Bio-hybrid micro-shuttles controlled by light patherns

Viridiana Carmona Sosa

Supervisor Prof. Roberto Di Leonardo

> PhD Seminar May 25th, 2022

Goal: micromachines for miniaturized labs

Design of autonomous micromachines that can be remotely controlled by light signals to perform tasks inside lab on chips:

- cell sorting
- targeted cargo delivery

Experimental characterization of voxel size for TPP

Complex micro and nanostructures require the characterization of the dimensions of the smallest unit of solidified polymer formed in the focal point:

voxel (volumetric pixel)

Laser power = 2.5 mW Scanning speed = 6 µm/s

Experimental characterization of voxel size for TPP

(C)

Genetic engineering of bacterial propellers

Genetic engineering of bacteria allows to design optimized strains for their use as biological propellers:

By deleting chemotaxis genes tumbling can be suppressed leading to smooth swimming behavior

BÈJÁ et al. SCIENCE (2000)

Expression of membrane proteins acting as light driven pumps, allows precise and fast modulation of swimming speed with light

Biohybrid microrobots

Combination of single cells or a film of cells and synthetic materials, exploiting the sensing and power capabilities of the cells.

Microshuttles: basic model

First design: a box-type microchamber with enough space for a single bacterium to enter

Circular trajectory of bacteria near a surface

Microshuttles: basic model

Microshuttles: implementation of ramps on the robot

J. N. ISRAELACHILI, INTERMOLECULAR AND SURFACE FORCES, 3RD EDITION, (2011)

Friction and adhesion problem solution: Van der Waals reversal sign

Van der Waals reversal sign approach

Microshuttle: symmetrical model

Bundle contained inside de microstructure

 $F_{\scriptscriptstyle T}$ for N bacteria arranged at Θ

$$F_{\tau} = N f_{bacterium} \cos(\theta)$$
$$= \frac{L}{d} f_{bacterium} \cos(\theta)$$

а

 $\frac{I_{bacterium} L}{Cos(\theta)} \sin(\theta)$

The maximum value of F_{τ} is obtained for $\Theta = 45^{\circ}$.

Characterization of the internal spacer microshuttle

Steering microrobot: catamaran model

Steering microrobot by light patterns

Right turn

Steering microrobot by light patterns

Right turn

3x

Steering microrobot by light patterns

Right turn

Left turn

Conclusions and Perspectives

