

Beam dynamics at Muon g-2: a different approach to HEP experiment E. Bottalico

Fermilab 2022 Summer Students School – 19 July 2022

Muon g-2: an atypical HEP experiment

- At collider experiment in the analysis what matter is the rate of interaction. The beam motion is important to get an high rate, but doesn't have a part in the analysis.
- Muon g-2 experiment is different, we accumulate muon and we observe their motion, that can change the way we measure their decays.

Betatron oscillation is given by the magnetic field recall force.

$$F(r) = \frac{m\gamma v^2}{r} - qvB(r)$$

Betatron oscillation is given by the magnetic field recall force.

$$F(r) = \frac{m\gamma v^2}{r} - qvB(r)$$

Considering the orbit: r = R + x where x is the deviation from the ideal orbit (R),

r can be rewritten as:

$$\frac{1}{r} = \frac{1}{R+x} = \frac{1}{R} \frac{1}{1+\frac{x}{R}} \approx \frac{1}{R} \left(1 - \frac{x_0}{R}\right)$$

r

Betatron oscillation

Betatron oscillation is given by the magnetic field recall force.

$$F(r) = \frac{m\gamma v^2}{r} - qvB(r)$$

Considering the orbit: r = R + x where x is the deviation from the ideal orbit (R),

can be rewritten as:
$$\frac{1}{r} = \frac{1}{R+x} = \frac{1}{R} \frac{1}{1+\frac{x}{R}} \approx \frac{1}{R} \left(1 - \frac{x_0}{R}\right)$$

Given the *x* component of the force:

$$F_x(z) = qv_z B_y \longrightarrow B_y(x) \cong B_y(R) + \frac{\partial B_y(r)}{\partial x}\Big|_{r=R} \cdot x$$

Betatron oscillation is given by the magnetic field recall force.

$$F(r) = \frac{m\gamma v^2}{r} - qvB(r)$$

Considering the orbit: r = R + x where x is the deviation from the ideal orbit (R),

r can be rewritten as:
$$\frac{1}{r} = \frac{1}{R+x} = \frac{1}{R} \frac{1}{1+\frac{x}{R}} \approx \frac{1}{R} \left(1 - \frac{x_0}{R}\right)$$

$$B_{y}(x) \cong B_{y}(R) + \frac{\partial B_{y}(r)}{\partial x}|_{r=R} \cdot x = B_{y}(R)\left[1 - \frac{R}{B_{y}(R)} \frac{\partial B_{y}(R)}{\partial x} \cdot \frac{x}{R}\right]$$

Field index n

Lorentz force can be written as:

$$F_r(x) = \frac{m\gamma v^2}{R} \left(1 - \frac{x}{R}\right) - qv B_y(R) \left(1 - n\frac{x}{R}\right)$$

Lorentz force can be written as:

$$F_{r}(x) = \frac{m\gamma v^{2}}{R} \left(1 - \frac{x}{R}\right) - qvB_{y}(R)\left(1 - n\frac{x}{R}\right)$$
Using the static orbit relation $\rightarrow r = R \rightarrow \frac{\gamma mv^{2}}{R} = qvB(R)$

- - -

Lorentz force can be written as:

$$F_{r}(x) = \frac{m\gamma v^{2}}{R} \left(1 - \frac{x}{R}\right) - qvB_{y}(R)\left(1 - n\frac{x}{R}\right)$$
Using the static orbit relation $\rightarrow r = R \rightarrow \frac{\gamma mv^{2}}{R} = qvB(R)$

The force can be rewritten:

$$F_{r}(x) = \frac{m\gamma v^{2}}{R} \left(1 - \frac{x}{R}\right) - \frac{m\gamma v^{2}}{R} \left(1 - n\frac{x}{R}\right) = -\frac{\gamma m v^{2}}{R^{2}} x(1 - n)$$

Lorentz force can be written as:

$$F_{r}(x) = \frac{m\gamma v^{2}}{R} \left(1 - \frac{x}{R}\right) - qvB_{y}(R)\left(1 - n\frac{x}{R}\right)$$
Using the static orbit relation $\rightarrow r = R \rightarrow \frac{\gamma mv^{2}}{R} = qvB(R)$

The force can be rewritten:

$$F_r(x) = \frac{m\gamma v^2}{R} \left(1 - \frac{x}{R}\right) - \frac{m\gamma v^2}{R} \left(1 - n\frac{x}{R}\right) = -\frac{\gamma m v^2}{R^2} x(1 - n)$$

Writing $F_r(x) = \gamma m \frac{d^2 x}{dt^2}$ and simplifying:
 $\frac{d^2 x}{dt^2} = -\frac{v^2}{R^2} (1 - n)x = -\omega_c^2 (1 - n)x \rightarrow \omega_{B0} = \omega_c \sqrt{1 - n}$

How does the beam move?

This derivation gives us 3 important information:

- 1. Betatron frequency is proportional to ω_c (cyclotron period)
- 2. The *n*-index should be within $[0, 1] \rightarrow \sqrt{1 n} \rightarrow n < 1$
- 3. Muon inside the ring oscillate along the radial (and vertical) position.

Since muon has different momentum $\omega_C = \frac{c\beta}{R+x}$ has also different ω_{BO} , their motion look

like that:

How does the beam move?

μ<u>g-2</u>....

This derivation gives us 3 important information:

INFŃ

How does the beam move?

So the winner is 3) the motion is even more complex!!!

Detector effect – CBO oscillation

- The beam is measured by detectors, calorimeters and trackers.
- The $\omega_{BO} \neq \omega_C$, so calorimeters see a different phase at each turn, measuring an oscillation called Coherent Betatron Oscillation (CBO), given by $\omega_{CBO} = \omega_C \omega_{BO}$

$$2\pi f_{CBO} = \omega_C - \omega_{BO} = \omega_C (1 - \sqrt{1 - n})$$

$$\omega_{CBO} = 2.34 \, rad/\mu s$$

Where $\omega_c \sim 0.149 \ ns$ and $n \sim 0.108$

Detector effect – Tracker detector

- 2 tracker station 90° apart
- 8 Identical tracker modules
- 32 straws each module grouped into 2 pairs of UV layers
- Straws argon ethane filled

Detector effect – CBO oscillation

• This is the beam motion observed by the tracker.

Detector effect – CBO oscillation NFN This is the beam motion observed by the tracker. 2t $x(t) = x_0 + A_{CBO} \cdot e^{-\overline{\tau_{CBO}}} \cdot \cos(\omega_{CBO}t + \varphi_{CBO}) + A_{2CBO} \cdot e^{-\overline{\tau_{CBO}}} \cdot \cos(2\omega_{CBO}t + \varphi_{2CBO})$ Station12 Station18 X₀ 8.179 ± 0.001463 **x**₀ 8.217 ± 0.00156 [mm] Mean Rad. Pos. [mm] 20 A_{CBO} A_{CBO} 12.25 ± 0.005264 12.2 ± 0.005732 Pos. 20 τ_{CBO} 265.4 ± 0.3711 τ_{CBO} 257.8±0.3816 Mean Rad. ω_{CBO} ω_{CBO} $2.34 \pm 5.443e - 06$ $2.34 \pm 5.83e-06$ 15 φ_{CBO} 101.9 ± 0.0004562 ϕ_{CBO} 122.4 ± 0.0004834 15 0.06915 ± 0.003801 A_{2CBO} 0.07684 ± 0.003502 A_{2CBO} φ_{2CBO} φ_{2CBO} 29.68 ± 0.05477 -4.877 ± 0.04546 10 10 5 5 0 0 -5 30 50 30 35 40 45 50 35 40 45

Time [us]

Time [us]

20

- Remember in g-2:
 - Everything which changes during the *fill* (700μs)
 - Everything which changes within hours/days/months 😕
 - Everything which never change

•••

FN Beam dynamics correction to ω_a Even though beam motion is taken into account from the fit function containing

more then 20 parameters.

The beam motion introduces some early-to-late effect which biases ω_a .

NFN

Beam dynamics correction to ω_a

• To take into account this variation, we correct the measured ω_a value from the fit using the following formula.

$$R'_{\mu} \approx \frac{f_{clock}\omega_a^m \left(1 + \boldsymbol{C_e} + \boldsymbol{C_p} + \boldsymbol{C_{ml}} + \boldsymbol{C_{pa}}\right)}{f_{calib}} < \omega'_p(x, y, \phi) \times M(x, y, \phi) > \left(1 + B_k + B_q\right)$$

Beam dynamics correction to $\boldsymbol{\omega}_{\boldsymbol{a}}$: C_e

Considering the extended expression of the spin precession frequency in a magnetic field:

$$\overrightarrow{\omega_{a}} = \frac{e}{m} \left[a_{\mu} \overrightarrow{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) (\overrightarrow{\beta} \times \overrightarrow{E}) - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) (\overrightarrow{\beta} \cdot \overrightarrow{B}) \overrightarrow{\beta} \right]$$

$$C_{e}: \text{ the Electric Field correction}$$

$$C_{e} = 2n(1 - n)\beta^{2}x_{e}^{2}/R_{0}^{2} \text{ is due}$$
to the equilibrium radii
$$C_{a} \sim 490 \text{ mnb}$$

Equilibrium Radius [mm]

NFN

E

Beam dynamics correction to $\boldsymbol{\omega}_{\boldsymbol{a}}$: C_p

Considering the extended expression of the spin precession frequency in a magnetic field:

$$\overline{\omega_{a}} = \frac{e}{m} \left[a_{\mu} \overline{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) (\overrightarrow{\beta} \times \overrightarrow{E}) - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) (\overrightarrow{\beta} \cdot \overrightarrow{B}) \overrightarrow{\beta} \right]$$

$$C_{p} \sim 180 \ ppb$$

$$C_{p} \sim 180 \ ppb$$

$$C_{p} = n < A_{y}^{2} > /4R_{0}^{2}$$

Beam dynamics correction to ω_a : C_{lm}

 C_{Im} : describes the motion introduced on ω_a phase due elative Phase [mrad

to the loss of muon during the *fill*. It's explained by:

Muons with different momentum has different 1.

phase;

INFN

The number of loss muon change as function of 2.

momentum.

$$\Delta \omega_a = \frac{d\varphi}{dt} = \frac{d\varphi}{dp} \cdot \frac{dp}{dt}$$

$$C_{lm} < 20 \ ppb$$

Beam dynamics correction to $\boldsymbol{\omega}_{a}$: C_{pa}

 C_{pa} : it is a Phase Acceptance effect. It is due to:

- 1. Beam variation during the fill *fill;*
- 2. Phase measured as function of the decay

position. 1) 2) $\Delta \omega_a = \frac{d\varphi}{dt} = \frac{dY_{RMS}}{dt} \cdot \frac{d\varphi}{dY_{RMS}}$

The effect was large in Run1 due to *broken resistors*

$$C_{pa} \sim 180 \ ppb$$

We expect a reduction in Run2/3 (~50ppb/~20ppb)

Simulation of the storage ring

 To compute with high precision the correction showed before, we use a Geant4 based simulation of the storage ring, from the injection up to detection.

INFN

E.Bottalico - (Fermilab Summer School 2022)

Conclusion

- Beam motion inside the ring is complex and detectors measure it, but in turn, the detectors introduce effects given their acceptance.
- Beam dynamics affect not only the ω_a fit, but introduce biases that cannot be fitted from the wiggle plot.
- Thanks to both simulation and real data analysis, we are able to correct for all these effects.

"The closer you look the more there is to see" F. Jegherlehner

Thank you!!!

For any question or just to have a chat – <u>elia.bottalico@phd.unipi.it</u>

