

X-ray test of sapphire wafers and 4 channel sensors Preliminary results.

Gamma-beam profiler for LUXE project

29-04-2024 Tomsk, Russia

History of R&D in field of sapphire sensor of ionizing radiation.

F. Wang et al., Electronic Charge Transport in Sapphire Studied by Optical-Pump/THz-Probe Spectroscopy. 2004

A. Ignatenko, Dissertation of Doctor of Science, Development of Beam Halo Monitors for the European XFEL using radiation hard sensors and Demonstration of the Technology at FLASH. 2014

O. Karacheban et al., Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II, doi:10.1088/1748-0221/10/08/P08008. 2015

All sapphire sensor R&Ds in DESY were leaded by Sergej Schuwalow !

F. Wang et al., Electronic Charge Transport in Sapphire Studied by Optical-Pump/THz-Probe Spectroscopy. 2004

The method permits one to probe non-equilibrium systems with picosecond to subpicosecond time resolution.

From time dependent THz probe measurements, we can determine the carrier lifetimes following photo-excitation. For the optical quality material, a typical carrier lifetime of 20 ps was observed; the lifetime in the high-purity sample was found to be close to 200 ps.

For the optical-quality sample of lower purity shown in Fig. 4, we estimated an impurity-limited mobility of ~ $4,000 \text{ cm}^2/\text{Vs}$ at RT.

Carrier mobilities exceeding $10,000 \text{ cm}^2/\text{Vs}$ can be achieved at 40 K

O. Karacheban et al., Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II, doi:10.1088/1748-0221/10/08/P08008. 2015

The measured CCE at the highest applied bias voltage of 950 V

Plate number	1	2	3	4	5	6	7	8
CCE, %	10.5	7.4	9.5	8.6	8.1	5.3	3.6	2.2
Stat. error	0.3	0.2	0.2	0.2	0.2	0.1	0.1	0.1
Syst. error	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1
<cce>, %</cce>	9.9	7.2	9.0	8.5	7.5	5.3	3.7	2.1
RMS	1.7	0.9	0.9	0.8	0.6	0.5	0.9	0.7

Irradiation of sapphire and diamond sensors at ~10 MeV electron beam (TU Darmstadt)

• •

10 MGy ~ 5.10¹⁶ MIPs ~ 2.5.10¹⁵ [1 MeV neq] (NIEL, Summers)

A. Ignatenko, Dissertation of Doctor of Science, Development of Beam Halo Monitors for of the Techn CCE as a function of sensor depth ionstration Plates 1-4

33rd FCAL workshop, Hamburg

Charge transport in sapphire

Space charge creation due to the trapped carriers Space charge is a linear function of depth: $\rho = p(2x-d)$

Electric field distribution

11

Parabolic electric $E(x) = A\left(x - \frac{d}{2}\right)^2 + B$ $\int_{a}^{d} E \, dx = \frac{Ad^3}{12} + Bd = V$ boundary condition field $\begin{array}{cc} \overbrace{x_0 \to d} \text{ charge drift} \\ \text{Collected charge for} \\ \text{one carrier type:} \end{array} \quad Q = \frac{N_0}{\mathcal{A}} e^{\frac{\arctan\left(\left(x_0 - \frac{d}{2}\right)\sqrt{\frac{A}{B}}\right)}{\mu\tau\sqrt{AB}}} \int e^{\frac{\arctan\left(\left(x - \frac{d}{2}\right)\sqrt{\frac{A}{B}}\right)}{\mu\tau\sqrt{AB}}} dx \end{array}$ one carrier type:

Plate	/		17 0/			3
number	B, V/μm	μτ(e), μm² /V	Norm, %	μτ(h), μm²/V	X	∦ ° /
1	1.328±0.011	79.4±1.0	52.4±0.4	4.7±0.2	18	¥ 25
2	1.207±0.011	62.0±1.0	47.0±0.5	5.7±0.2	59	2
3	1.274±0.009	66.7±0.9	53.2±0.5	6.1±0.2	35	
4	1.243±0.010	76.6±1.0	48.6±0.5	2.3±0.2	35	
5	1.441±0.010	61.0±1.0	48.6±0.8	2.4±0.3	16	1
6	1.297±0.011	40.5±0.9	44.2±0.9	4.2±0.3	67	
7	1.521±0.006	18.7±0.3	60.4±1.4	2.3±0.2	17	
8	1.314±0.009	14.2±0.5	46.3±1.9	1.9±0.3	46	
						Depth, un

4 October 2018

33rd FCAL workshop, Hamburg

Sensor material properties

Ō	
0	

	S	Sapphire	Diamond	GaAs	Si
•	Density, g/cm ³	3.98	3.52	5.32	2.33
•	Dielectric constant	9.3 - 11.5	5.7	10.9	11.7
•	Breakdown field, V/cm	~106 *	107	4·10 ⁵	3·10 ⁵
•	Resistivity, Ω·cm	>1014	>1011	107	10 ⁵
•	Band gap, eV	9.9	5.45	1.42	1.12
•	El. mobility, cm²/(V·s)	>600 **	1800	~8500	1360
•	Hole mobility, cm²/(V·s)	-	1200	-	460
•	MIP eh pairs created, eh/µr	n 22	36	150	73

* Typical operation field ~1-2.104 V cm-1

** at 20°C, ~30000 at 40°K

Pixelated sapphire wafers produced by TSU

1 - Wafer # 1; 2 – Wafer # 2, 3

- Pixel and backside metal contacts are made of 0.2 um thick Al film. The film was deposited with magnetron sputtering.
- Pixel pitch is 2 mm and interpixel gap of 0.2 mm

X-ray test bench

Moving platform with pixelated wafer

Sapphire wafer # 3. Test points location

time, s

Photocurrent mapping

Wuppertal

ſ									1e-9 - 1.0
۷ -	6.4e-10	6e-10	6e-10	6e-10	5.9e-10	5.9e-10	6.1e-10	6.3e-10	
<u> </u>	6.3e-10	6.8e-10	6.6e-10	6.7e-10	6.5e-10	6.3e-10	6.4e-10	6.4e-10	- 0.8
U -	6.6e-10	7e-10	7e-10	6.8e-10	6.7e-10	6.7e-10	6.7e-10	6.7e-10	- 0.6
<u>م</u> -	6.7e-10	6.8e-10	6.6e-10	6.7e-10	6.9e-10	6.7e-10	6.5e-10	6.7e-10	- 0.4
ш -	6.5e-10	6.5e-10	6.8e-10	6.5e-10	6.6e-10	6.4e-10	6.3e-10	6e-10	- 0.2
	Ó	i	2	3	4	5	6	7	_

Microstrip sensors

4 channel sensor

192 channel sensor

Review of 4 channel sensor

Review of 4 channel sensors Photocurrent under X-ray irradiation

Testing of 4 channel sensor module

Wuppertal wafer

Thank you for your time !