Stochastic Processes for Inference An application to Authorship Attribution and Evil

Tutti i diritti relativi al presente materiale didattico ed al suo contenuto sono riservati a Sapienza e ai suoi autori (o docenti che lo hanno prodotto). È consentito l'uso personale dello stesso da parte dello studente a fini di studio. Ne è vietata nel modo più assoluto la diffusione, duplicazione, cessione, trasmissione, distribuzione a terzi o al pubblico pena le sanzioni applicabili per legge — This is actually in the Sapienza template!

How to find the author of a text

Go to the restaurant
Find the author
Turn evil

Why don't we go deep learning?

No compression

High compression

2600 pages of text = 2 x War and Peace

10 pages of text

Stochastic Processes for Inference

27/04/2022

So what?

- We may use traditional classifiers
 - We need to learn class boundaries
 - Problems with many (thousands) classes
- We may use statistical inference
 - We need to infer the parameters
 - Used already in the '90 for RNA (HMM)

How to choose a model?

- Must be able to work with an unbounded vocabulary
 - OK, no language has unbounded vocabulary, but then a German names a law: "Rinderkennzeichnungs- und Rindfleischetikettierungsüberwachungsaufgabenübert ragungsgesetz"... so lets say around 10⁹⁵
- Must have as few parameters as possible
 - The fewer the parameters, the less data needed to (roughly) infer them
 - The fewer the parameters, the happier the physicist

Go to the restaurant!

Chinese Restaurant Process

Stochastic Processes for Inference

Chinese Restaurant Process – 2

Probability of the next element:

$$P(x_{n+1}^* = \cdot | x_1, \dots, x_n, \alpha, \theta, P_0) = \frac{\theta + k_n \alpha}{\theta + n} P_0(\cdot) + \sum_{j=1}^{k_n} \delta_{y_j, \cdot} \frac{n_j - \alpha}{\theta + n}$$

Poisson—Dirichlet Process

$$P \sim PD(\alpha, \theta, P_0)$$
$$P(\cdot) = \sum_{i=1}^{\infty} p_i \delta_{y_i, \cdot}$$

The CRP is a sequential sampling from *P* Good for inference:

- Conjugacy
- Exchangeability
- Statistic properties \rightarrow power-law behaviours

Heaps' Law

 Power-law relation between the number of elements and the number of different elements

$$k \propto n^{\beta}$$

 $\beta \leq 1$

Zipf's Law

 Power-law relation between the frequency of an element and rank α

$$f \propto R^{-\alpha}$$

Actually holds whenever:

relation between the of an element and its
$$f \propto R^{-\alpha}$$

Ids whenever:
$$P(f) \propto f^{-1-\frac{1}{\alpha}} \in \int_{0^{4}}^{10^{4}} \int_{0^{1}}^{10^{4}} \int_{0^{1}}^{10^{2}} \int_{0^{3}}^{10^{4}} \int_{0^{5}}^{10^{4}} \int_{0^{6}}^{10^{4}} \int_{0^{2}}^{10^{6}} \int_{0^{1}}^{10^{4}} \int_{0^{1}}^{10^{5}} \int_{0^{6}}^{10^{6}} \int_{0^{6}}^{10^{4}} \int_{0^{6}}^{10^{4}} \int_{0^{6}}^{10^{4}} \int_{0^{6}}^{10^{6}} \int_{0^{6}}^{1$$

(
$$\beta=rac{1}{lpha}$$
)

Gutenberg ·

Taylor's Law

- Relation between different systems
- Relation between the deviation and the mean

$$\sigma \propto \mu^{\gamma}$$

where:

$$\gamma=rac{1}{2}$$
 = random sampling

Poisson—Dirichlet Process – 2

$$P(x_{n+1}^* = \cdot | x_1, \dots, x_n, \alpha, \theta, P_0) = \frac{\theta + k_n \alpha}{\theta + n} P_0(\cdot) + \sum_{j=1}^{k_n} \delta_{y_j, \cdot} \frac{n_j - \alpha}{\theta + n}$$

- Blunt approximation of a language model but:
 - Has only two parameters
 - Doesn't require context (like N-gram models)
 - Doesn't require strange and fragile language tools (lemmers, stemmers, PoS taggers, ...)
 - Gets the broad (statistical) picture

Is P₀ continuous or discrete?

$$P(x_{n+1}^* = \cdot | x_1, \dots, x_n, \alpha, \theta, P_0) = \frac{\theta + \alpha \sum_{j=1}^k t_j}{\theta + n} P_0(\cdot) + \sum_{j=1}^{k_n} \delta_{y_j, \cdot} \frac{n_j - \alpha t_j}{\theta + n}$$

This is terrible!!

We'll use the Continuous version of the Process but a Discrete P_0 ... CP—DP!

Stochastic Processes for Inference

27/04/2022

Page 13

Plan for the attribution task

How to choose the tokens

- Space-separated words
- (Overlapping Space-Free) Character N-grams
- Repeated subsequences (LZ77 algorithm)

No golden rules but some hints

How to choose the fragment length

• Fragments too long

How to choose the fragment length

- Fragments too long
- Fragments too short
 - almost Kullback-Leibler Divergence (single token limit)
 - no opportunity to adapt

$$D_{KL}(f \parallel \mathcal{A}) = \sum_{j=1}^{k'+k} \nu_j \log_2 \frac{\nu_j}{\tilde{\nu}'_j} - G(\mathcal{A})$$
$$\tilde{\nu}'_j = \begin{cases} \nu'_j - \frac{\alpha}{n'}, & y_j \in A\\ \frac{(\theta_A + \alpha_A k') P_0(y_j)}{n'}, & y_j \notin A \end{cases}$$

Now attribute!

• 171 Italian novels, 39 authors: 93.5%

And attribute shorter texts!

- We are interested <u>only</u> in academic inquiries, we can try with Latin poetry
 - from 6 lines, up to two pages per poem

	Lygdamo	Ovidio	Properzio	Tibullo
Poems	6	41	92	16
Bytes	11.7	97.8	165.9	51.8

Corpus	Book	Author
Tib-Pro	63,77%	100,00%
Tib-Pro-Ovi	66,44%	98,66%
Tib-Pro-Ovi-Lig	67,74%	98,71%

Does it work with informal texts?

• Enron corpus: 72 authors, 9337 emails

Method	Attribution Notes	
Kourtis 2011	0.658	SVM + supporting classifier
Seroussi 2014 DADT-P	0.594	Infer every author and document
CP-DP 2022	0.556	
Yang 2017 TDM	0.542	Tracksauthorevolutionacrossdocuments
Seroussi 2012 LDAH	0.426	Lots of inference but conceptually simple

Does it work with many authors?

- Blog corpus: 19,320 authors, 678,161 posts
 - for ~40% of the authors, less than 3 pages in total

Method	Prolific 1000	All authors
CP-DP	0.495	0.375
Yang 2017 TDM	_	0.308
Seroussi 2014 DADT-P	0.437	0.286
Seroussi 2012 LDAH	0.216	0.079

Time to turn evil

No assumption on the topic

- "*** ****" is enough, for us every post with at least 50 characters (one sentence) is relevant
- We don't need to find the author, it's enough to have they in a shortlist.
 - Then we may:
 - Call NSO, buy Pegasus
 - Torture all those in the shortlist

Time to turn evil – 2

Obfuscation

- Effective (almost) only against the attribution method they are built for
- Extremely easy (~90%) to detect obfuscation
- Loose effectiveness if the attacker reduces the set of candidates
- Hard to use (semi-automated versions)
- Not preserving "semantics" (automated versions)
 - (way) less than 60% of the time
 - taking back the meaning reduces effectiveness

Conclusions

- A simple model with a few parameter can go a long way in Authorship Attribution
- Concealing your IP address is clearly not enough
- How can your research (or the technologies developed to make it possible) be used for evil?
 - (maybe in 50 years from now)