

Muon g-2 at Fermilab: how we detect the positrons and measure ω_a from them Lorenzo Cotrozzi | lorenzo.cotrozzi@phd.unipi.it

Lorenzo Cotrozzi | lorenzo.cotrozzi@phd.unipi.it Fermilab 2022 Summer School at Pisa | 19 July 2022

Outline

• Description of the apparatus: calorimeters

Calibration and reconstruction of events

• Measurement principle of ω_a (anomalous precession frequency)

• ω_a analysis: Run1 fits and results

g-2 storage ring

- About 10⁴ muons at a time, injected with a rate of 13 Hz
- 1.45 T magnetic field, 7-meter radius: muons precede every 149.2 ns
- Each fill lasts for $\sim 700~\mu s$ = 11 muon lifetimes
- Decay positrons are detected by 24 calorimeters placed along the inner circumference

Electromagnetic calorimeters

- Positrons drift away from storage orbit and hit calorimeters
- 24 stations, 54 crystals in each station (9x6 array)

Cherenkov crystals and SiPMs

• Homogeneous EM calorimeters: 6x9 PbF₂ crystals, refractive index n=1.8

• Each crystal is coupled with a SiPM working in Geiger mode: Cherenkov light is detected

from EM shower

Incoming positron
@ 2.4 GeV (simulation)

Laser calibration

- A high-precision laser system was built by INFN-INO to synchronize 1296 crystals at 0.1 ns level, and control gain fluctuations at 1e-4 level → 20 ppb systematic
- Crystal gains change at different time scales:
 - **Short term.** When a positron hits a crystal the SiPM is «blind» for O(10 ns); a second positron might hit before recovery
 - In-fill (700 μ s). At the beginning there is a huge «splash» of particles
 - Long term (days). Gain changes due to external factors, mainly hall temperature

Laser calibration

 Out-Of-Fill corrections: 4 laser pulses between two muon fills are used to study the stability over time

 Plot: positron mean energy before and after applying OOF correction

Mean positron energy vs run number Calo 9

Reconstruction chain

- Fit to identify pulses on crystal hits
- Clustering algorithm to reconstruct time and energy of incoming e^+
- Run1: 4 different teams, each with its own reconstruction chain
- Following runs: more analysis teams, including new Italian reconstruction; many efforts to understand and reduce Run1 systematics

2D Maps: Energy vs Time

- Data collected in a single dataset, order of 100 hours of acquisition
- Periodic time modulation: anomalous precession frequency, $\sim 4.365~\mu s$
- Project on Y axis: energy spectrum of detected positrons (see next slide)

Pileup subtraction

- Positrons decay from ~ 3 GeV muons, so max energy should be ~ 3 GeV (dashed line)
- But: pileup! Double and triple overlapping positrons, which we can subtract
- Red line: correction that is applied to data (absolute value, from positive to negative)

5 ns

Time

Energy spectrum in muon rest frame

- Parity violation in muon decay: $\Gamma(E,\theta) = N(E)[1 + A(E)\cos(\theta)]$
- Correlation between high-energy decay positrons and θ , angle between positron and muon spin: highest rate for $\theta=0$
- Positron energy spectra in the lab frame depends on muon spin direction
- Rest frame: e^+ max energy is $\sim m_{\mu}/2$

y = Positron energy normalized by \sim 52.8 MeV

Spectrum in lab frame

Electron energy spectrum in Lab frame

Positron spectrum changes with the angle between muon momentum and spin \rightarrow time modulation ω_a , with period of $\sim 4.365~\mu s$

Wiggle plot

If we fix an energy threshold (e.g. 1700 MeV) and count all detected positrons above threshold, over time:

Asymmetry

• Asymmetry is a function of energy: from negative to positive, crosses zero at $\sim 1000 \text{ MeV}$

Wiggle plot

Integrating over 1700 MeV minimizes statistical uncertainty on $\omega_{\boldsymbol{a}}$

5-Parameter fit

$$N(t) = N_0 e^{-\frac{\tau}{\tau_{\mu}}} [1 + A\cos(\omega_a t + \phi)]$$

Beam dynamics effects

CBO: Coherent beam oscillations with $T\approx 2.7\mu s$ Lost muons: drift out of storage ring and hit consecutive calos

Full fit (22-par) and FFT

Different methods: T and A

- T Method: we count positrons over energy threshold, set to 1700 MeV to minimize statistical uncertainty on ω_a
- A Method: weight positrons with asymmetry function:
 - Allows to lower energy threshold to 1100 MeV
 - Reduces statistical uncertainty on ω_a by $\sim 10\%$
 - Run-1 result was the combination of 4 A-Weighted analyses

Main systematics and improvements

Run-1 main ω_a systematics

	Value [ppb
Uncertainty (stat.)	434
Uncertainty (syst.)	56
Detailed Systematics	
Time Randomization	9
Time Correction	1
Gain	8
Pileup	35
Pileup Artificial Dead Time	3
Muon Loss	3
CBO (beam oscillations)	38
Residual Slow Term	17

After Run1 (published in April 2021) we collected more statistics and worked on hardware and analysis improvements to reduce largest systematics (in red boxes)

Ratio method histograms

Gets rid of «slow effects» such as muon decay lifetime: different sensitivity to ω_a systematics

Positrons splitted in two histos:

•
$$V(t) \equiv v_1(t) + v_2(t)$$

•
$$U(t) \equiv u_{+}(t) + u_{-}(t)$$

Where v_1 , v_2 , u_+ , u_- get 25% of positrons each u_{\pm} shift positron times by $\pm \frac{T_a}{2}$ (half of

 ω_a period)

Ratio:
$$R(t) \equiv \frac{V(t) - U(t)}{V(t) + U(t)}$$

Summary and conclusion

• The anomalous precession frequency ω_a is one of the two ingredients to obtain the muon magnetic anomaly a_{μ} (see Paolo's presentation):

$$a_{\mu} = \frac{\omega_a}{\tilde{\omega}_p'(T_r)} \frac{\mu_p'(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

- Parity violation in muon decay allows us to extract ω_a from fits to «wiggle plots» i.e. counting positrons vs time
- Run1 results (April 2021) will be improved with higher statistics, hardware upgrades and combined effort in data analysis
- More details on beam dynamics and magnetic field in next presentations by Elia and Anna ©

