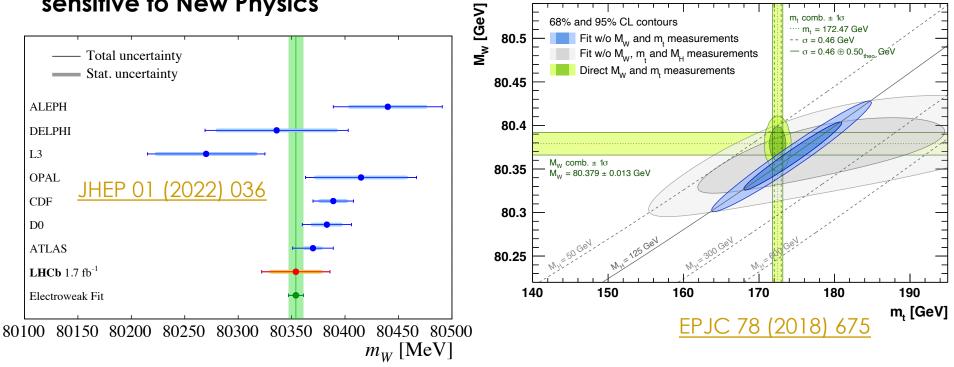
Measurement of the W boson mass with the ATLAS detector

Francesco Giuli

Special INFN seminar 'Sapienza' University of Rome 10/05/2022

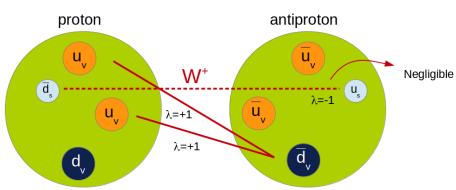


Motivation

In the EW sector of the SM, the W mass at loop level is

$$m_W^2 = \frac{\pi \alpha}{\sqrt{2}G_F \left(1 - m_W^2 / m_Z^2\right) \left(1 - \Delta r\right)}$$

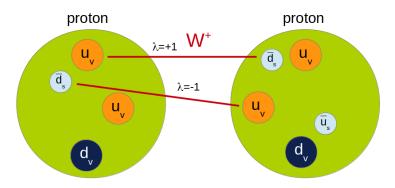
- > Δr reflects loop corrections, depends on m_t^2 and $\ln(m_H)$
- > The relation between m_W , m_t , and m_H provides stringent test of the SM and is sensitive to New Physics $rac{1}{5}$



w

w

W mass at the LHC


A pp collider is the most challenging environment to measure m_W , worse compared to e⁺e⁻ and $p\bar{p}$

In $p\bar{p}$ collisions W bosons are mostly produced in the same helicity state

Further QCD complications:

- Heavy-flavour-initiated processes
- W⁺, W⁻ and Z produced by different light flavour fractions
- Larger gluon-induced W production

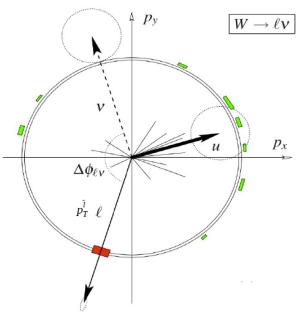
In *pp* collisions they are equally distributed between positive and negative helicity stes

Large PDF-induced W-polarisation uncertainty affecting the p_T lepton

First measurement of the W-boson mass in pp collisions at the LHC by ATLAS -EPJC 78 (2018) 110

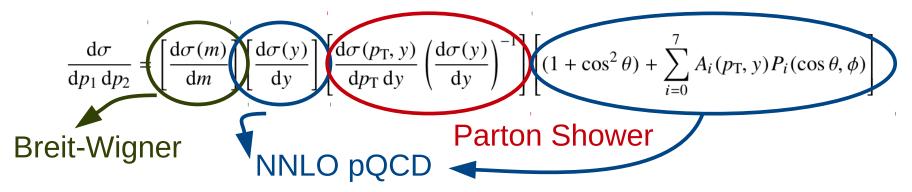
Measurement overview

- > Not possible to fully reconstruct m_W
- > Sensitive final state distributions: p_T^l , m_T and p_T^{miss}


$$\vec{p}_T^{miss} = -(\vec{p}_T^l + \vec{u}_T), m_T = \sqrt{2p_T^l p_T^{miss}(1 - \cos \Delta \phi)}$$

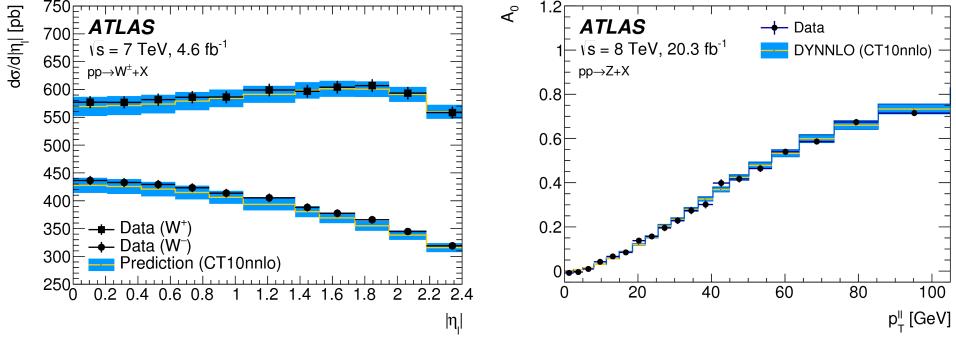
being \vec{u}_T the recoil

Benefit from the fully reconstructed mass in Z boson sample to validate the analysis and provide significant experimental and theoretical constraints


- Build the physics modelling by supplementing the MC samples with higher order corrections and fits to DY ancillary measurements
- > Validate the physics modelling and calibration by extraction m_Z from p_T^l and m_T in the Z sample

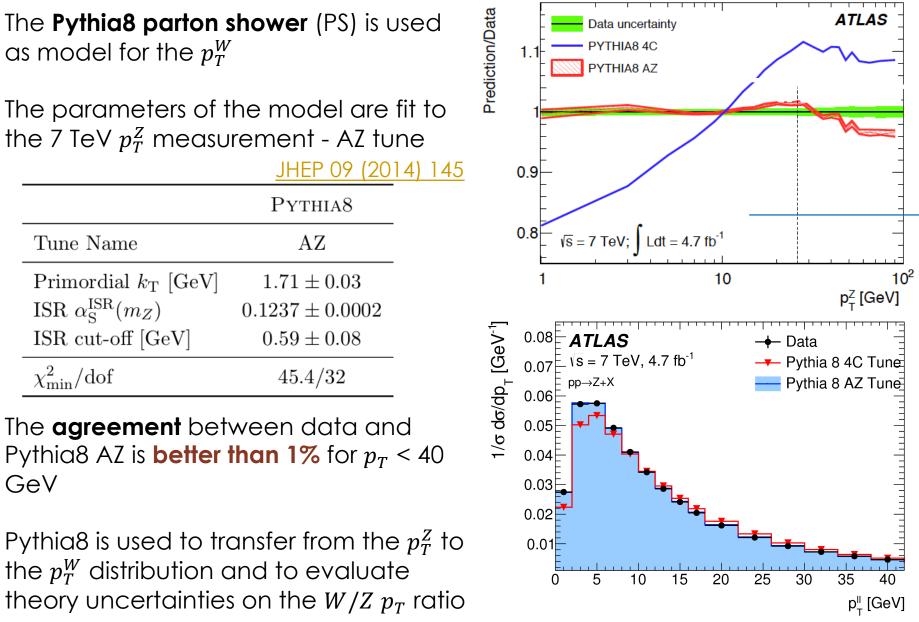
\blacktriangleright Extract m_W in several categories and combine

Physics modelling

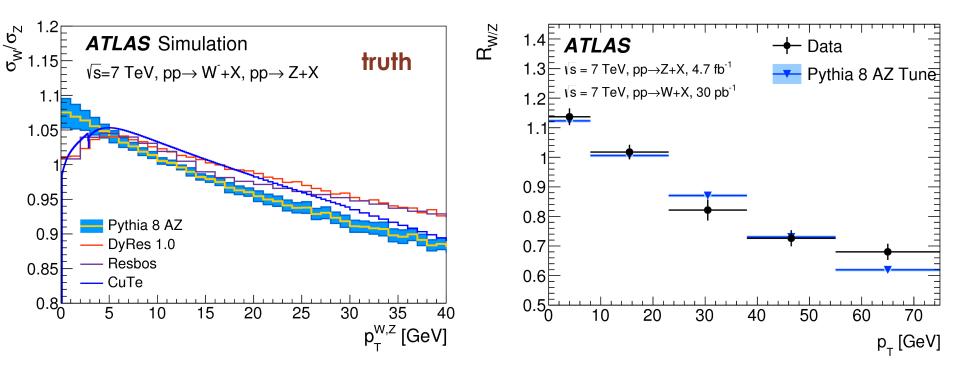

- We call 'physics modelling' the theoretical prediction used to extract the W mass from data, and the way theory uncertainties are addressed
- The DY cross section can be reorganised by factorising the dynamic of the boson production and the kinematic of the boson decay:

- This factorisation allows building a composite model, and using the most accurate model for each term
- Fundamental aspect of the model: the use of ancillary DY measurement for validation, fitting the free parameters of the model and assessing the uncertainties
- > Within the W mass analysis, further validation of the model is provided by Z mass fits, W boson control plots and compatibility of m_W categories

Rapidily and angular coefficients


- > The rapidity distribution and A_i coefficients modelled with **NNLO predictions** and the CT10nnlo PDF set
- PDF choice validated on the observed suppression of the strange quark in the W,Z cross-section data published by ATLAS - EPJC 77 (2017) 367

Satisfactory agreement between the theoretical predictions and the measurements: $\chi^2/dof = 45/34$ DYNNLO predictions validated by comparison to the A_i measurement at 8 TeV – <u>JHEP 08 (2016) 159</u>


7

Z transverse momentum

W transverse momentum

- > The Pythia8 AZ tune is fixed by the p_T^Z data extrapolate to W considering relative variations of the W and Z p_T distributions
- > Resummed predictions (DYRES, ResBos, CuTe) and Powheg MiNLO + Pythia8 were tried but they predict harder p_T^W spectrum for a given p_T^Z spectrum

The ratio of the W and Z p_T distributions has been measured – it shows that the extrapolation from Z to W p_T works ok

Summary of physics modelling uncertainties

	W-boson charge			W	+	W	_	Com	bined
	Kinematic distrib	oution		$p_{ ext{T}}^\ell$	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
	$\delta m_W [{ m MeV}]$								
	Fixed-order PI	OF uncertainty		13.1	14.9	12.0	14.2	8.0	8.7
	AZ tune			3.0	3.4	3.0	3.4	3.0	3.4
QUD	Charm-quark	mass		1.2	1.5	1.2	1.5	1.2	1.5
	Parton shower	$\mu_{\rm F}$ with heavy-flavour decorre	lation	5.0	6.9	5.0	6.9	5.0	6.9
	Parton shower	PDF uncertainty		3.6	4.0	2.6	2.4	1.0	1.6
	Angular coeffic	cients		5.8	5.3	5.8	5.3	5.8	5.3
	Total			15.9	18.1	14.8	17.2	11.6	12.9
		Decay channel	W -	→ ev	W -	$\rightarrow \mu \nu$	-		
		Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}			
		δm_W [MeV]					-		
EW		FSR (real)	< 0.1	< 0.1	< 0.1	< 0.1			
		Pure weak and IFI corrections	3.3	2.5	3.5	2.5			
		FSR (pair production)	3.6	0.8	4.4	0.8			
		Total	4.9	2.6	5.6	2.6	_		

Fixed-order PDF uncertainties are dominant:

- > PDF variations of CT10nnlo applied simultaneously to y_W , A_i and p_T^W distributions
- Envelope taken from CT14 and MMHT14 ~ 3.8 MeV
- > PDF uncertainties very similar between p_T^l and m_T but strongly anti-correlated between W⁺ and W⁻

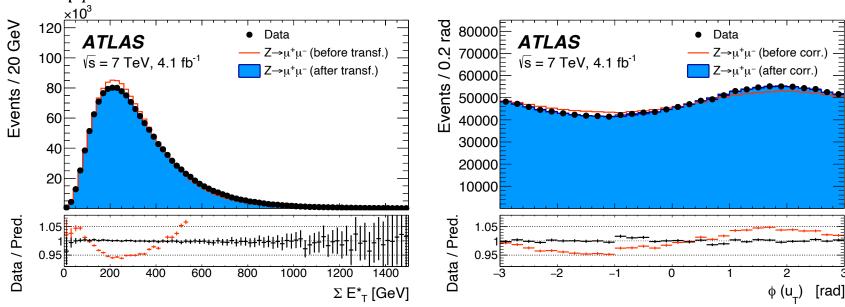
hadronic recoil

[GeV]

úт

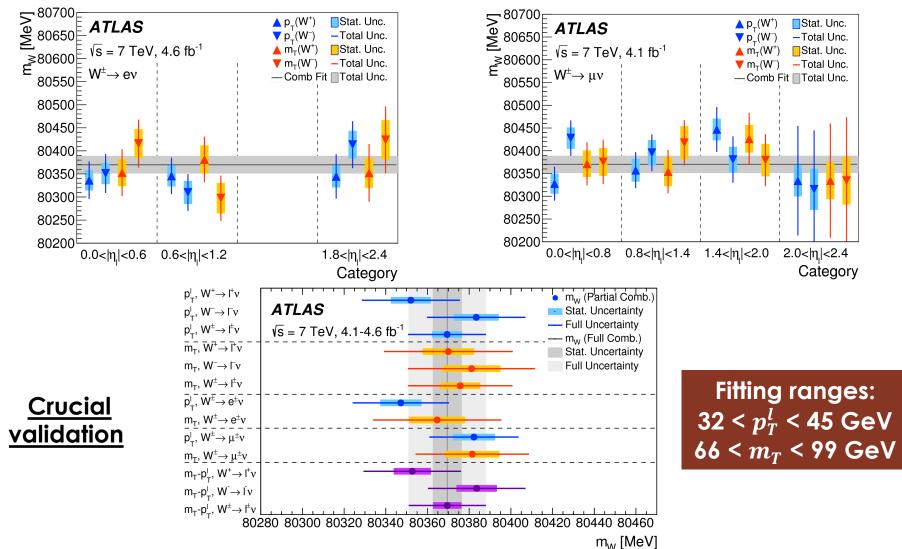
ATLAS

 $vs = 7 \text{ TeV}, 4.1 \text{ fb}^{-1}$

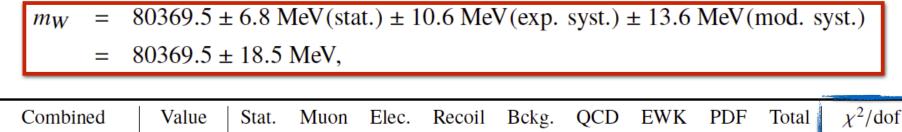

10

z

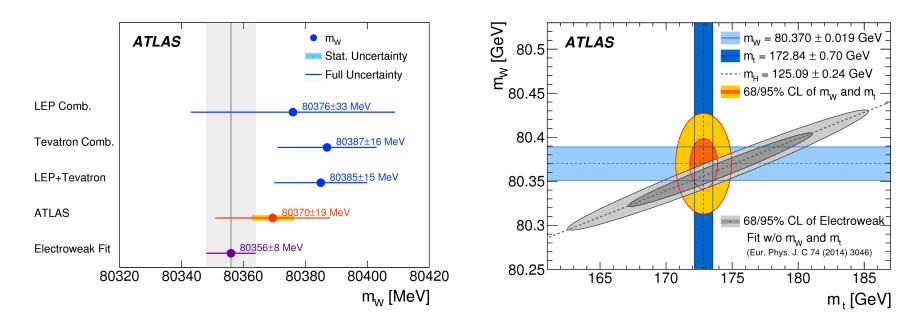
 \vec{p}_{T}


Recoil calibration

- The recoil u_T is the vector sum of the transverse energy of all the calorimeter clusters → a measure of p_T^W
- Calibration steps:
 - Correct pile-up multiplicity in MC to match the data
 - > Correct for residual differences in the $\sum E_T$ distribution
 - > Derive scale and resolution corrections from the p_T balance in Z events



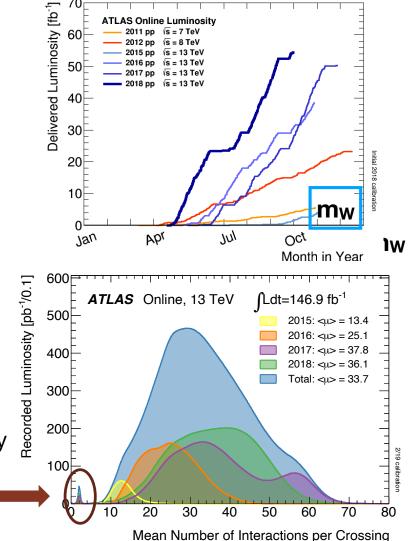
Consistency of the results


The consistency of the results was checked in different categories, but also in different pile-up and u_T bins

W mass results

						0					λ
categories	[MeV]	Unc.	of Comb.								
m_{T} - p_{T}^{ℓ} , W^{\pm} , e- μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

The result is consistent with the SM expectation, compatible with world average and competitive in precision with the CDF and D0 measurements

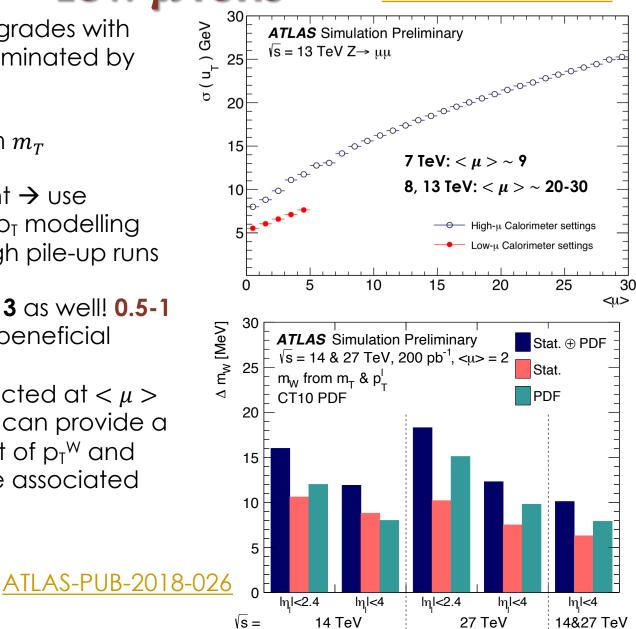

Prospects for improvements

 $m_W = 80369.5 \pm 6.8 \text{ MeV(stat.)} \pm 10.6 \text{ MeV(exp. syst.)} \pm 13.6 \text{ MeV(mod. syst.)}$

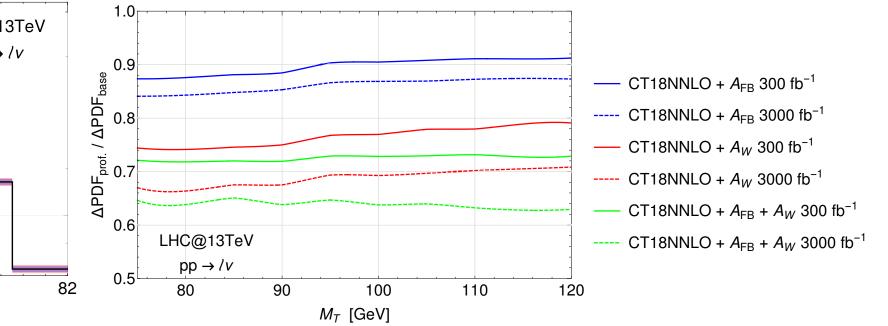
- Stat. uncertainty: add more data available
- Exp. uncertainty: improve the experimental precision calibration and reconstruction
- Theory-related uncertainties: reduce PDFs and modelling uncertainties by adding more information from auxiliary measurements

In November 2017 special low pile-up
runs of a few days:
• ~250 pb⁻¹ @5 TeV
$$\mu = 0.5 ~ 4.0$$

/emt er 2017 special dow pile-up runs of a few days:
n Ro venter 2017 special dow pile-up runs of a few day
~150 pb-1 @13 TeV mu = 2 (levelled)
= 190 pb⁻¹ @13 TeV mu = 2 (levelled)
8: ~ 190 pb⁻¹ @13 TeV mu = 2 (levelled)


 $= 0.010, 100 = 1.010 T_{\rm e} (100 = 0.000)$

13


NS <u>ATLAS-PUB-2017-021</u>

- ➤ The recoil resolution degrades with higher pileup → fully dominated by p_T lepton
- > Increase sensitivity from m_T
- Direct p^W_T measurement → use information to reduce p_T modelling uncertainties also in high pile-up runs
- Ideally low μ run in Run 3 as well! 0.5-1
 fb⁻¹ at < μ > ~ 2 highly beneficial
- ~300 pb⁻¹ already collected at < μ >
 ~1 by ATLAS and CMS can provide a new ~1% measurement of p_T^W and significantly reduce the associated uncertainty

Implications on m_w measurement

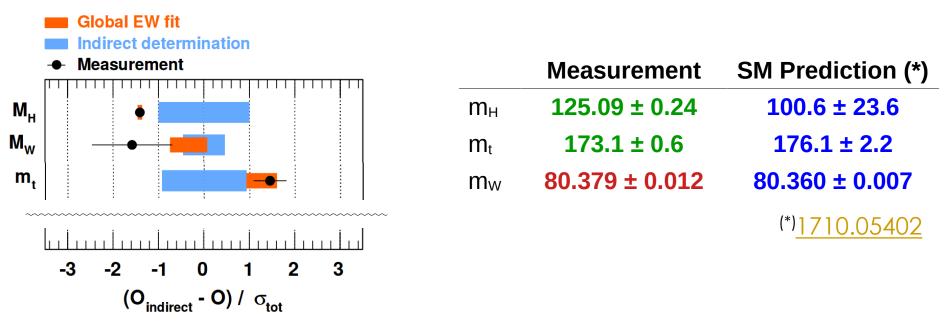
- > Reduction of PDF uncertainties crucial for SM precision measurements \rightarrow one of the largest systematic on m_W comes from PDFs
- The potential of the lepton-charge (A_w) and the forward-backward asymmetries (A_{FB}) in constraining PDFs has been investigated - <u>Nuclear Physics</u> <u>B 968 (2021) 115444</u>, <u>JHEP 10 (2019) 176</u>
- Combination of A_{FB} and A_W 300 (3000) fb⁻¹ reduces PDF uncertainty 28% (46%)

<u>Caveat</u>: assessing the improvement on m_w requires a refined analysis of normalized distributions, where reduction of uncertainty is far more moderate

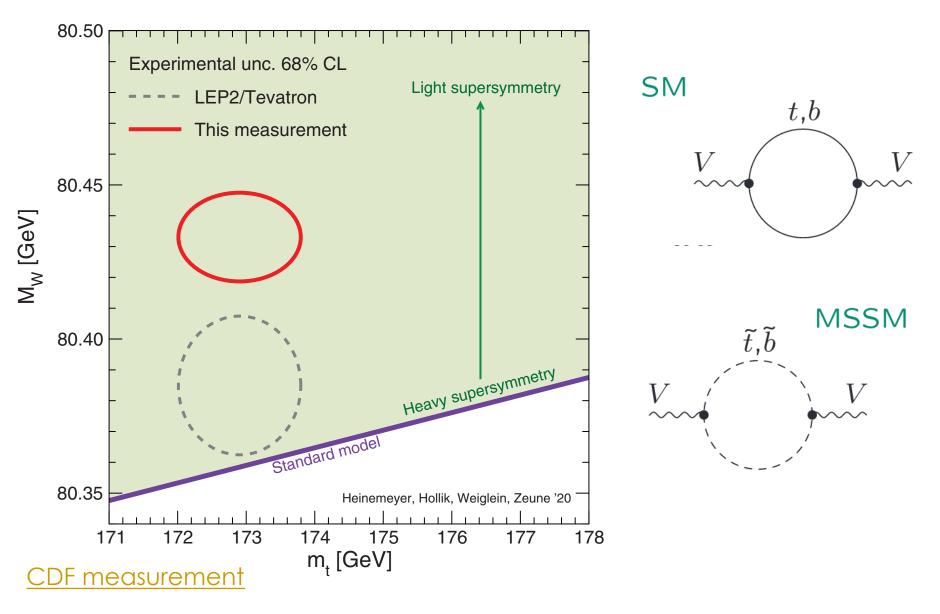
Conclusion and perspectives

- > The first LHC measurement of m_W = 80370 \pm 19 MeV EPJC 78 (2018) 110
- The central value is consistent with the SM prediction and with the current world average value
- > 7 TeV re-analysis currently ongoing in ATLAS
- More data are available with the 8 and 13 TeV data sets which can be used to improve the analysis and to further constrain the PDFs
- Experimentally, with the increase of the statistics in Z sample, most of the calibration uncertainties can be reduced
- More work is needed on the recoil with the increasing pileup low pile-up runs needed
- The measurement is dominated by theoretical modelling uncertainties -> a fully consistent model within one simulation tool is needed
- > Simultaneous fit to all the A_i and dedicated analysis on m_W and $\sin^2 \theta_W$ determination ongoing... STAY TUNED!

THANKS FOR YOUR ATTENTION! ANY QUESTIONS?



Backup Slides


Motivation

The global fit of EW observables dominated by the m_w measurement

- The measurements of the Higgs and top-quark mass are currently more precise than their indirect determination from the the global fit of EW observables -> improving precision will not increase sensitivity to new physics
- ► Indirect determination of m_w (± 7 MeV) is more precise than experimental measurements \rightarrow call for a $\delta m_w^{exp} \sim 5$ MeV
- The W mass is nowadays the crucial measurement to improve sensitivity of the global EW fits to new physics

MSSM constraints from the W mass

Selection cuts

Lepton selection:

- > Isolated muons (track-based), $|\eta| < 2.4$
- > Isolated electrons (track+calorimeter-based), tight identified, 0.0 < $|\eta|$ < 1.2 and 1.8 < $|\eta|$ < 2.4
- Kinematic requirements:
 - ▶ $p_T^l > 30 \, \text{GeV}$
 - \succ $m_T > 60 \, \mathrm{GeV}$
 - MET > 30 GeV
 - ▶ Recoil $u_T < 30 \text{ GeV}$

~6/8M events observed in the electron/muon channel

$ \eta_{\ell} $ range	$0\!-\!0.8$	0.8 - 1.4	1.4 - 2.0	2.0 - 2.4	Inclusive
	$1283332\ 1001592$	$1063131\769876$	$1377773\ 916163$	$885582\547329$	$\frac{4609818}{3234960}$
$ \eta_{\ell} $ range	0 - 0.6	0.6 - 1.2		1.8 - 2.4	Inclusive

Template fit

- ► **Template fit approach:** compute the p_T^l and m_T distributions for different assumed values of $m_W \rightarrow \chi^2$ minimisation gives the best fit template
- \succ Predictions for different m_W values are obtained by reweighting the boson invariant mass distribution according to the Breit-Wigner parametrisation

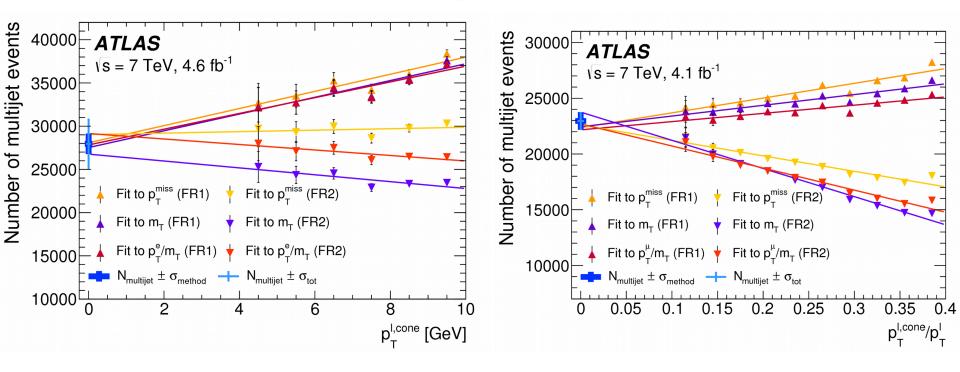
$$\frac{d\sigma}{dm} \propto \frac{m^2}{(m^2 - m_V^2)^2 + m^4 \Gamma_V^2/m_V^2}$$

 p_T^l has a Jacobin edge at $m_W/2$

 m_T has a Jacobin edge at m_W

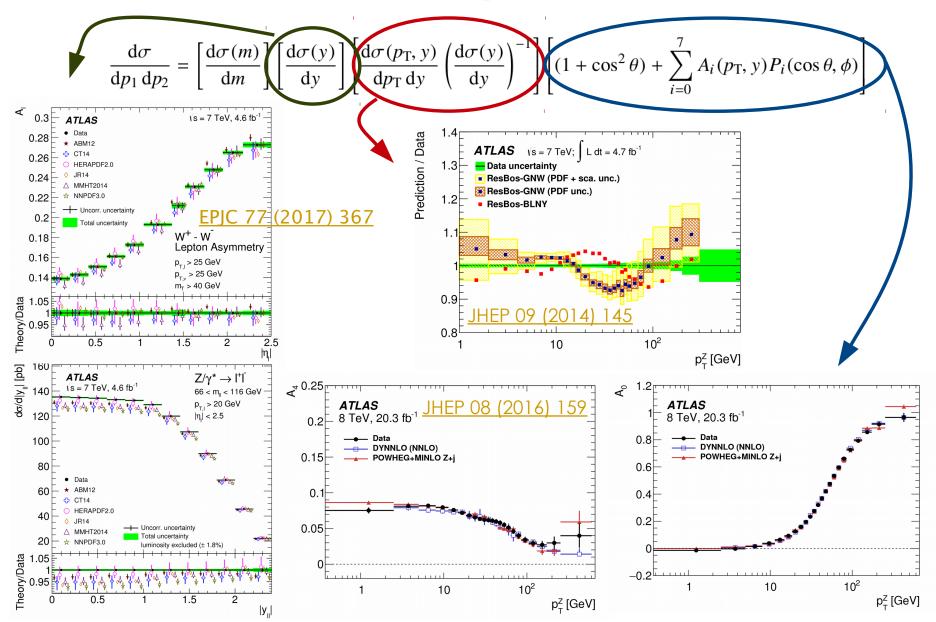
22

Backgrounds


- Data-driven multijet estimate:
 - Define background-dominated fit region with relaxed cuts of the event selection
 - > Template fits in these regions to 3 observables: p_T^{miss} , m_T and p_T^l/m_T
 - Control regions obtained by inverting the lepton isolation requirements

Events / 2 GeV	10 ⁷ 10 ⁶ 10 ⁵ 10 ⁴ 10 ³ 10 ² 10	ATL \s = 7		, 4.1 1	··· · · · ·			W. Μι	tta result → μν + ltijets ⊦ single		
Data/Fit	1.05								┝┈╋┧┈		
ita/	1∰_∓	****					8-18- ¹⁸⁷ 18-1	•+ [™] +⊥	····		
Da	0.95	• • • • • • •						······	• † ••••••••	1	
	0	10	20	30	40	50	60	70	80	90	100
									p_mis	ss [Ge	eV]

$W \to \mu \nu$						
Category	$W \rightarrow \tau \nu$	$Z \to \mu \mu$	$Z \to \tau \tau$	Top	Dibosons	Multijet
$W^{\pm} \ 0.0 < \eta < 0.8$	1.04	2.83	0.12	0.16	0.08	0.72
$W^{\pm} 0.8 < \eta < 1.4$	1.01	4.44	0.11	0.12	0.07	0.57
$W^{\pm} 1.4 < \eta < 2.0$	0.99	6.78	0.11	0.07	0.06	0.51
$W^{\pm} 2.0 < \eta < 2.4$	1.00	8.50	0.10	0.04	0.05	0.50
W^{\pm} all η bins	1.01	5.41	0.11	0.10	0.06	0.58
W^+ all η bins	0.99	4.80	0.10	0.09	0.06	0.51
W^- all η bins	1.04	6.28	0.14	0.12	0.08	0.68
		$W \rightarrow$	$e\nu$			
Category	$W \to \tau \nu$	$Z \to ee$	$Z \to \tau \tau$	Top	Dibosons	Multijet
$W^{\pm} \ 0.0 < \eta < 0.6$	1.02	3.34	0.13	0.15	0.08	0.59
$W^{\pm} 0.6 < \eta < 1.2$	1.00	3.48	0.12	0.13	0.08	0.76
$W^{\pm} 1.8 < \eta < 2.4$	0.97	3.23	0.11	0.05	0.05	1.74
W^{\pm} all η bins	1.00	3.37	0.12	0.12	0.07	1.00
W^+ all η bins	0.98	2.92	0.10	0.11	0.06	0.84
W^- all η bins	1.04	3.98	0.14	0.13	0.08	1.21


Kinematic distribution		p	ℓ_{T}			m	Τ	
Decay channel	W -	$\rightarrow e\nu$	- W -	$\rightarrow \mu \nu$	W –	$\rightarrow e\nu$	W –	$\rightarrow \mu \nu$
W-boson charge	W^+	W^{-}	W^+	W^{-}	W^+	W^-	W^+	W^-
$\delta m_W [{ m MeV}]$								
$W \to \tau \nu$ (fraction, shape)	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.3
$Z \to ee$ (fraction, shape)	3.3	4.8	_	_	4.3	6.4	_	—
$Z \to \mu \mu$ (fraction, shape)		_	3.5	4.5	_	_	4.3	5.2
$Z \to \tau \tau$ (fraction, shape)	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.3
WW, WZ, ZZ (fraction)	0.1	0.1	0.1	0.1	0.4	0.4	0.3	0.4
Top (fraction)	0.1	0.1	0.1	0.1	0.3	0.3	0.3	0.3
Multijet (fraction)	3.2	3.6	1.8	2.4	8.1	8.6	3.7	4.6
Multijet (shape)	3.8	3.1	1.6	1.5	8.6	8.0	2.5	2.4
Total	6.0	6.8	4.3	5.3	12.6	13.4	6.2	7.4

Multijet background estimate

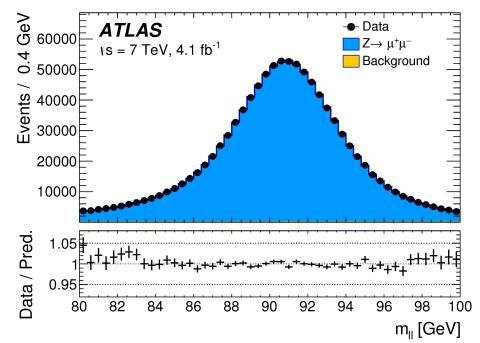
- > Novel technique for the multijet background estimation
- The multijet background is determined with template fits, and by extrapolation of the lepton isolation to the signal region
- Both normalisation and shape are extrapolated

Drell-Yan ancillary measurements

Muon calibration

Muon identification using combined ID+MS tracks

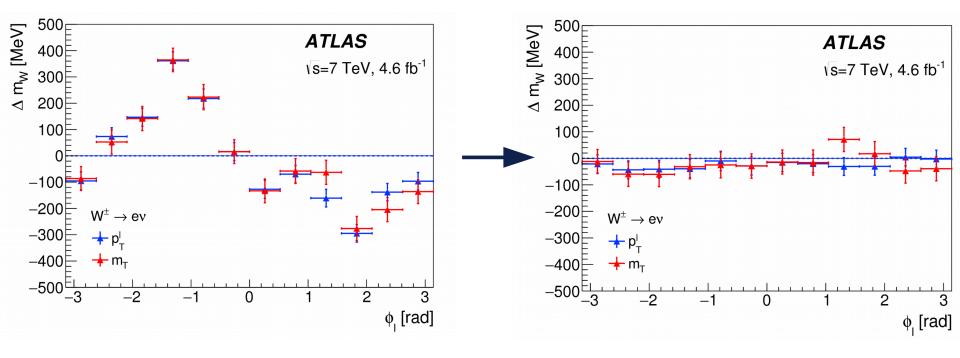
EPJC 74 (2014) 3130

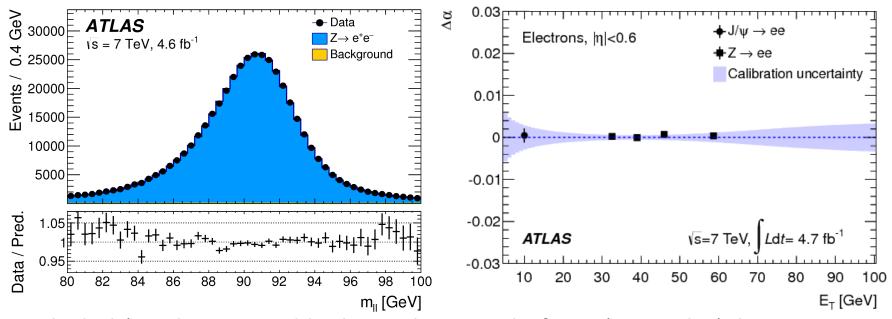

- Parametrisation of momentum corrections:

$$p_{\mathrm{T}}^{\mathrm{corr}} = p_{\mathrm{T}}^{\mathrm{MC}} \times \frac{1 + \alpha(\eta, \phi)}{1 + q \cdot \delta(\eta, \phi) \cdot p_{\mathrm{T}}^{\mathrm{MC}}} \left[1 + \beta_{\mathrm{curv}}(\eta) \cdot G(0, 1) \cdot p_{\mathrm{T}}^{\mathrm{MC}} \right]$$

 $\sim \alpha$ = radial bias (scale), β = resolution correction and δ = sagitta bias

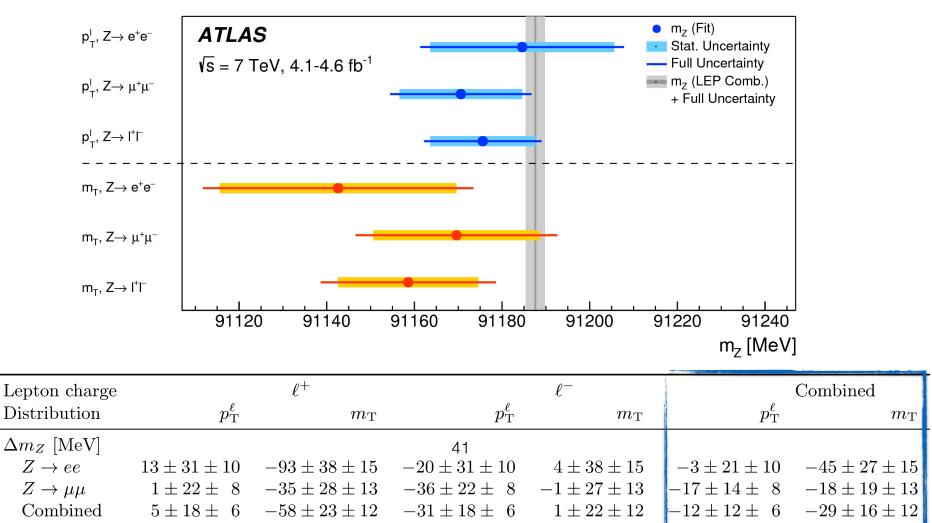
m _T 8.8
0.0
0.0
1 0
1.2
0.6
2.2
3.2
9.7


Charge-dependent corrections


Electron calibration EPJC 74 (2014) 3071

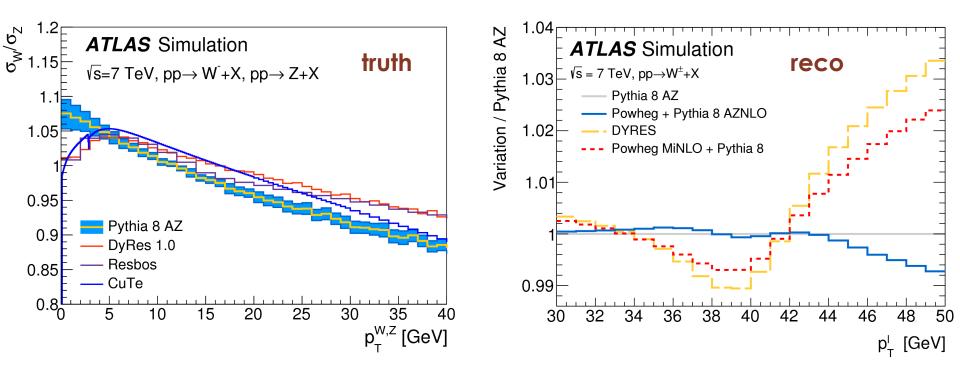
27

- > Electron measurement: energy from the EM calorimeter, η and ϕ from the ID
- > Scale and resolution corrections derived from the Z \rightarrow e⁺e⁻ line shape
- $\blacktriangleright \phi$ dependent corrections are important for the Z to W extrapolation
- > The p_T^{miss} requirement (which is only only used for W events) induces a ϕ asymmetry in the selected W events distribution

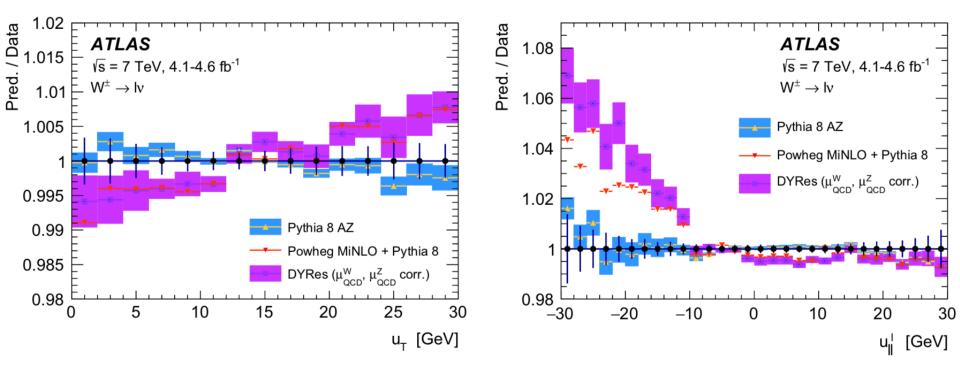

28

> Exclude bin 1.2 < $|\eta|$ < 1.82 – largest amount of passive material

$ \eta_{\ell} $ range	[0.0	0,0.6]	[0.	6, 1.2]	[1.82	2, 2.4]	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]								
Energy scale	10.4	10.3	10.8	10.1	16.1	17.1	8.1	8.0
Energy resolution	5.0	6.0	7.3	6.7	10.4	15.5	3.5	5.5
Energy linearity	2.2	4.2	5.8	8.9	8.6	10.6	3.4	5.5
Energy tails	2.3	3.3	2.3	3.3	2.3	3.3	2.3	3.3
Reconstruction efficiency	10.5	8.8	9.9	7.8	14.5	11.0	7.2	6.0
Identification efficiency	10.4	7.7	11.7	8.8	16.7	12.1	7.3	5.6
Trigger and isolation efficiencies	0.2	0.5	0.3	0.5	2.0	2.2	0.8	0.9
Charge mismeasurement	0.2	0.2	0.2	0.2	1.5	1.5	0.1	0.1
Total	19.0	17.5	21.1	19.4	30.7	30.5	14.2	14.3

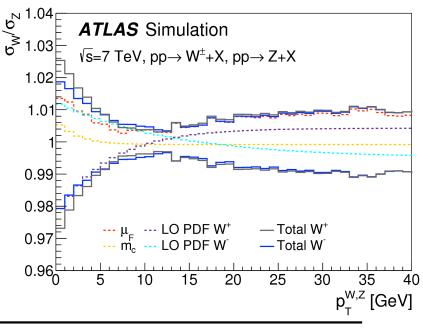

Z mass measurement

Results are consistent with the combined LEP value of m_Z within experimental uncertainties

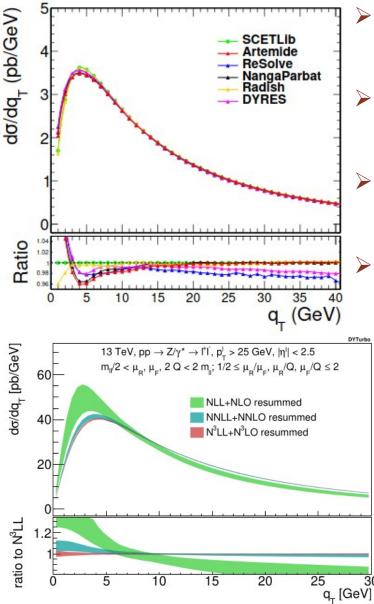

W transverse momentum

- > The Pythia8 AZ tune is fixed by the p_T^Z data extrapolate to W considering relative variations of the W and Z p_T distributions
- > Resummed predictions (DYRES, ResBos, CuTe) and Powheg MiNLO + Pythia8 were tried but they predict harder p_T^W spectrum for a given p_T^Z spectrum

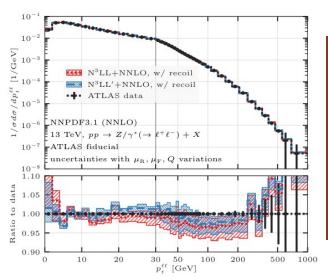
> The effect on m_W of using the "formally" more accurate predictions has a significant impact on the W-mass value of the order of 50-100 MeV


- > To validate the choice of Pythia8 AZ for the baseline, use u_{ll}^{\dagger} distribution which is very sensitive to the underlying p_T^W distribution
- It provides a data-driven validation of the accuracy of our Pythia8 AZ model and compare to other calculations

NLL-resummed predictions and Powheg MiNLO strongly disfavoured by the data, PS MC (Pythia8, Herwig7 and Powheg+Pythia8) in good agreement


p_T^W uncertainties

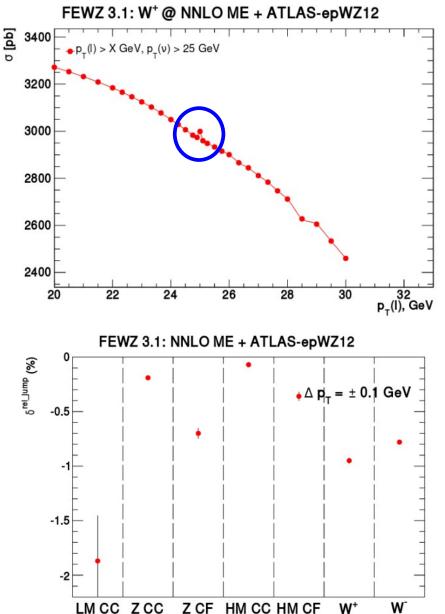
- Heavy flavour initiated production introduces differences between Z and W and determines a harder p_T spectrum
- ▶ Higher order QCD corrections expected to be largely correlated between W and Z produced by light quarks → consider relative variations on p_T^W/p_T^Z under uncertainty variations
- Uncertainty: heavy quark mass variations (m_c ± 0.5 GeV), factorisation scale variations in the QCD ISR (separately for light and heavy-quark induced production)
- Largest deviation of p_T^W/p_T^Z for the PS PDF variation: CTEQ6L1 LO (nominal) to CT14lo, MMHT14lo and NNPDF23lo



W-boson charge	W	/+	V	V^{-}	Cor	nbined
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6

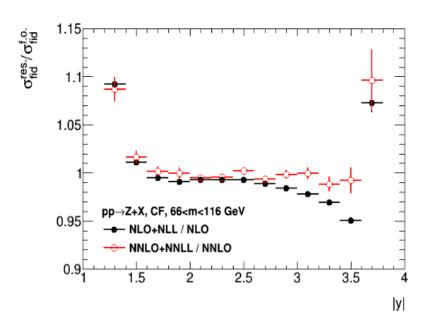
Modelling of the p_T^W

- Ongoing effort in the LHC EW WG to benchmark various different predictions of W/Z p_T ratio
- Aimed at defining a common baseline where all the predictions agree
- Recently q_T-resummation predictions have reached N³LL' accuracy
- However, high-order perturbative accuracy alone is not sufficient for a precise prediction of the W/Z p_T ratio

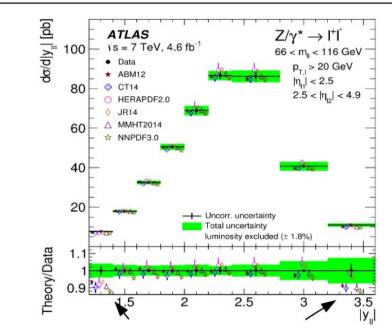


30

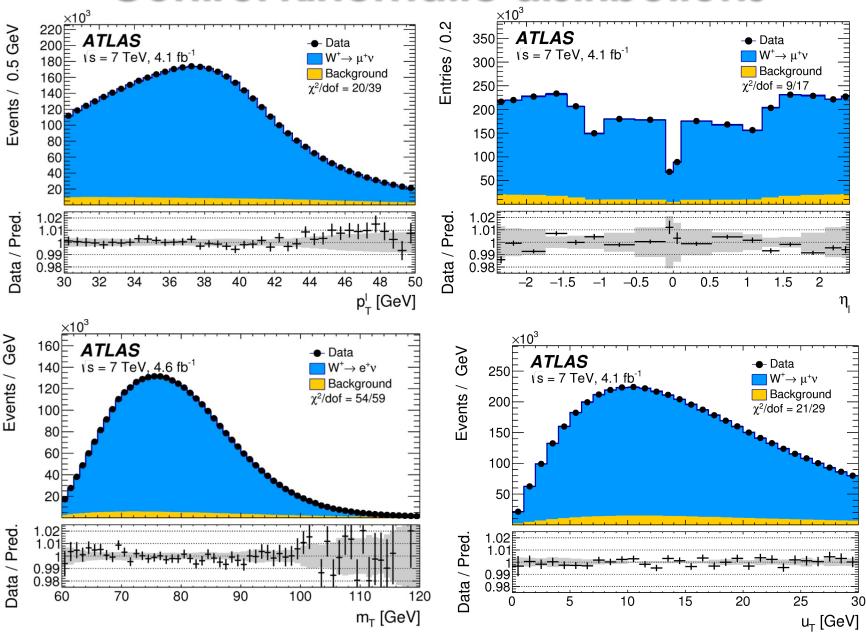
- **Heavy flavours** initiated productions
- Massive quark effects
- Non perturbative QCD

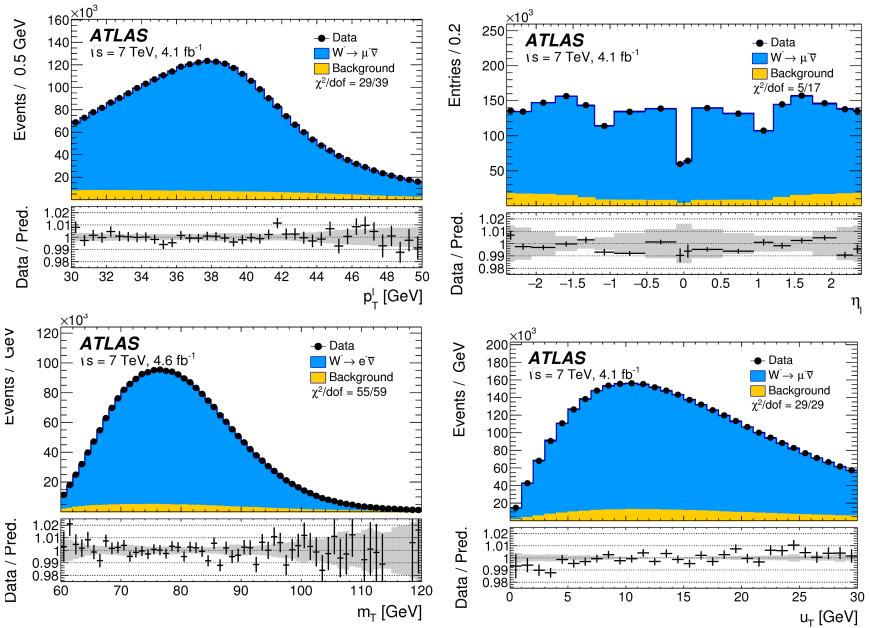

Fiducial power corrections

- The usage of W asymmetry and Z rapidity measurements to reduce PDF uncertainties for m_W is limited by symmetric fiducial cuts
- Perturbative calculations are affected by enhanced logarithms, connected to the linear dependence of acceptance on the boson p_T e.g. when approaching the limit p_{T,2} → p_{T,1} they become unreliable
- The effect is larger when p_T ~ m_{II}/2, at large values of cos θ*, as in the CF kinematic region
- Need to resum fiducial power corrections in order to get meaningful predictions
- <u>2106.08329</u>, <u>2104.02400</u>, <u>2006.11382</u>, <u>2001.02933</u>



Fiducial power corrections A. Guida's talk @DI\$2022


- Preliminary study, including q_Tresummation in PDF fits to ATLAS W,Z rapidity measurements
- Corrections are significant compared to the experimental accuracy, and gives large improvement in χ²
- Striking example in the Z CF region, with 10% corrections in the first/last bins


Dataset	CT14	CT14
	published	NNLL
ATLAS low mass Z rapidity 2011	11/6	8.7 / 6
ATLAS peak CC Z rapidity 2011	16 / 12	10 / 12
ATLAS peak CF Z rapidity 2011	10/9	5.6/9
ATLAS high mass CC Z rapidity 2011	6.3 / 6	6.3 / 6
ATLAS high mass CF Z rapidity 2011	5.1/6	5.4/6
ATLAS W- lepton rapidity 2011	8.9 / 11	8.8 / 11
ATLAS W+ lepton rapidity 2011	10/11	10/11
Correlated χ^2	39	35
Log penalty χ^2	-4.11	-3.60
Total χ^2 / dof	103 / 61	86 / 61
χ^2 p-value	0.00	0.02

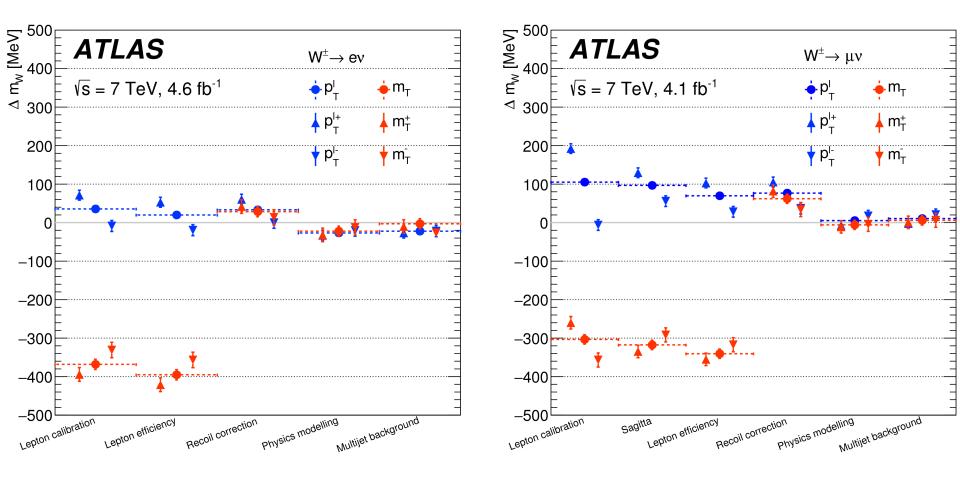
Control kinematic distributions

Control kinematic distributions

Measurement strategy - categories

- > A crucial aspect of the measurement design is the categorisation
 - Events are categorised according to their type and kinematic range
 - Validate detector calibration and physics modelling and improve accuracy
- ➤ The various set of categories are sensitive to different experimental and theoretical biased → the consistency of m_W across categories validate our knowledge of the detector and of QCD
- The experimental and theoretical uncertainties have different correlation or anticorrelation patterns
 - \succ The categorisation allows to constrain them and increase the sensitivity to m_W
- \succ Categories used for the combination (28 in total):

Decay channel	$W \to e \nu$	$W \to \mu \nu$
Kinematic distributions Charge categories	$p_{\rm T}^{\ell}, m_{\rm T} \ W^+, W^-$	$p_{\rm T}^{\ell}, m_{\rm T} \ W^+, W^-$
$ \eta_{\ell} $ categories	[0, 0.6], [0.6, 1.2], [1.8, 2.4]	[0, 0.8], [0.8, 1.4], [1.4, 2.0], [2.0, 2.4]


Measurement categories

Channel	m_W	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total
$m_{\mathrm{T}} ext{-}\mathrm{Fit}$	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.
$W^+ \rightarrow \mu \nu, \eta < 0.8$	80371.3	29.2	12.4	0.0	15.2	8.1	9.9	3.4	28.4	47.1
$W^+ \to \mu \nu, 0.8 < \eta < 1.4$	80354.1	32.1	19.3	0.0	13.0	6.8	9.6	3.4	23.3	47.6
$W^+ \to \mu \nu, 1.4 < \eta < 2.0$	80426.3	30.2	35.1	0.0	14.3	7.2	9.3	3.4	27.2	56.9
$W^+ \to \mu \nu, 2.0 < \eta < 2.4$	80334.6	40.9	112.4	0.0	14.4	9.0	8.4	3.4	32.8	125.5
$W^- ightarrow \mu u, \eta < 0.8$	80375.5	30.6	11.6	0.0	13.1	8.5	9.5	3.4	30.6	48.5
$W^- \rightarrow \mu\nu, 0.8 < \eta < 1.4$	80417.5	36.4	18.5	0.0	12.2	7.7	9.7	3.4	22.2	49.7
$W^- \rightarrow \mu\nu, 1.4 < \eta < 2.0$	80379.4	35.6	33.9	0.0	10.5	8.1	9.7	3.4	23.1	56.9
$W^- \rightarrow \mu\nu, 2.0 < \eta < 2.4$	80334.2	52.4	123.7	0.0	11.6	10.2	9.9	3.4	34.1	139.9
$W^+ \rightarrow e\nu, \eta < 0.6$	80352.9	29.4	0.0	19.5	13.1	15.3	9.9	3.4	28.5	50.8
$W^+ \to e\nu, 0.6 < \eta < 1.2$	80381.5	30.4	0.0	21.4	15.1	13.2	9.6	3.4	23.5	49.4
$W^+ \to e\nu, 1, 8 < \eta < 2.4$	80352.4	32.4	0.0	26.6	16.4	32.8	8.4	3.4	27.3	62.6
$W^- ightarrow e u, \eta < 0.6$	80415.8	31.3	0.0	16.4	11.8	15.5	9.5	3.4	31.3	52.1
$W^- \rightarrow e\nu, 0.6 < \eta < 1.2$	80297.5	33.0	0.0	18.7	11.2	12.8	9.7	3.4	23.9	49.0
$W^- \rightarrow e\nu, 1.8 < \eta < 2.4$	80423.8	42.8	0.0	33.2	12.8	35.1	9.9	3.4	28.1	72.3
$p_{\mathrm{T}} ext{-}\mathrm{Fit}$										
$W^+ \to \mu \nu, \eta < 0.8$	80327.7	22.1	12.2	0.0	2.6	5.1	9.0	6.0	24.7	37.3
$W^+ \to \mu \nu, 0.8 < \eta < 1.4$	80357.3	25.1	19.1	0.0	2.5	4.7	8.9	6.0	20.6	39.5
$W^+ \to \mu \nu, 1.4 < \eta < 2.0$	80446.9	23.9	33.1	0.0	2.5	4.9	8.2	6.0	25.2	49.3
$W^+ \to \mu \nu, 2.0 < \eta < 2.4$	80334.1	34.5	110.1	0.0	2.5	6.4	6.7	6.0	31.8	120.2
$W^- ightarrow \mu u, \eta < 0.8$	80427.8	23.3	11.6	0.0	2.6	5.8	8.1	6.0	26.4	39.0
$W^- \rightarrow \mu\nu, 0.8 < \eta < 1.4$	80395.6	27.9	18.3	0.0	2.5	5.6	8.0	6.0	19.8	40.5
$W^- \rightarrow \mu\nu, 1.4 < \eta < 2.0$	80380.6	28.1	35.2	0.0	2.6	5.6	8.0	6.0	20.6	50.9
$W^- \rightarrow \mu\nu, 2.0 < \eta < 2.4$	80315.2	45.5	116.1	0.0	2.6	7.6	8.3	6.0	32.7	129.6
$W^+ \rightarrow e\nu, \eta < 0.6$	80336.5	22.2	0.0	20.1	2.5	6.4	9.0	5.3	24.5	40.7
$W^+ \to e\nu, 0.6 < \eta < 1.2$	80345.8	22.8	0.0	21.4	2.6	6.7	8.9	5.3	20.5	39.4
$W^+ \to e\nu, 1, 8 < \eta < 2.4$	80344.7	24.0	0.0	30.8	2.6	11.9	6.7	5.3	24.1	48.2
$W^- \to e\nu, \eta < 0.6$	80351.0	23.1	0.0	19.8	2.6	7.2	8.1	5.3	26.6	42.2
$W^- \rightarrow e\nu, 0.6 < \eta < 1.2$	80309.8	24.9	0.0	19.7	2.7	7.3	8.0	5.3	20.9	39.9
$W^- \rightarrow e\nu, 1.8 < \eta < 2.4$	80413.4	30.1	0.0	30.7	2.7	11.5	8.3	5.3	22.7	51.0

40

Summary of corrections

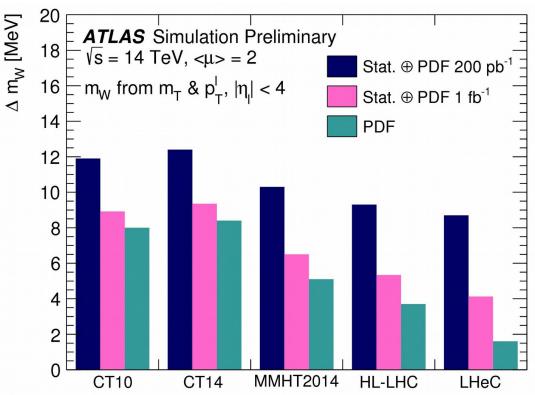
- After all the corrections are applied, consistent results are achieved between different channels, observables, categories, charges
- > Only after, results were unblinded

Prospects and challenges

ATLAS W mass at 7 TeV

Combination	Weight
Electrons	0.427
Muons	0.573 0.144
$m_{ m T} \ p_{ m T}^\ell$	$0.144 \\ 0.856$
W^+	0.519
W^{-}	0.481

- The lepton p_T distribution dominates over m_T already with 7 teV data
- Muon channel more important than electron channel

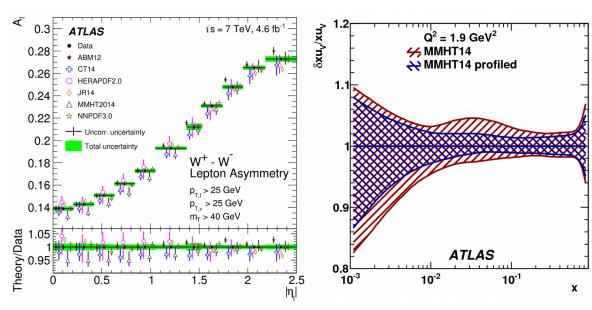

- > Two possible paths for future measurements:
 - Standard high pileup data, measurement dominated by lepton p_T → Challenges: W/Z p_T modelling, lepton p_T calibration
 - > Low pileup data, measurement dominated by $m_T \rightarrow$ Challenges: recoil calibration
- Orthogonal approaches, with different dominant uncertainties
- Should be both pursued, will benefit from the combination

Prospects for m_w at the HL-LHC

- Increased acceptance provided by the new inner detector in ATLAS (ITK) extends the coverage up to $|\eta| < 4$
- This allows further constraints on PDFs from cross section measurements
- With 1 fb⁻¹ of low pileup data
 (< µ > ~ 2) likely to reach ~6
 MeV of stat+PDF uncertainty
- LHeC/EIC ep collisions would largely reduce PDF uncertainties (< 2 MeV)

ATLAS-PUB-2018-026

42

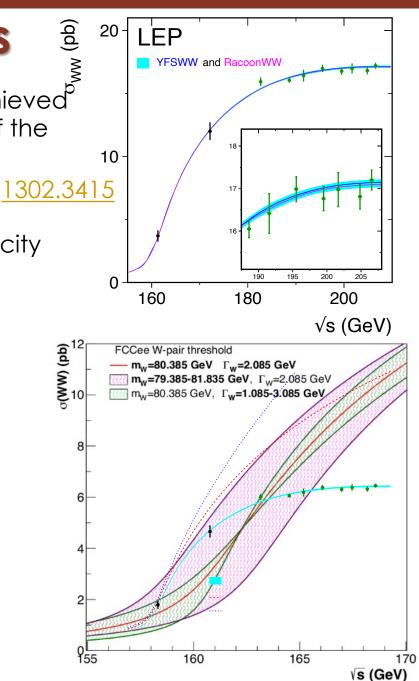

m_w at the LHC with high pileup data

The statistical uncertainty is expected to be reduced by factors of 2 to 7 by analysing 8 and 13 TeV data sets

\sqrt{s}	7 TeV	8 TeV	13 TeV
Luminosity	~4.5 fb ⁻¹	~20 fb ⁻¹	~140 fb ⁻¹
Events	1.5.107	8.0·10 ⁷	8.4·10 ⁸
Stat. Unc. [MeV]	7	3	1

PDF uncertainties will be reduced by the incluion of the latest HERA and W asymmetry data in the global PDF fits (expected a ~30% reduction)

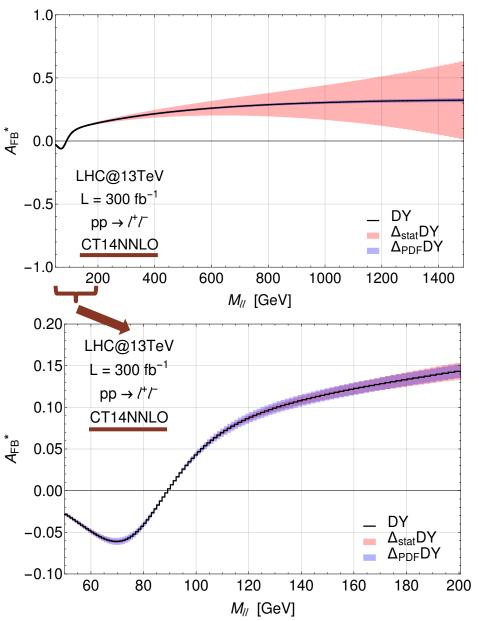
- EW uncertainties can be largely reduced by including available HO corrections
- > p_T^W can be reduced by using analytic resummation at NNLL (if calculations improve agreement with the data)
- Muon calibration can be improved using J/ψ data



m_w at future colliders

- The ultimate precision on m_w can be achieved^p at e⁺e⁻ colliders trough an energy scan of the WW production threshold
- Near threshold, the WW cross section is proportional to the non-relativistic W velocity

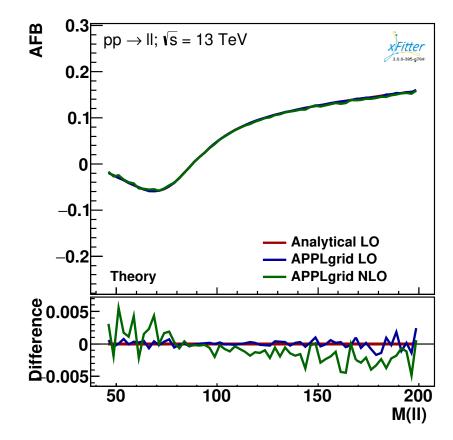
1306.6352 $\sigma(WW) \propto \beta_W$

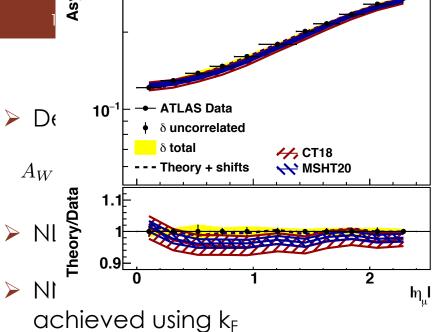

- ILC Giga-Z program:
 - Energy scan 160 170 GeV
 - $\succ \delta m_W = 6-7 \text{ MeV}$
- ➢ FCC-ee WW program:
 - $\succ \delta m_W = 0.5 \text{ MeV}$
 - Dominated by statistical uncertainties
- Dominant uncertainties:
 - Initial state QED corrections
 - Parametrisation of cross section near threshold

Reducing PDF uncertainties

- > Drell-Yan data provide high sensitivity to PDFs
- They feature small systematics (both theoretical and experimental), high statistical precision and good control of correlations
- Recent studies have established the remarkable potential of less traditional observables such as:
 - the forward-backward asymmetry (A_{FB}) <u>JHEP 10 (2019) 176</u>
 - the A₀ angular coefficient Phys. Lett. B 821 (2021) 136613
- The potential of the lepton-charge asymmetry (A_w) in constraining PDFs has been also investigated - <u>Nuclear Physics B 968 (2021) 115444</u>
- The impact of improving the PDF systematic on the experimental sensitivity of W' and Z' searches at the LHC has been studied - <u>JHEP 02 (2022) 179</u>
- Benchmark model: 4-Dimensional Composite Higgs Model (4DCHM) realization of the the minimal composite Higgs model – <u>JHEP 04 (2012) 042</u>, <u>Nucl. Phys. B 719 (2005) 165</u>
- > Two parameters of interest: the compositeness scale f and the coupling of the new resonance g_{ρ}

Drell-Yan asymmetry measurements

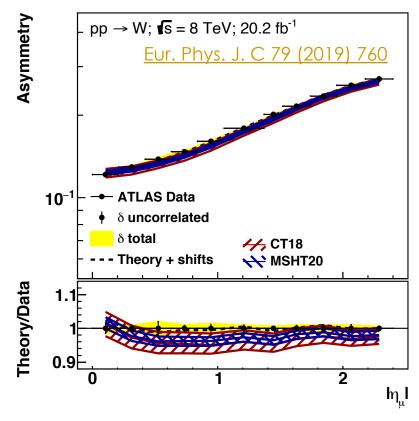

At LO, angle defined w.r.t. the direction of the boost of the di-lepton system


46

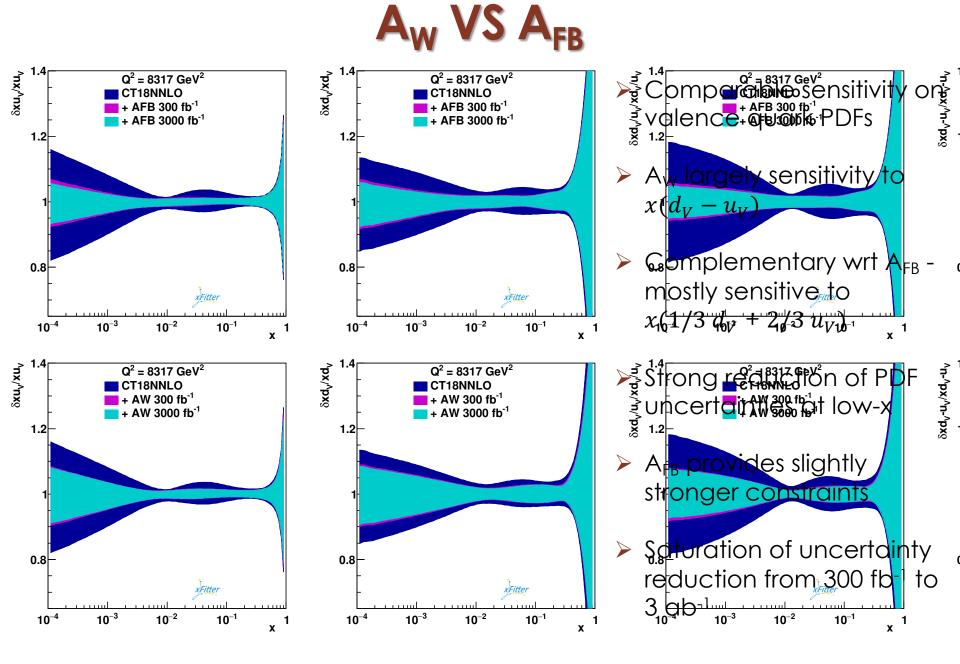
- At NLO, angle defined in the Collin-Soper frame: $\cos \theta^* = \frac{p_{Z,ll}}{M_{ll}|p_{Z,ll}|} \frac{p_1^+ p_2^- p_1^- p_2^+}{\sqrt{M_{ll}^2 + p_{T,ll}^2}}$ where $p_i^{\pm} = E_i \pm p_{Z,i}$ $\sigma_F = \int_0^1 \frac{d\sigma}{d\cos\theta^*} d\cos\theta^*$ $\sigma_B = \int_{-1}^0 \frac{d\sigma}{d\cos\theta^*} d\cos\theta^*$ $A_{FB} = \frac{\sigma_F \sigma_B}{\sigma_F + \sigma_B}$
- A_{FB} has smaller systematic but larger statistical error compared to cross section measurements
- Sensitive to (2/3u_V + 1/3d_V) and complementary to DY Charged Current asymmetry (u_V - d_V)
- High-invariant mass region: dominated by statistical uncertainties
- $m_{l^+l^-} \simeq m_Z$: high-stats to perform very precise measurements

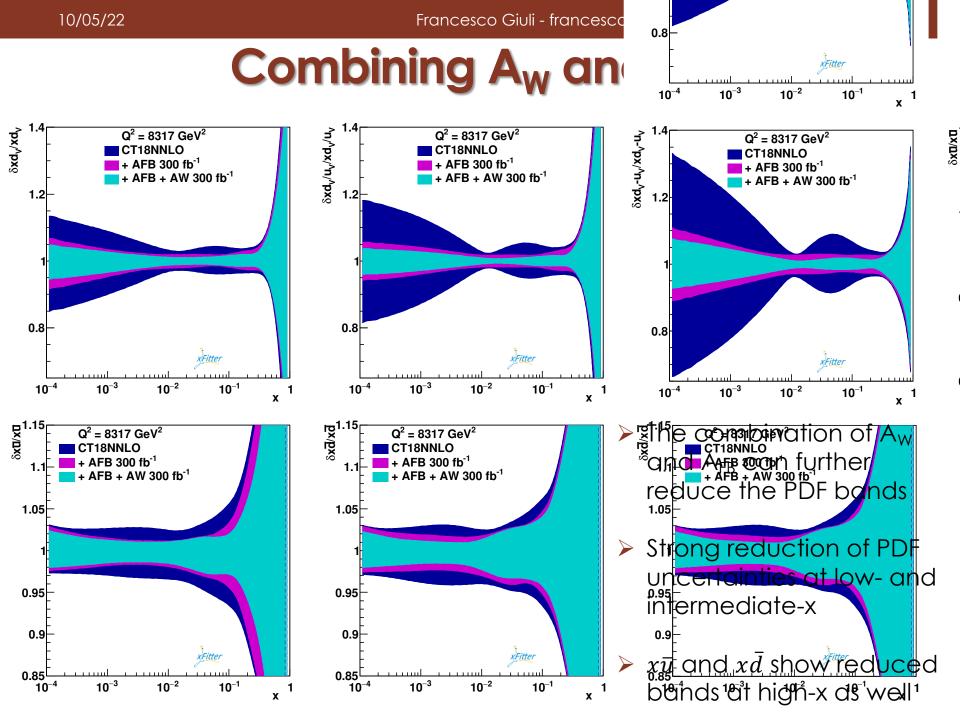
Setup of the xFitter analysis

- Datafiles with pseudo-data generated for several PDF sets within xFitter
- NLO AFB central values: 62 bins of 2.5 GeV-width from 45 to 200 GeV
- NNLO QCD mass dependent k-factor included for estimating the number of events in each invariant mass bin R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002)
- No sensible difference LO analytic and LO from APPLgrid
- Various lower rapidity cuts applied:
 - |Y| > 0 (no cut applied)
 - ▶ |Y| > 1.5
 - |Y| > 4.0 (only at LO)
- Profiling exercise on 5 different PDF sets:
 - > ABMP16NNLO
 - CT14nnlo
 - HERAPDF2.0nnlo (EIG)
 - > MMHT14nnlo
 - NNPDF3.1nnlo (Hessian set)

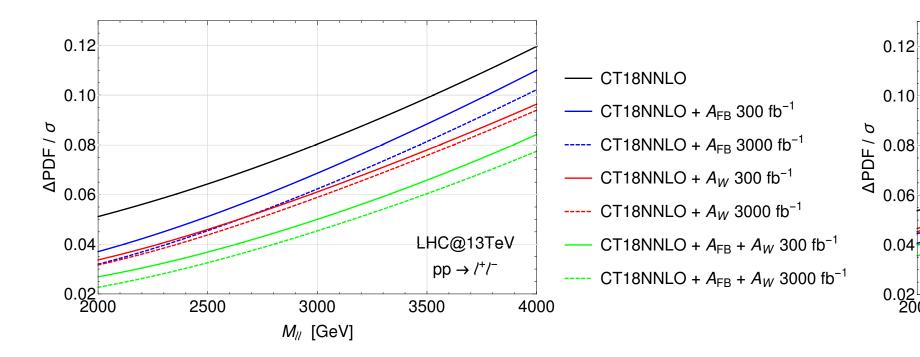


Data well described by modern PDFs


PDF set	χ^2 /d.o.f.
CT18NNLO	10.26/11
CT18ANNLO	11.29/11
MSHT20nnlo_as118	12.18/11
NNPDF3.1_nnlo_as_0118_hessian	14.88/11
PDF4LHC15_nnlo_100	9.53/11
ABMP16_5_nnlo	18.21/11
HERAPDF20_NNLO_EIG	8.92/11

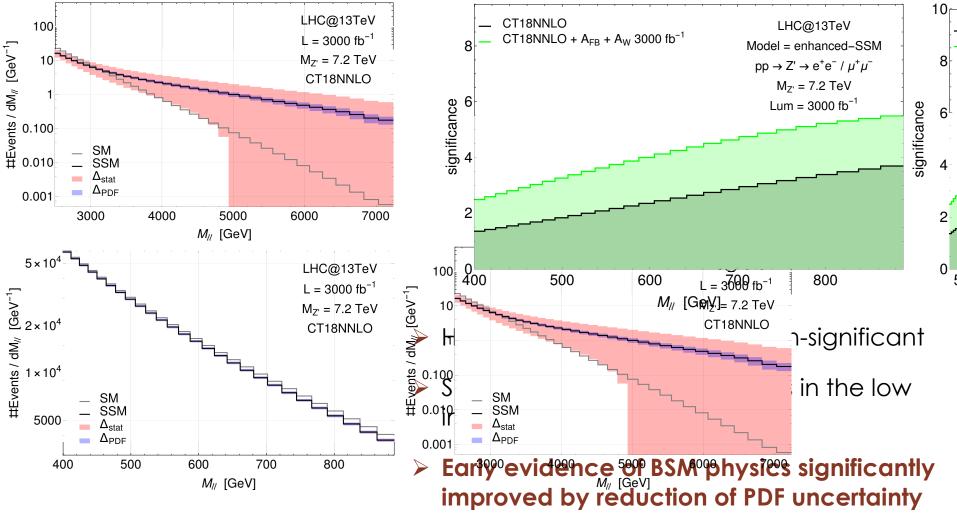

 $\frac{\ell^-\bar{\nu})}{\ell^-\bar{\nu})}$

- A_w pseudodata at \sqrt{s} = 13 TeV for different luminosities:
 - 300 fb⁻¹ (end of LHC Run III)
 - 3 ab⁻¹ (HL-LHC stage)


49

Implications on BSM searches

We studied the reduction of uncertainties in the high invariant mass spectra for BSM searches


Original PDF uncertainty (i.e.) at 4 TeV from 11.9% is reduced to:

- ▶ 11% (10.2%) by A_{FB} 300 (3000) fb⁻¹ data
- ▶ 9.6% (9.4%) by A_w 300 (3000) fb⁻¹ data
- \succ 8.4% (7.8%) by combination of A_{FB} and A_W 300 (3000) fb⁻¹ data

Implications on BSM searches

PDF uncertainties are relevant in searches for non-resonant objects

