Simulating sapphire detectors with Geant4+Allpix²

Tools overview and Allpix² validation against DESY-II test-beam

Pietro Grutta grutta@pd.infn.it

Objective:

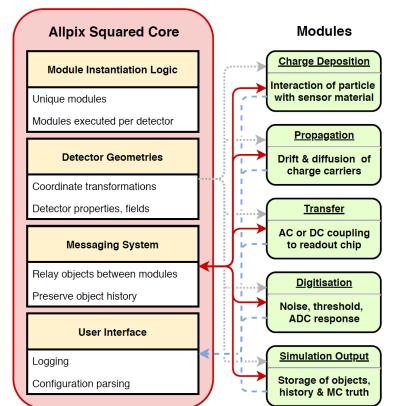
build a precise MC template to model the response of the detector to incident radiation (Compton's gamma at LUXE)

MC Tools:

- 1. Geant4
- 2. <u>Allpix2</u>

Strategy:

setup an Allpix² simulation of the charge generation, transport, collection and digitization *from the incident radiation to the signal waveform*.


Flowchart:

- a) Model transport of charge carriers in sapphire
- b) Implementation using Geant4 + Allpix²
- c) Validation of the MC simulator against experimental data (e.g. Desy-2, Padova, Frascati)

Simulation tool: Allpix²

Allpix2 main features

- Charge deposition simulated with Geant4 or external
 - Fano fluctuations
- Propagation
 - Built-in models (Jacoboni-Canali, Hamburg, Masetti, Arora) or custom (carrier mobility µ as function of x,E)
 - Drift-diffusion kinetics or
 - Trap-assisted recombination (#no de-trapping) τ
 - Electric/weighting fields from first principles or externals E
 - No self/carrier-carrier interactions
- Transfer
 - Time resolved current pulse at each pixel
 - ← Capacitive cross-coupling between neighbouring pixels C_{cross}
- Digitization
 - Linear response of a TDC (time-to-digital converter)
 - or QDC (charge-to-digital converter)
 - Electronic RMS noise and threshold

An example: validating Allpix² with literature

Validating Allpix2 with the investigation of a direction sensitive sapphire detector at the 5GeV electron beam at DESY-II

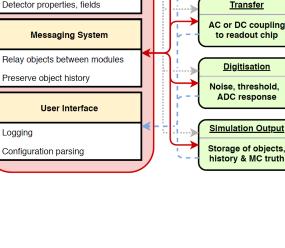
Flowchart:

a. Get transport model from DESY-II (Hecht eq. in parabolic E-field)

- a. \mu\tau product assigned
- b. Electric field shape assigned
- **b.** Implementation in Allpix2
- **Comparison** with datapoints

Simulation pipeline with DESY-II example:

GeometryBuilderGeant4 +



(chg. Carriers lifetime)

WeightingPotentialReade (weighting field for the Shocklev-Ramo th.)

(carriers propagation with custom model

Logging

Allpix Squared Core

Module Instantiation Logic

Modules executed per detecto

Coordinate transformations

Detector Geometries

Unique modules

Output

Modules Charge Deposition

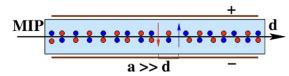
nteraction of particle with sensor material

Propagation

Drift & diffusion of

charge carriers

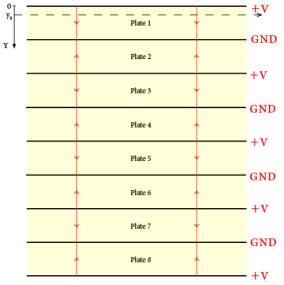
Validating the MC template against Desy-II investigation [1]


[1]

Investigation of a direction sensitive sapphire detector stack at the 5 *GeV* electron beam at DESY-II

O. Karacheban^{*ab*}, K. Afanaciev^{*c*}, M. Hempel^{*ab*}, H. Henschel^{*a*}, W. Lange^{*a*}, J.L. Leonard^{*a*}, I. Levy^{*e*}, W. Lohmann^{*bf*} and S. Schuwalow^{*d*}

 Device under test (DUT) is a stack of 8 sapphire plates of dimensions 10mm x 10mm x 525um each.


Experimental details

A 5GeV electron beam enters the DUT parallel to the metallization. Incoming/outcoming particle tracks are reconstructed using a telescope array. There are 4 readout channels attached to the plates. Charge collection efficiency (CCE) is measured as a function of the bias voltage and of the carrier generation position y_0 (see drawing)

Deposited charges

Average $\#_{e/h}$ = 22 um⁻¹, therefore 220k pairs are deposited over the 10mm travelled by a 5GeV MIP electron.

Model characteristics

- Fraction f_d of carriers recombine immediately.
- 2. Drifting charge can be trapped, be τ_e and τ_h carriers lifetime (assumed constant).
- 3. Space charge density (assumed linear) of trapped charges generate an internal polarization field, with the direction opposite to the external one.
- 4. The integral of the electric field over full thickness is the bias voltage.

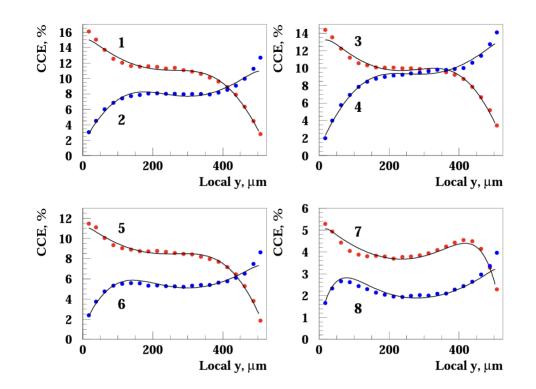


Figure 7: The CCE measured as a function of the local *y* coordinate inside a plate in slices of 25 μ m for all plates of the sapphire stack. Blue dots are for the electric field in the direction of y and red dots for the opposite field direction. The lines are the result of a fit including both electron and hole drift. The fit parameters are given in Table 3.

Objective

Reproduce the theoretical model using the MC.

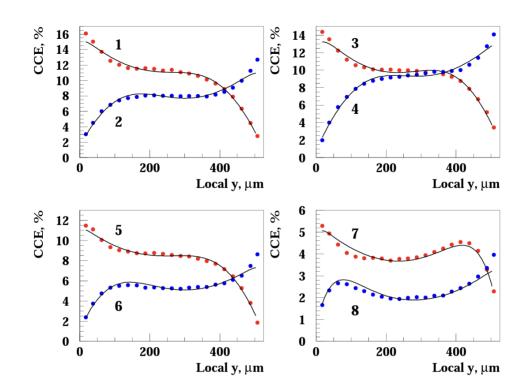
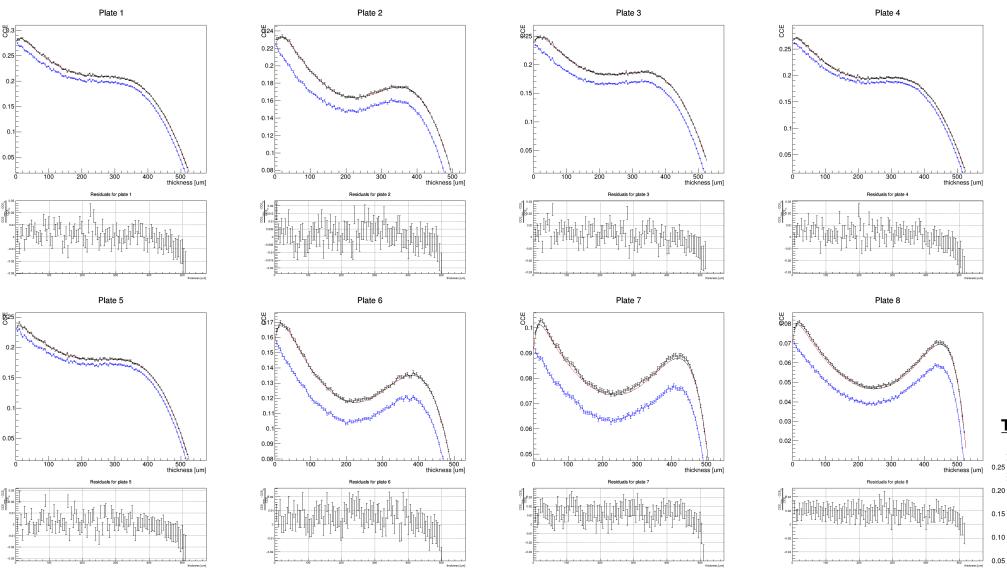
Strategy

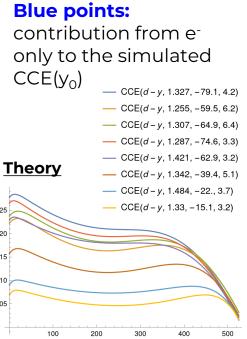
Setup a set of simulations with

- Ad-hoc charge transport model where charge carriers have constant uniform mobilities;
- 2. Electric field with the par. y-dependence
- 3. (Mobility x lifetime) fixed

Implementation

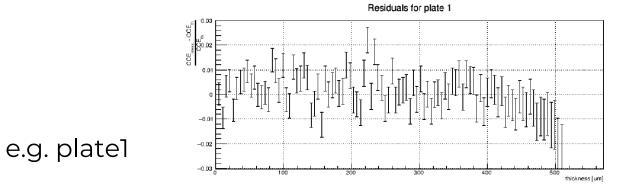
A Python script is used to generate configuration macros for Allpix, running standalone simulations where localized charge is spawn at y₀


Figure 7: The CCE measured as a function of the local *y* coordinate inside a plate in slices of 25 μ m for all plates of the sapphire stack. Blue dots are for the electric field in the direction of y and red dots for the opposite field direction. The lines are the result of a fit including both electron and hole drift. The fit parameters are given in Table 3.

Results. Comparison 1/2

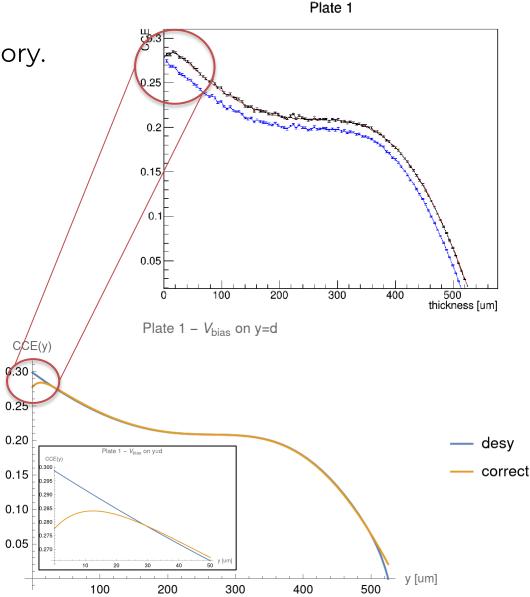
Theory Red solid line: theoretical prediction for CCE(y₀)


Simulation Black points: simulated CCE(y₀)

Results. Comparison 2/2

Comparison

• Good agreement (<4%) between simulation and theory.



• Simulated the hole-induced behaviour near y=0

Comments

Simulation deviations form theory can be found in

- a. finite integration cut-off
- b. time integration step
- c. electric/weighting-field approximation
- d. limited sim. statistics
- e. charge-clustering

- 1. <u>1504.04023 Investigation of a direction sensitive sapphire detector stack at the 5</u> <u>GeV electron beam at DESY-II</u>
- 2. PhysRev.133.A468 Photoconductivity measurements in Ruby and Sapphire
- 3. PhysRevB.19.5318 Generation, transport, all trapping of excess charge carriers in Czochralski-grown sapphire
- Electronic Charge Transport in Sapphire Studied by Optical-PumpTHz-Probe Spectroscopy (root-temperature e-mobility of optical-grade sapphire -> 600 cm2/V/s)
- 5. Measurement of the Frequency-Dependent Conductivity in Sapphire
- 6. 1.1659274 Analysis of Electron Trapping in Alumina Using Thermally Stimulated Electrical Current
- 7. PhysRevB.43.4461 Self-consistent bandstructures, charge distributions, and opticalabsorption spectra in MgO, a-Al2O3, and MgAl2O4
- 8. Drift mobility and mobility-lifetime products in CdTeCl grown by the travelling heater method (eq.3 + space-charge effects with alfa)
- 9. Charge-carrier properties in synthetic single-crystal diamond measured with the transient-current technique
- 10. Charge collection in semi-insulator radiation detectors in the presence of a linear decreasing electric field (Hecht equation with uniform + linear E field)
- 11. Diamond Detectors for Timing Measurements in High Energy Physics