

W mass measurement at LHCb

Lorenzo Sestini - INFN Padova

Dipartimento di Fisica e INFN Roma 1 - 10/5/2022

- The environment of proton-proton colliders is probably the **most challenging** for the W boson mass measurement
- Experimental conditions are not as clean as at lepton colliders
- The W boson production modeling is more under control at proton-anti-proton colliders
- **LHCb** has been designed as a flavour physics experiment, but it has developed a wide and rich electroweak program
- At LHCb millions of W bosons can be analyzed to extract the W boson mass measurements, the challenge has been accepted!

Introduction

LHCb Event Display

General purpose detector in the forward region

LHCb Int. J. Mod. Phys. A 30, 1530022 (2015)

GPD = General Purpose Detectors = ATLAS/CMS

10/5/2022

Complementarity

- PDFs uncertainties in the W mass measurement are anti-correlated between the central and forward region
- Combining ATLAS/CMS+LHCb can reduce the PDFs uncertainty
- All the three experiments can significantly contribute in a LHC-wide average
- The overall average is ultimately the quantity that matters

W boson identification at LHCb

- W boson reconstructed in the muon final state
- A significant muon isolation is required to identify W bosons
- To to ECAL saturation effects it is difficult to use the electron final state for the m_w measurement

10/5/2022

W mass measurement at LHCb JHEP 01 (2022) 036

- ullet
- Simultaneous fit to W boson q/p_T and Z^o boson ϕ^*
- 28 < $p_T(\mu)$ < 52 GeV is the optimal range for the fit: **2.4M W candidates**

10/5/2022

Measurement with muon final state, just a part of the Run 2 dataset has been used (1.7 fb⁻¹)

$$\phi^* = \frac{\tan((\pi - \Delta \phi)/2)}{\cosh(\Delta \eta/2)} \sim \frac{p_{\rm T}^Z}{M}$$

- As for ATLAS, Powheg+Pythia is used as baseline simulation
- Pythia QCD parameters are fitted to match $p_T(Z^0 \rightarrow \mu^+\mu^-)$ distribution
- Templates reweighted also to match DYTurbo
- Pythia, Photos, Herwig for QED description lacksquare
- Three different PDFs sets: NNPDF3.1, CT18, MSHT20

Modeling

order pQCD

- ATLAS determined the curvature bias (δ) in E/p calibration for electrons: usable only if muon and electron reconstruction has a comparable performance
- Due to saturation effects in ECAL, at LHCb ulletelectrons are not usable for this purpose
- **Pseudo-mass method applied to Z⁰** \rightarrow $\mu^+\mu^-$: ulletdoes not depend from the magnitude of the momentum

$$\mathcal{M}^{\pm} = \sqrt{2p^{\pm}p_{\mathrm{T}}^{\pm}\frac{p^{\mp}}{p_{\mathrm{T}}^{\mp}}(1-\cos\theta)} \qquad \delta \approx A \frac{\langle \frac{1}{p^{+}} \rangle + \langle \frac{1}{p^{\pm}} \rangle + \langle \frac{1}{p^{\pm$$

10/5/2022

- lacksquareseveral dimuon resonances samples

Muon calibration

- Most of backgrounds are modeled with simulated samples: singletop, quark/anti-quark (t, b, c), Z/W decays, Drell-Yan
- QCD background (decays-in-flight) has been obtained with a datadriven technique, by inverting the muon identification cuts (i.e. impact parameter/isolation)
- This model (Hagedorn distribution) • accurately describes the region of the Jacobian peak

Background

extracted from the m_W template fit

10/5/2022

Lorenzo Sestini

W mass fit result

11/17

Systematics and cross-checks

Source	Size [M
Parton distribution functions	9
Theory (excl. PDFs) total	17
Transverse momentum model	11
Angular coefficients	10
QED FSR model	7
Additional electroweak corrections	5
Experimental total	10
Momentum scale and resolution modelling	7
Muon ID, trigger and tracking efficiency	6
Isolation efficiency	4
QCD background	2
Statistical	23
Total	32

Statistical uncertainty still large: with the full Run 2 dataset a total uncertainty < 20 MeV is already possible

Cross checks: [IeV]

- W-like measurement of Z^o boson mass
- Consistency of orthogonal subsets: muon charge, magnet polarities, ϕ , η
- Fit p_T range
- Fit model freedom •
- NNLO vs NLO PDFs ullet

NNPDF3.1 $m_W = 80362 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV},$ $m_W = 80350 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 12_{\text{PDF}} \text{ MeV},$ CT18 $m_W = 80351 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 7_{\text{PDF}} \text{ MeV}, \text{ MSHT20}$

Final result:

 $m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$

Comparison with CDF

10/5/2022

Lorenzo Sestini

- Significant displacement between new CDF II measurement and other most precise measurements
- LHC measurements are closer to the Electroweak Fit prediction with respect to CDF II
- However precision of CDF II measurement is much better

80500 *m*_W [MeV]

Uncertainties (in MeV)

	CDF	ATLAS	LHCb
Statistical	6.4	6.8	23
Lepton energy/ momentum scale	2 (µ) + 6 (e)	7* (µ) + 7* (e)	7 (µ)
PDFs	4	7*	9
Model (excl. PDFs)	3.5	8*	17
Total	9.4	18.5	31.4

*given separately for p_T and m_T fits, combined assuming 50% correlation

Notice: CDF measurement took profit of the PDFs determination at LHC

Comparison with CDF

Modeling

	CDF	ATLAS	LHC
Baseline	RESBOS	Powheg+Pythia	Powheg+l
Reweight	_	DYNNLO	DYTUR
Parton shower	data-driven	data-driven	data-dr
QED	PHOTOS+HORACE	PHOTOS	Pythia+PHOTOS

- LHC measurements combination is not trivial, it depends on several correlations ullet
- A naive expectation on ATLAS+LHCb combination is given ullet

 $\delta m_{\rm W}$ [MeV]

LHC combination

Future prospects at LHC

EPJC 75 (2015) 601

		$\delta m_W ~({ m MeV})$		
Scenario	Experiments	Tot	Exp	PDF
Default	$2 \times \text{GPD} + \text{LHCb}$	9.0	4.7	7.7
Default	$1 \times \text{GPD} + \text{LHCb}$	10.1	6.5	7.7
Default	$2 \times \text{GPD}$	12.0	5.8	10.5
PDF4LHC(3-sets)	$2 \times \text{GPD} + \text{LHCb}$	13.6	4.8	12.7
PDF4LHC(3-sets)	$1 \times \text{GPD} + \text{LHCb}$	14.6	7.3	12.7
PDF4LHC(3-sets)	$2 \times \text{GPD}$	17.7	5.5	16.9
$\delta_{ ext{exp}}^{ ext{LHCb}} = 0$	$2 \times \text{GPD} + \text{LHCb}$	8.7	4.0	7.7
$\delta^{ m LHCb}_{ m exp} = 0$	$1 \times \text{GPD} + \text{LHCb}$	9.8	5.9	7.9
$\delta^{ m LHCb}_{ m exp}=0$	$2 \times \text{GPD}$	12.0	5.8	10.5
$\delta^{ m GPD}_{ m exp}=0$	$2 \times \text{GPD} + \text{LHCb}$	7.9	1.9	7.7
$\delta^{ m GPD}_{ m exp} = 0$	$1 \times \text{GPD} + \text{LHCb}$	7.9	1.9	7.7
$\delta^{ m GPD}_{ m exp}=0$	$2 \times \text{GPD}$	10.5	0.1	10.5
$\delta_{ m PDF}=0$	$2 \times \text{GPD} + \text{LHCb}$	4.6	4.6	0.0
$\delta_{ m PDF}=0$	$1 \times \text{GPD} + \text{LHCb}$	5.8	5.8	0.0
$\delta_{ m PDF}=0$	$2 \times \text{GPD}$	5.5	5.5	0.0

GPD = General Purpose Detector = ATLAS/CMS

10/5/2022

- Not a precise extrapolation, just a way to visualize the contribution of the three .5experiments to the m_w combination
- Only the PDF uncertainty is considered for the .7 5.9model
 - Statistical uncertainty not included

Concusions

- LHCb have already performed a W mass boson measurement, just with a part of Run 2 data
- A measurement with a precision <20 MeV is possible with the available dataset, the work is currently on-going
- LHCb Upgrade-II for the HL-LHC (<u>https://arxiv.org/abs/1808.08865</u>) will allow 100x higher statistics (x50 from luminosity and x2 from having an ECAL with sufficient dynamic range for $Z \rightarrow ee$)
- There are several ideas to improve the modeling systematic uncertainty
- The combination of the measurements from the three experiments is fundamental to obtain the final precision at LHC
- We have many years before the next lepton collider, LHC could be the the only way to confirm **CDF** result in the short period

Thanks for your attention!

Proton-anti-proton vs proton-proton

W boson cross section

Lorenzo Sestini

A_i = angular coefficients: ratio between helicity dependent and unpolarized cross-sections

Angularintegrated cross-section

$$(1 + \cos^2 \theta) + A_0 \frac{1}{2}(1 - 3\cos^2 \theta)$$

+ $A_1 \sin 2\theta \cos \phi + A_2 \frac{1}{2} \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta$ + $A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$].

- Large sample of $Z^0 \rightarrow \mu^+\mu^-$ for tuning and validation
- Z^o fully reconstructed
- energy scale and resolution can be determined by comparing Z⁰ data and simulation
- Tag & Probe technique to measure lepton efficiencies in data
- differences

Experimental uncertainties

- Muon momentum calibration and scale ullet
- Background processes lacksquare
- Differences between data and simulation for ulletlepton efficiencies

Uncertainties

Theoretical uncertainties

- Parton Distribution Functions
- Modeling of $p_T(W)$
- Modeling of angular coefficients A_i
- Modeling of QED radiation

Int. J. Mod. Phys. A 30, 1530022 (2015)

using J/ψ decays.

Lorenzo Sestini

LHCb performance

Figure 17: Relative momentum resolution versus momentum for long tracks in data obtained

Lorenzo Sestini

https://www.desy.de/~garutti/LECTURES/ParticleDetectorSS12/L9_Tracking.pdf

