environments: principal problems for electronics

Radiation

Radiation on calorimeter electronics:

- ✓ Expected dose per year ~ 0.2 ÷ 0.5 krad
- \checkmark Expected total dose 0,5 x 12 x 5 = 12 ÷ **30 krad**
- ✓ Neutron flux 6x10^11 / cm^2 * year
- Saturation effects on ferromagnetic nuclei (high magnetic field)
- Heat transfer (vacuum)

Radiation Effects on Electronics

- Long Term Effects
 - Total Inizing Dose → cumulative long term ionizing damage due to protons & electrons
 - Displacement Damage → cumulative long term nonionizing damage due to protons, electrons & neutrons
- Transient or single particle effects (SEE) → caused by a single charged particle as it passes through a semiconductor (heavy ions & protons)
 - Effects on electronics:
 - Soft errors such as upsets (SEUs) or transients (SETs)
 - Hard (destructive) errors such as latchup (SEL), burnout (SEB), or gate rupture (SEGR)

Component choice

- The presence of radiation, B field and vacuum pose stringent requirements on the components.
- The main components are the FPGA, ADCs and DCDC converters
- As a first step towards the prototype we need
 - Choose components that meet the specifications.
 - Qualify independently all the main components
 - Test if they are compatible one to the other

FPGA

The choice is for Microsemi Polarfire FPGA

- Specs:
 - non-volatile 28 nm technology
 - Cost-optimized, lowest power, mid-range density FPGAs
 - 250 Mbps to 12.7 Gbps transceivers
 - ➤ 100K to 500K logic elements, up to 33Mbits of RAM
 - Best-in-class security and exceptional reliability
 - SEU immune FPGA configuration cells
- We used the largest and fastest one MPF500T (1152 pins)
- We don't need to qualify this part as a single element

ADC

Specs:

- >= 200 Msample
- >= 12 bit
- Ultra Low power
- Not enough serializers on the FPGA
 - -> Parallel readout
 - -> Possibly DDR (2 bits/pin) -> half pins

requested

- Not too expensive
- High (and given) MTBF

⇒ TI ADS4229

We need to qualify for radiation

ADS4229

27

SBAS550C -JUNE 2011-REVISED MAY 2015

ADS4229 Dual-Channel, 12-Bit, 250-MSPS Ultralow-Power ADC

1 Features

- Maximum Sample Rate: 250 MSPS
- Ultralow Power with Single 1.8-V Supply:
 - 545-mW Total Power at 250 MSPS
- High Dynamic Performance:
 - 80.8-dBc SFDR at 170 MHz
 - 69.4-dBFS SNR at 170 MHz
- Crosstalk: > 90 dB at 185 MHz
- Programmable Gain Up to 6 dB for SNR and SFDR Trade-off
- DC Offset Correction
- · Output Interface Options:
 - 1.8-V Parallel CMOS Interface
 - DDR LVDS With Programmable Swing:
 - Standard Swing: 350 mV
 - Low Swing: 200 mV
- Supports Low Input Clock Amplitude Down to 200 mV_{PP}
- Package: 9-mm × 9-mm, 64-Pin Quad Flat No-Lead (QFN) Package

2 Applications

- Wireless Communications Infrastructure
- Software Defined Radio
- · Power Amplifier Linearization

3 Description

The ADS4229 is a member of the ADS42xx ultralowpower family of dual-channel, 12-bit and 14-bit analog-to-digital converters (ADCs). Innovative design techniques are used to achieve high dynamic performance, while consuming extremely low power with a 1.8-V supply. This topology makes the ADS4229 well-suited for multi-carrier, wide-bandwidth communications applications.

The ADS4229 has gain options that can be used to improve spurious-free dynamic range (SFDR) performance at lower full-scale input ranges. This device also includes a dc offset correction loop that can be used to cancel the ADC offset. Both double data rate (DDR) low-voltage differential signaling (LVDS) and parallel complementary metal oxide semiconductor (CMOS) digital output interfaces are available in a compact QFN-64 PowerPAD™ package.

The device includes internal references while the traditional reference pins and associated decoupling capacitors have been eliminated. The ADS4229 is specified over the industrial temperature range (-40°C to +85°C).

Device Information(1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)			
ADS4229	VQFN (64)	9.00 mm × 9.00 mm			

For all available packages, see the orderable addendum at the end of the datasheet.

ADS4229 Block Diagram

DC-DC

- DCDC converters are quite delicate devices, prone to radiation damage and B field
- INFN has financed a test survey to study which DCDC
- are suitable to be used in HEP environments (LHC ...)
- From these studies the Texas
 Instruments LMZM36606
 seems the best suitable for MU2E environment

Neutron irradiation test – FNG facility

FNG (Frascati Neutron Generator) is a linear electrostatic accelerator in which up to 1 mA D+ ions are accelerated onto a Tritium target.

- Up to 10^11 **14 MeV** neutrons/s.
- almost isotropic source, flux scales with r^2.
- calibrated at 3% level using alpha particles.

Ionizing dose test – CALLIOPE facility

- Gamma rays at 1.17 and 1.33 MeV from Co60.
- 3.7x10^15 Bq of activity.
- Isotropic source, flux scales with r^2.

DCDC neutron irradiation test - Results

July 20, 2022 E. Pedreschi – F. Spinella 31

DCDC gamma irradiation test - Results

July 20, 2022 E. Pedreschi – F. Spinella 32

Magnetic Field exposure test (1)

- Uniform magnetic field up to 1.2 T.
- We tested different orientations of the DCDC with respect to the magnetic field.
- Same setup of the radiation tests.

DC-DC magnetic field exposure test-3 axis

No significative differencies between orientations

DC-DC magnetic field exposure test – x axis

Magnetic Field exposure test (2)

- Uniform Magnetic Field up to 1.4 T.
- We tested different orientations of the electronics with respect to the magnetic field.
- Same setup of the radiation tests.
- Same results of DC-DC converters B test

Heat Transfer in vacuum

- The fundamental modes of heat transfer are:
 - Conduction → transfer of energy between objects that are in physical contac
 - Convection → transfer of energy between an object and its environment, due to fluid motion
 - Radiation → transfer of energy by the emission of electromagnetic radiation

In vacuum the heat is dispersed basically by *conduction* because there is *no convection*!

Heat transfer - preliminar studies

E.Pedreschi – F. Spinella

Cooling

DAQ cooling

39

Finally the design

Digitizer ...

- 20 channels/ board
- 160 boards

Digitizer ...

Digitizer ...

Digitizer-DIRAC

Conclusions

- Elettronics is strongly linked to the physical processes that we want to study
- Elettronic problems are very complex because:
 - Very high data flow
 - Harsh environment:
 - Temperature
 - Radiative stresses
 - Mechanical stresses
- the cooperation among physicists, electronics and mechanical engineers is necessary for the success of the experiment

Thank you!