An application to Authorship Attribution and Evil

Tutti i diritti relativi al presente materiale didattico ed al suo contenuto sono riservati a Sapienza e ai suoi autori (o docenti che lo hanno prodotto). E consentito l'uso personale dello stesso da parte dello studente a fini di studio. Ne è vietata nel modo più assoluto la diffusione, duplicazione, cessione, trasmissione, distribuzione a terzi o al pubblico pena le sanzioni applicabili per legge \leftarrow This is actually in the Sapienza template!

How to find the author of a text

1) Go to the restaurant
2) Find the author
3) Turn evil

Why don't we go deep learning?

No compression
High compression

We are not always this lucky

2600 pages of text $=$ $2 \times$ War and Peace

So what?

- We may use traditional classifiers
- We need to learn class boundaries
- Problems with many (thousands) classes
- We may use statistical inference
- We need to infer the parameters
- Used already in the ' 90 for RNA (HMM)

How to choose a model?

- Must be able to work with an unbounded vocabulary
- OK, no language has unbounded vocabulary, but then a German names a law: "Rinderkennzeichnungs- und Rindfleischetikettierungsüberwachungsaufgabenübert ragungsgesetz"... so lets say around 1095
- Must have as few parameters as possible
- The fewer the parameters, the less data needed to (roughly) infer them
- The fewer the parameters, the happier the physicist

Go to the restaurant!

Chinese Restaurant Process

Chinese Restaurant Process - 2

Probability of the next element:

$$
P\left(x_{n+1}^{*}=\cdot \mid x_{1}, \ldots, x_{n}, \alpha, \theta, P_{0}\right)=\frac{\theta+k_{n} \alpha}{\theta+n} P_{0}(\cdot)+\sum_{j=1}^{k_{n}} \delta_{y_{j}}, \frac{n_{j}-\alpha}{\theta+n}
$$

Poisson—Dirichlet Process

$$
\begin{gathered}
P \sim P D\left(\alpha, \theta, P_{0}\right) \\
P(\cdot)=\sum_{i=1}^{\infty} p_{i} \delta_{y_{i}}
\end{gathered}
$$

The CRP is a sequential sampling from P
Good for inference:

- Conjugacy
- Exchangeability
- Statistic properties \rightarrow power-law behaviours

Heaps' Law

- Power-law relation between the number of elements and the number of different elements

$$
k \propto n^{\beta}
$$

$$
\beta \leq 1
$$

Zipf's Law

- Power-law relation between the frequency of an element and its rank

$$
f \propto R^{-\alpha}
$$

Actually holds whenever:

$$
\left(\beta=\frac{1}{\alpha}\right)
$$

Taylor's Law

- Relation between different systems
- Relation between the deviation and the mean

$$
\sigma \propto \mu^{\gamma}
$$

where:
$\gamma=\frac{1}{2}=$ random sampling

Poisson—Dirichlet Process - 2

$$
P\left(x_{n+1}^{*}=\cdot \mid x_{1}, \ldots, x_{n}, \alpha, \theta, P_{0}\right)=\frac{\theta+k_{n} \alpha}{\theta+n} P_{0}(\cdot)+\sum_{j=1}^{k_{n}} \delta_{y_{j}}, \frac{n_{j}-\alpha}{\theta+n}
$$

- Blunt approximation of a language model but:
- Has only two parameters
- Doesn't require context (like N-gram models)
- Doesn't require strange and fragile language tools (lemmers, stemmers, PoS taggers, ...)
- Gets the broad (statistical) picture

Note on P_{0}

Is P_{0} continuous or discrete?

$$
P\left(x_{n+1}^{*}=\cdot \mid x_{1}, \ldots, x_{n}, \alpha, \theta, P_{0}\right)=\frac{\theta+\alpha \sum_{j=1}^{k} t_{j}}{\theta+n} P_{0}(\cdot)+\sum_{j=1}^{k_{n}} \delta_{y_{j},}, \frac{n_{j}-\alpha t_{j}}{\theta+n}
$$

This is terrible!!

We'll use the Continuous version of the Process but a Discrete $\mathbf{P}_{0} \ldots$

CP—DP!

Plan for the attribution task

How to choose the tokens

- Space-separated words
- (Overlapping Space-Free) Character N-grams
- Repeated subsequences (LZ77 algorithm)

No golden rules but some hints

How to choose the fragment length

- Fragments too long

How to choose the fragment length

- Fragments too long
- Fragments too short
- almost Kullback-Leibler Divergence (single token limit)
- no opportunity to adapt

$$
\begin{array}{r}
D_{K L}(f \| \mathcal{A})=\sum_{j=1}^{k^{\prime}+k} \nu_{j} \log _{2} \frac{\nu_{j}}{\tilde{\nu}_{j}^{\prime}}-G(\mathcal{A}) \\
\tilde{\nu}_{j}^{\prime}= \begin{cases}\nu_{j}^{\prime}-\frac{\alpha}{n^{\prime}}, & y_{j} \in A \\
\frac{\left(\theta_{A}+\alpha_{A} k^{\prime}\right) P_{0}\left(y_{j}\right)}{n^{\prime}}, & y_{j} \notin A\end{cases}
\end{array}
$$

Now attribute!

- 171 Italian novels, 39 authors: 93.5\%

And attribute shorter texts!

- We are interested only in academic inquiries, we can try with Latin poetry
- from 6 lines, up to two pages per poem

	Lygdamo	Ovidio	Properzio	Tibullo
Poems	6	41	92	16
Bytes	11.7	97.8	165.9	51.8

corpus	Book	Author
Tib-Pro	$63,77 \%$	$100,00 \%$
Tib-Pro-Ovi	$66,44 \%$	$98,66 \%$
Tib-Pro-Ovi-Lig	$67,74 \%$	$98,71 \%$

Does it work with informal texts?

- Enron corpus: 72 authors, 9337 emails

Method	Attribution	Notes
Kourtis 2011	0.658	SVM + supporting classifier
Seroussi 2014 DADT-P	0.594	Infer every author and document
CP-DP 2022	0.556	Tracks author
Yang 2017 TDM	0.542	Trolution across evon documents inference
Seroussi 2012 LDAH	0.426	Lots of infeptually but concept simple

Blog corpus: 19,320 authors, 678,161 posts

- for $\sim 40 \%$ of the authors, less than 3 pages in total

Method	Prolific	
	All	
	1000	authors

Time to turn evil

No assumption on the topic

- "**** *****" is enough, for us every post with at least 50 characters (one sentence) is relevant
We don't need to find the author, it's enough to have they in a shortlist.
- Then we may:
- Call NSO, buy Pegasus
- Torture all those in the shortlist

Time to turn evil - 2

Obfuscation

- Effective (almost) only against the attribution method they are built for
- Extremely easy (90%) to detect obfuscation
- Loose effectiveness if the attacker reduces the set of candidates
- Hard to use (semi-automated versions)
- Not preserving "semantics" (automated versions)
- (way) less than 60% of the time
- taking back the meaning reduces effectiveness

Conclusions

- A simple model with a few parameter can go a long way in Authorship Attribution
- Concealing your IP address is clearly not enough
- How can your research (or the technologies developed to make it possible) be used for evil?
- (maybe in 50 years from now)

