

Beam dynamics at Muon g-2: a different approach to HEP experiment
E. Bottalico

Fermilab 2022 Summer Students School - 19 July 2022

Muon g-2: an atypical HEP experiment

- At collider experiment in the analysis what matter is the rate of interaction. The beam motion is important to get an high rate, but doesn't have a part in the analysis.
- Muon g-2 experiment is different, we accumulate muon and we observe their motion, that can change the way we measure their decays.

INFN

 Muon g-2: an atypical HEP experiment

 Muon g-2: an atypical HEP experiment}

INFN

 Muon g-2: an atypical HEP experiment

 Muon g-2: an atypical HEP experiment}

Accelerator Physics

How does the beam move?

We know that charged particle stored in a magnetic field start moving on machine plane, oscillating with a frequency equal to cyclotron period, but is it just that?

Place your bet!!!

INFN

 Betatron oscillation

 Betatron oscillation}

Betatron oscillation is given by the magnetic field recall force.

$$
F(r)=\frac{m \gamma v^{2}}{r}-q v B(r)
$$

Betatron oscillation

Betatron oscillation is given by the magnetic field recall force.

$$
F(r)=\frac{m \gamma v^{2}}{r}-q v B(r)
$$

Considering the orbit: $r=R+x$ where x is the deviation from the ideal orbit (R),
r can be rewritten as: $\quad \frac{1}{r}=\frac{1}{R+x}=\frac{1}{R} \frac{1}{1+\frac{x}{R}} \approx \frac{1}{R}\left(1-\frac{x_{0}}{R}\right)$

Betatron oscillation

Betatron oscillation is given by the magnetic field recall force.

$$
F(r)=\frac{m \gamma v^{2}}{r}-q v B(r)
$$

Considering the orbit: $r=R+x$ where x is the deviation from the ideal orbit (R),
r can be rewritten as: $\quad \frac{1}{r}=\frac{1}{R+x}=\frac{1}{R} \frac{1}{1+\frac{x}{R}} \approx \frac{1}{R}\left(1-\frac{x_{0}}{R}\right)$
Given the x component of the force:

$$
F_{x}(z)=q v_{z} B_{y} \longrightarrow B_{y}(x) \cong B_{y}(R)+\left.\frac{\partial B_{y}(r)}{\partial x}\right|_{r=R} \cdot x
$$

Betatron oscillation

Betatron oscillation is given by the magnetic field recall force.

$$
F(r)=\frac{m \gamma v^{2}}{r}-q v B(r)
$$

Considering the orbit: $r=R+x$ where x is the deviation from the ideal orbit (R),
r can be rewritten as: $\quad \frac{1}{r}=\frac{1}{R+x}=\frac{1}{R} \frac{1}{1+\frac{x}{R}} \approx \frac{1}{R}\left(1-\frac{x_{0}}{R}\right)$
$B_{y}(x) \cong B_{y}(R)+\left.\frac{\partial B_{y}(r)}{\partial x}\right|_{r=R} \cdot x=B_{y}(R)[1-\underbrace{\frac{R}{B_{y}(R)} \frac{\partial B_{y}(R)}{\partial x}}_{\text {Field index } n} \cdot \frac{x}{R}]$

INFN

Betatron oscillation

Lorentz force can be written as:

$$
F_{r}(x)=\frac{m \gamma v^{2}}{R}\left(1-\frac{x}{R}\right)-q v B_{y}(R)\left(1-n \frac{x}{R}\right)
$$

Betatron oscillation

Lorentz force can be written as:

$$
\begin{aligned}
& \qquad F_{r}(x)=\frac{m \gamma v^{2}}{R}\left(1-\frac{x}{R}\right)-q v B_{y}(R)\left(1-n \frac{x}{R}\right) \\
& \text { Using the static orbit relation } \rightarrow r=R \rightarrow \frac{\gamma m v^{2}}{R}=q v B(R)
\end{aligned}
$$

Betatron oscillation

Lorentz force can be written as:

$$
F_{r}(x)=\frac{m \gamma v^{2}}{R}\left(1-\frac{x}{R}\right)-q v B_{y}(R)\left(1-n \frac{x}{R}\right)
$$

Using the static orbit relation $\rightarrow r=R \rightarrow \frac{\gamma m v^{2}}{R}=q v B(R)$
The force can be rewritten:

$$
F_{r}(x)=\frac{m \gamma v^{2}}{R}\left(1-\frac{x}{R}\right)-\frac{m \gamma v^{2}}{R}\left(1-n \frac{x}{R}\right)=-\frac{\gamma m v^{2}}{R^{2}} x(1-n)
$$

Betatron oscillation

Lorentz force can be written as:

$$
\begin{aligned}
& \qquad F_{r}(x)=\frac{m \gamma v^{2}}{R}\left(1-\frac{x}{R}\right)-q v B_{y}(R)\left(1-n \frac{x}{R}\right) \\
& \text { Using the static orbit relation } \rightarrow r=R \rightarrow \frac{\gamma m v^{2}}{R}=q v B(R)
\end{aligned}
$$

The force can be rewritten:

$$
F_{r}(x)=\frac{m \gamma v^{2}}{R}\left(1-\frac{x}{R}\right)-\frac{m \gamma v^{2}}{R}\left(1-n \frac{x}{R}\right)=-\frac{\gamma m v^{2}}{R^{2}} x(1-n)
$$

Writing $F_{r}(x)=\gamma m \frac{d^{2} x}{d t^{2}}$ and simplifying:

$$
\frac{d^{2} x}{d t^{2}}=-\frac{v^{2}}{R^{2}}(1-n) x=-\omega_{C}^{2}(1-n) x \rightarrow \omega_{B O}=\omega_{C} \sqrt{1-n}
$$

INFN
 How does the beam move?

This derivation gives us 3 important information:

1. Betatron frequency is proportional to ω_{C} (cyclotron period)
2. The n-index should be within $[0,1] \rightarrow \sqrt{1-n} \rightarrow n<1$
3. Muon inside the ring oscillate along the radial (and vertical) position.

Since muon has different momentum $\omega_{C}=\frac{c \beta}{R+x}$ has also different $\omega_{B O}$, their motion look like that:

INFN

How does the beam move?

This derivation gives us 3 important information:

1. Betatron fr
2. The n-inde
3. Muon insic

Since muon has di
like that:

notion look

So the winner is 3) the motion is even more complex!!!

Detector effect - CBO oscillation

- The beam is measured by detectors, calorimeters and trackers.
- The $\omega_{B O} \neq \omega_{C}$, so calorimeters see a different phase at each turn, measuring an oscillation called Coherent Betatron Oscillation (CBO), given by $\omega_{C B O}=\omega_{C}-\omega_{B O}$

$$
\begin{gathered}
2 \pi f_{C B O}=\omega_{C}-\omega_{B O}=\omega_{C}(1-\sqrt{1-n}) \\
\omega_{C B O}=2.34 \mathrm{rad} / \mathrm{\mu s}
\end{gathered}
$$

Where $\omega_{C} \sim 0.149 n s$ and $n \sim 0.108$

Detector effect - Tracker detector

Decay e+
Vacuum Chamber

- 2 tracker station 90° apart
- 8 Identical tracker modules
- 32 straws each module grouped into 2 pairs of UV layers
- Straws argon ethane filled

Detector effect - CBO oscillation

- This is the beam motion observed by the tracker.

INFN

 Detector effect - CBO oscillation

 Detector effect - CBO oscillation}

- This is the beam motion observed by the tracker.
$x(t)=x_{0}+A_{C B O} \cdot e^{-\frac{t}{\tau_{C B O}}} \cdot \cos \left(\omega_{C B O} t+\varphi_{C B O}\right)+A_{2 C B O} \cdot e^{-\frac{2 t}{\tau_{C B O}}} \cdot \cos \left(2 \omega_{C B O} t+\varphi_{2 C B O}\right)$

Station12

Station18

- Remember in g-2:
- Everything which changes during the fill ($700 \mu \mathrm{~s}$)
- Everything which changes within hours/days/months
- Everything which never change
- Even though beam motion is taken into account from the fit function containing
more then 20 parameters.
- The beam motion introduces some early-to-late effect which biases ω_{a}.

Beam dynamics correction to $\boldsymbol{\omega}_{\boldsymbol{a}}$

- To take into account this variation, we correct the measured ω_{a} value from the fit using the following formula.

$$
R_{\mu}^{\prime} \approx \frac{f_{\text {clock }} \omega_{a}^{m}\left(1+\boldsymbol{C}_{\boldsymbol{e}}+\boldsymbol{C}_{\boldsymbol{p}}+\boldsymbol{C}_{\boldsymbol{m} \boldsymbol{l}}+\boldsymbol{C}_{\boldsymbol{p a}}\right)}{f_{\text {calib }}<\omega_{p}^{\prime}(x, y, \phi) \times M(x, y, \phi)>\left(1+B_{k}+B_{q}\right)}
$$

Beam dynamics correction to $\omega_{a}: C_{e}$

Considering the extended expression of the spin precession frequency in a magnetic field:

$$
\overrightarrow{\omega_{a}}=\frac{e}{m}\left[a_{\mu} \vec{B}-\left(a_{\mu}-\frac{1}{\gamma^{2}-1}\right)(\vec{\beta} \times \vec{E})-a_{\mu}\left(\frac{\gamma}{\gamma+1}\right)(\vec{\beta} \cdot \vec{B}) \vec{\beta}\right]
$$

$\boldsymbol{C}_{\boldsymbol{e}}$: the Electric Field correction
$C_{e}=2 n(1-n) \beta^{2} x_{e}^{2} / R_{0}^{2}$ is due
to the equilibrium radii
distribution.

$$
C_{e} \sim 490 p p b
$$

Beam dynamics correction to $\boldsymbol{\omega}_{a}: C_{p}$
Considering the extended expression of the spin precession frequency in a magnetic field:

$$
\overrightarrow{\omega_{a}}=\frac{e}{m}\left[a_{\mu} \vec{B}-\left(a_{\mu}-\frac{1}{\gamma^{2}-1}\right)(\vec{\beta} \times \vec{E})-a_{\mu}\left(\frac{\gamma}{\gamma+1}\right)(\vec{\beta} \cdot \vec{B}) \vec{\beta}\right]
$$

$\boldsymbol{C}_{\boldsymbol{p}}$: the pitch correction
$C_{p}=n<A_{y}^{2}>/ 4 R_{0}^{2}$
depends on vertical
betatron oscillation $\left(A_{y}\right)$.

INFN

$C_{l m}$: describes the motion introduced on ω_{a} phase due
$d \varphi_{0} / d p=(-10.0 \pm 1.6) \mathrm{mrad} /\left(\% \Delta p / p_{0}\right)$
to the loss of muon during the fill. It's explained by:
 phase;
2. The number of loss muon change as function of
 momentum.

$$
\begin{gathered}
\Delta \omega_{a}=\frac{d \varphi}{d t}=\frac{d \varphi}{d p} \cdot \frac{d p}{d t} \\
C_{l m}<20 p p b
\end{gathered}
$$

Beam dynamics correction to $\boldsymbol{\omega}_{\boldsymbol{a}}: C_{p a}$
$C_{p a}$: it is a Phase Acceptance effect. It is due to:

1. Beam variation during the fill fill;
2. Phase measured as function of the decay

$$
\Delta \omega_{a}=\frac{d \varphi}{d t}=\frac{d Y_{R M S}}{d t} \cdot \frac{d \varphi}{d Y_{R M S}}
$$

The effect was large in Run1 due to broken resistors

$$
C_{p a} \sim 180 p p b
$$

We expect a reduction in Run2/3 ($\sim 50 \mathrm{ppb} / \sim 20 \mathrm{ppb}$)

- To compute with high precision the correction showed before, we use a Geant4 based simulation of the storage ring, from the injection up to detection. STATION 12

Radial

STATION 18
Muon Initial phase map

distribution

Conclusion

- Beam motion inside the ring is complex and detectors measure it, but in turn, the detectors introduce effects given their acceptance.
- Beam dynamics affect not only the ω_{a} fit, but introduce biases that cannot be fitted from the wiggle plot.
- Thanks to both simulation and real data analysis, we are able to correct for all these effects.
"The closer you look the more there is to see"
F. Jegherlehner

Thank you!!!

- For any question or just to have a chat - elia.bottalico@phd.unipi.it

