Neutrinoless double β decay search with CUORE and CUPID experiments

Alberto Ressa, PhD Seminars 27/04/2022

Istituto Nazionale di Fisica Nucleare

Double β**Decay**

Standard Model allowed double β decay: $2\nu\beta\beta$

 Observed in 11 even-even nuclei in which single β decay is energetically forbidden (very few possible candidates!)

 $T_{1/2} \sim 10^{18} - 10^{24}$ years (age of the universe ~ 1.4 × 10¹⁰ years!)

→ means about equivalent number of candidate nuclides in the detector: tonne-scale experiment

Double β**Decay**

Neutrinoless Double β decay: $0\nu\beta\beta$

- Massive neutrino to flip the chirality (we know it's true because of flavor oscillations observation)
- **Majorana neutrino**: particle and antiparticle have to coincide

Dirac massive particle | Majorana massive particle

Total Lepton number violated of 2 units:

- not allowed in Standard Model
- Hint to explain lack of antimatter in the universe

Standard Model allowed double β decay: $2\nu\beta\beta$

→ continuous spectrum ending at the isotope Q-value

Neutrinoless Double β decay: $0\nu\beta\beta$

→ Mono-energetic peak at the isotope Q-value (a simple and clear experimental signature!)

$0\nu\beta\beta$: where we are now

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) \left[|M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2} \right]$$

- Phase Space Factor
- Nuclear Matrix element
- Effective Majorona mass:
 - related to lepton number violating term
 - a weighted sum of v flavors masses

$0\nu\beta\beta$: where we are now

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2}$$

Contributions from different experiments:

- ¹³⁰Te: CUORE
- ¹³⁶Xe: KamLAND-Zen
- ⁷⁶Ge: GERDA
- ⁸²Se: CUPID-0
- ¹⁰⁰Mo: CUPID-Mo

$0\nu\beta\beta$: where we are now

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2}$$

Contributions from different experiments:

- ¹³⁰Te: CUORE
- ¹³⁶Xe: KamLAND-Zen
- ⁷⁶Ge: GERDA
- ⁸²Se: CUPID-0
- ¹⁰⁰Mo: CUPID-Mo

Cryogenic Calorimetric Experiments!

Crystals containing the isotope candidate for the decay

- 1. Energy release in the crystal from particle interaction
- 2. Energy converted into heat (i.e. temperature increase)

Crystals containing the isotope candidate for the decay

- 1. Energy release in the crystal from particle interaction
- 2. Energy converted into heat (i.e. temperature increase)
- 3. Cryogenic sensor (**NTD-Ge thermistor**) converts thermal phonons into an electric signal
- → Cryogenic temperature (about 10 mK) allows to turn the energy deposit in a readable temperature increase

These detectors perfectly fit to the $0\nu\beta\beta$ search, presenting important features for the decay half-life sensitivity

- → Excellent Energy Resolution (0.3% FWHM)
- → Very good efficiency (80-90%)
- → Flexibility in material choice (detector structure and crystal compounds)

These detectors perfectly fit to the $0\nu\beta\beta$ search, presenting important features for the decay half-life sensitivity

$$S_{0\nu} \propto \epsilon \sqrt{\frac{MT}{B\Delta}}$$

- → Excellent Energy Resolution (0.3% FWHM)
- → Very good efficiency (80-90%)
- → Flexibility in material choice (detector structure and crystal compounds)
- Select radiopure materials to reduce the background level
- Choice the crystals compounds according to the needs
- Search for $0\nu\beta\beta$ in different isotopes (¹³⁰Te for CUORE, ⁸²Se for CUPID-0, ¹⁰⁰Mo for CUPID-Mo)

These detectors perfectly fit to the $0\nu\beta\beta$ search, presenting important features for the decay half-life sensitivity

These detectors perfectly fit to the $0\nu\beta\beta$ search, presenting important features for the decay half-life sensitivity

$$S_{0\nu} \propto \epsilon \sqrt{\frac{MT}{B\Delta}}$$

- Operate cryogenic calorimeters in Underground Laboratories (e.g. LNGS) to shield against cosmic rays
- Layered shields against external radioactivity

The CUORE Detector

Cryogenic Underground Observatory for Rare Events

Searching for Neutrinoless Double-Beta Decay of 130Te with CUORE https://doi.org/10.1155/2015/879871

The CUORE Detector

Cryogenic Underground **O**bservatory for Rare **E**vents

MT > 1 ton x yr (unblinded!)

 $\Delta E < 8 \text{ keV}$ at Q_{RR} →

- $B \sim 10^{-2}$ counts/ kg/ keV/ yr →
- 988 TeO₂ cubic 5x5x5 cm³ crystals arranged in 19 towers 742 kg of TeO₂ / 206 kg of ¹³⁰Te ¹³⁰Te: Q_{ββ} ~ 2527 keV, natural isotopic abundance 34%

Searching for Neutrinoless Double-Beta Decay of 130Te with CUORE https://doi.org/10.1155/2015/879871

The CUORE Cryostat

"The coldest cubic meter in the known universe": world leading cryostat in terms of power and size

- Dilution Refrigerator: keep TeO₂ crystals at ~ 10 mK
- 5 Pulse Tube cryocoolers for cooling to 4K
- Nested co-axial copper vessels at decreasing temperatures
- Ancient roman Lead shielding

- ➔ 15 tons cooled below 4K
- → 3 tons cooled below 50mK
- → Stable data taking for over 2 yr

Searching for Neutrinoless Double-Beta Decay of 130Te with CUORE https://doi.org/10.1155/2015/879871

CUORE Data Taking

<u>First Results from CUORE: A Search for Lepton Number Violation via</u> <u>0vββ Decay of</u> <u>https://doi.org/10.1103/PhysRevLett.120.132501</u>

Improved Limit on Neutrinoless Double-Beta Decay in ¹³⁰Te with CUORE https://doi.org/10.1103/PhysRevLett.124.122501 Data taking started in 2017. From march 2019 higher than 90% uptime: Background data taking > 67%

→ Raw exposure collected is higher than 1670 kg × year

CUORE is the first tonne-scale cryogenic calorimetric experiment

Searching for Neutrinoless Double-Beta Decay of 130Te with CUORE https://doi.org/10.1155/2015/879871

Best fit (global mode)

90% CI limit on Γ_{0v}

.....

Fit the Region Of Interest to search the $0\nu\beta\beta$:

Window: [2490, 2575] keV \rightarrow

110⊟

High sensitivity neutrinoless double-beta decay search with one tonne-year of CUORE data https://arxiv.org/abs/2104.06906

Fit the Region Of Interest to search the $0\nu\beta\beta$:

- Window: [2490, 2575] keV →
- \rightarrow Model:
 - Peak at $Q_{\beta\beta}$ (Signal) ⁶⁰Co peak

 - Linear Background (degraded α particles background)
- **Free parameters**: half-life of $0\nu\beta\beta$ and ^{60}Co \rightarrow $(\Gamma_{0\nu}, \Gamma_{Co})$, Background Index and slope

CUORE

High sensitivity neutrinoless double-beta decay search with one tonne-year of CUORE data https://arxiv.org/abs/2104.06906

Fit the Region Of Interest to search the $0\nu\beta\beta$:

- Background Index: 1.49(4) × 10⁻² counts /(keV kg year)
- Best-Fit Signal Rate: (0.9 ± 1.4) ×10⁻²⁶ year⁻¹

No significant Signal observed:

→ Set Limit from the posterior

High sensitivity neutrinoless double-beta decay search with one tonne-year of CUORE data https://arxiv.org/abs/2104.06906

Fit the Region Of Interest to search the $0\nu\beta\beta$:

- Background Index: 1.49(4) × 10⁻² counts /(keV kg year)
- Best-Fit Signal Rate: (0.9 ± 1.4) ×10⁻²⁶ year⁻¹

Half-life Limit of ¹³⁰Te $0\nu\beta\beta$

 $T_{1/2}^{0\nu} > 2.2 \times 10^{25} \text{ yr} (90 \% \text{ C}.\text{ I.})$

Median Expected Sensitivity:

- \rightarrow 2.8 × 10²⁵ year
- → evaluated from toy experiments in background-only hypothesis using real data fit results
- → 72% of chance to obtain a stronger limit

CUORE

Search for 0v_ββ

Turn the result in terms of $0\nu\beta\beta$ effective neutrino mass ($m_{\beta\beta}$) to compare the result with half-life limit on other isotopes (from other experiments).

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2}$$

Actual CUORE limit:

$$m_{\beta\beta} < 90 - 305 \text{ meV}$$

Future of CUORE

Ultimate Exposure Goal > 3 ton × yr

Target Sensitivity: $m_{\beta\beta} < 50 - 130 \text{ meV}$

Beyond $0\nu\beta\beta$:

- ¹³⁰Te 2νββ precision measurement
- ¹³⁰Te $0\nu/2\nu\beta\beta$ to excited states
- ¹²⁸Te 0ν/2νββ
- ¹²⁰Te β+β+/β+EC/ECEC
- Low Energy: Dark Matter, Solar Axions
- Investigate Noise reduction techniques

https://doi.org/10.1103/PhysRevLett.126.171801

https://doi.org/10.1140/epjc/s10052-021-09317-z

Future of CUORE

CUORE Upgrade with Particle IDentification

Next Generation experiment searching for $0\nu\beta\beta$ with cryogenic calorimeters

CUPID aims to explore the IH region of the effective Majorana mass by reaching a "background-free" environment

Main limit of CUORE: background in the ROI dominated by α particles from surface contamination (e.g. from the copper structure or other crystals)

Release only a fraction of the energy in the crystal, falling in the ROI even if the α -decay Q value is higher (e.g. ²¹⁰Po in U/Th chain ha 5.4 MeV of Q value)

CUPID will perform particle identification by **heat and scintillation light dual read-out** (technology proved by the CUPID-0 and CUPID-Mo medium-mass demonstrators)

 Scintillating crystals containing the candidate isotope (ZnSe, Li₂MoO₄)

 Light detectors (LD) coupled to crystals: (thin Ge bolometers)

https://arxiv.org/abs/2202.06279

https://doi.org/10.1140/epjc/s10052-018-5896-8

CUPID will perform particle identification by heat and scintillation light dual read-out (technology proved by the CUPID-0 and CUPID-Mo medium-mass demonstrators)

Light Yield = Energy from scintillation photons (LD) / Energy from heat (crystals)

 α particles has a quenched number of scintillation photons produced in the crystal

https://arxiv.org/abs/2202.06279

https://doi.org/10.1140/epjc/s10052-019-7578-6

 γ background further reduced by using higher Q-value emitter ¹⁰⁰Mo (first tested by CUPID-Mo and then in LNGS/Canfranc R&D tests)

Status:

- extensive R&D on light yield enhancement and detector module design concluded
- testing of enriched crystals from official producers: measurements ongoing
- technical test of the Baseline Design
 Prototype Tower: planned within the first half of 2022

https://doi.org/10.48550/arXiv.2202.06279

Thanks for your attention!

Alberto Ressa, PhD Seminars 27/04/2022

Istituto Nazionale di Fisica Nucleare

Backup Slides

CUORE Event Reconstruction

Trigger:

1.

Online + Offline to improve energy threshold

2. **Optimum Filter**: Suppress frequencies most affected by the noise

3. **Thermal Gain Correction**: Correct amplitude dependence on the operating temperature instabilities

Calibration: Exploits peaks from external ²³²Th - ⁶⁰Co sources.

CUORE Data Selection

Base Cuts:

remove events to ensure high data quality (bad resolution channels, earthquake related events...)

Coincidences:

discard events involving more than 1 crystal ($0\nu\beta\beta$ events deposit all the energy in a single crystal) Pulse Shape Discrimination: reject pulses with anomalous shape

High sensitivity neutrinoless double-beta decay search with one tonne-year of CUORE data https://arxiv.org/abs/2104.06906

Fit the Region Of Interest to search the $0\nu\beta\beta$:

• Background Index: 1.49(4) × 10⁻² counts /(keV kg year) • Best-Fit Signal Rate: (0.9 ± 1.4) × 10⁻²⁶ year⁻¹ Half-life Limit of ¹³⁰Te $0\nu\beta\beta$

$$T_{1/2}^{0\nu} > 2.2 \times 10^{25} \text{ yr} (90 \% \text{ C}.\text{ I.})$$

Median Expected Sensitivity:

- \rightarrow 2.8 × 10²⁵ year
- → evaluated from toy experiments in background-only hypothesis using real data fit results
- → 72% of chance to obtain a stronger limit

"Background-Free" Environment: the sensitivity grows linearly with the exposure!

Suppose **10 yr** of livetime, 5 keV of resolution, and 1 ton of material CUORE 10^{-2} counts/ (kg keV yr) : 500 events CUPID < 10^{-4} counts/ (kg keV yr) : <5 events

$$S_{0\nu} \propto \epsilon \sqrt{\frac{MT}{B\Delta}} \implies S_{0\nu} \propto \epsilon MT$$