# Mu2e tracker - an introduction

P.Murat (Fermilab)

Jul 19 2022

# Mu2e is a tracking experiment



- search for µ<sup>-</sup> → e<sup>-</sup> conversion = accurate reconstruction of the electron momentum
   green background from muon decays in orbit (DIO)
- $\bullet$  currently the momentum window  $\sim$  1.5 MeV, the resolution needs to be better than that.
- that can be done only by reconstructing the electron track momentum
- and this is why Mu2e needs a tracker

### How to reconstruct the track momentum



- ullet place the detector into a magnetic field (Mu2e: superconducting solenoid, B  $\sim$ 1 T)
- measure coordinates on the trajectory, fit the coordinates with a helix
- determine the track momentum:  $R = p_T/qB$
- to reduce the energy losses and multiple scattering :
  - ▶ maintain vacuum in the tracker volume (down to 10<sup>-4</sup> torr)
  - minimize the amount of material in the tracking volume

# Silicon vs gas?

- charged particle tracking is based on the measurement of ionization losses
- a particle going through the tracking sensor kicks out electrons, electrons drift and generate a signal
- in this sense, all trackers are the drift detectors, drift in silicon or in gas
- experiments with stopped muons :
  - Mu2e ( $\mu^- A \rightarrow e^- A$ : 100 MeV/c, straw tracker
  - ▶ MEG-II ( $\mu^+ \rightarrow e \gamma$ ) : 50 MeV/c, single volume drift chamber (need vertexing)
  - ▶ Mu3E ( $\mu$ +  $\rightarrow$   $e^+e^-e^+$ ): very thin 0.1%  $X_L$  per layer silicon detector (need vertexing)
- silicon trackers provide better resolution (small strips/pixels),
  - significantly more channels, significantly more expensive, heat deposition by the electronics
- Mu2e experiment has chosen a gaseous detector



## Choice of the drift technology: open volume vs straws





- for large tracker, can configure the drift cells in two ways
- left : a single volume tracker
- photograph on the right: drift "straws"
  - small radius tubes wound from aluminized mylar and filled with gas,
  - with a signal wire in the center, each straw is an independent drift cell
  - potential advantage of an open volume chamber: less material
- but what if one of the wires breaks ? -> Mu2e choice: straw\_tracker

## When a particle crosses a drift cell



- ionization electrons drift towards wires, wires at high voltage, avalanche development, detect signal
- measure the pulse time, the time-over-threshold (TOT), and the pulse charge
- lacktriangle the measured time  $T_{meas} = T_0 + T_{drift} + T_{prop}$ 
  - T<sub>0</sub> time when the particle crossed the drift volume
  - $ightharpoonup T_{drift}$  the drift time
  - T<sub>prop</sub> the signal propagation time (cables, electronics)
- for momentum reconstruction, need T<sub>drift</sub>: R = v<sub>drift</sub> × T<sub>drift</sub>
- the resolution in  $R_{drift} \sim$  170 microns

## coordinate along the wire: time division



- a wire is read out from both ends
- the difference in the signal propagation times determines the hit coordinate along the wire
- $\bullet$  resolution along the wire  $\sigma_{Z}\sim3.5~\text{cm}$
- the hit resolutions in two directions are significantly different

### Mu2e tracker





- groups from Minnesota, Duke, York, Fermilab, LBNL, Univ of Houston
- the tracker built out of straws a panel two layers, 96 straws in total
- D=5mm, 1.25mm gap , 2 layers , filled with Ar:Co2 (80:20)
- straws are very thin and easy to damage the wall thickness is 15um wall
- the tracker will operate with the gas at 1 atm, vacuum outside
- the pressure differential makes the straw rigid
- control the wire tension
- a particle which crosses the panel could hit one, two, or more straws

### Panel leak test



- Mu2e tracker unique: the tracker in vacuum, gas (Ar:CO2) in the straws at around 1 atm
- gas chambers always leak there are always holes
- to maintain vacuum in the detector volume, need to keep the leak rate low
- sccm: 1cm³ / minute



### Mu2e tracker - II





- a panel covers 120 degrees 3 panels make a "face" it is essentially, a tracking plane
- ullet a face doesn't provide a uniform coverage in  $\phi$ , take the second face, rotate it by 30 degrees, put together. Two faces make a plane. This also adds mechanical rigidity

### Mu2e tracker construction -II



• the tracker is assembled out of planes. Two planes make a station, 18 stations in total.

# Panel production schedule



panel production finishing in a few months



### Mu2e tracker construction - IV

## **Tracker Overview**



K. Byrum and M. Yucel inspecting planes in storage fixture.

B. Postel Photo



- the tracker is assembled out of planes, Two planes make a station, 18 stations in total.
- 20736 straws -> 216 panels -> 36 planes -> 18 stations,
- $\bullet$  overall dimensions : total length  ${\sim}3$  m , 38 < R < 70 cm
- this summer you have a chance to see the planes being built, next summer too late!
- support / protection structure non-magnetic (bronze)

# Started learning how to use the tracker



- vertical slice test (VST) a way of learning how the tracker works
- ... and how to calibrate it
- first cosmic tracks seen

P.Murat (Fermilab)

## How we expect the data to look like in the tracker



# Calorimeter-seeded tracking: CE reconstruction



- use two different track finding algorithm, one is the calorimeter-seeded track search
- use calorimeter to seed the tracking
- if an electron has a calorimeter cluster, the track finding is significantly simplified
- lacktriangle can use only hits within  $\sim$  70 ns wide window

# Calorimeter-seeded tracking



with the calorimeter-based seeding finding a track becomes a much easier task

### What is ahead

- need to finish building the tracker, produce and install the electronics
- learn what the tracker is doing, understand and calibrate its response
  - alignment
  - calibrate timing delays in the individual channels coordinate along the wire
  - calibrate signal propagation speed along the wire
  - drift velocity or the drift time-to-distance relation
  - learn and calibrate the gas gains in the individual channels
  - calibrate the material map
- all that is a lot of work, but it has already started.
- for your pool, it is the right time frame

### If we learn how to do all that



- if we learn how to operate the tracker (and the rest of the detector), we should be able to reproduce the background part of the plot
- the rest depends on the Nature. We will see.