Mixed QCD-electroweak corrections to Drell-Yan production

Raoul Röntsch

University of Milan & INFN

Delto, Jaquier, Melnikov, RR [hep-ph/1909.08428]

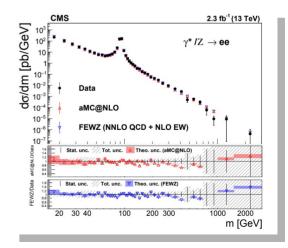
Buccioni, Caola, Delto, Jaquier, Melnikov, RR, [hep-ph/2005.10221]

Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, RR [hep-ph/2009.10386, hep-ph/2103.02671]

Buccioni, Caola, Chawdhry, Devoto, Heller, von Manteuffel, Melnikov, RR, Signorile-Signorile [hep-ph/2203.11237]

University of Genova 12 May 2022

- Introduction and Motivation
- Mixed QCD-EW corrections to onshell vector boson production
- Impact of mixed QCD-EW corrections on the W-mass measurement
- Mixed QCD-EW corrections to dilepton production
- Conclusions


Introduction and Motivation

- Drell-Yan production $pp \to V^* \to \ell \bar{\ell}$ is one of the keystone processes at the LHC:
 - Calibrating detectors;
 - Determining pdfs;
 - Measuring fundamental parameters of SM, e.g. m_w;
 - Searching for BSM physics at high energies;
- Lots of events with clear experimental signatures

 extremely well-controlled experimentally.

....

$$\hat{\sigma}_{ij} = \hat{\sigma}_{ij}^{(0,0)} + \alpha_s \hat{\sigma}_{ij}^{(1,0)} + \alpha_s^2 \hat{\sigma}_{ij}^{(2,0)} + \alpha_s^3 \hat{\sigma}_{ij}^{(3,0)} + \dots + \alpha \ \hat{\sigma}_{ij}^{(0,1)} + \alpha_s \alpha \ \hat{\sigma}_{ij}^{(1,1)} + \dots$$

$$\text{LO NLO QCD NNLO QCD N3LO QCD NLO EW mixed QCD-EW}$$

Recent advances:

N3LO QCD corrections

[Dulat, Duhr, Mistlberger ('20); Duhr, Mistlberger ('21); Chen, Gehrmann, Glover, Huss, Yang, Zhu ('21); Camarda, Cieri, Ferrara ('22); Chen *et al.* ('22)]

Mixed QCD-EW corrections

[Bonciani, Buccioni, Mondini, Vicini ('17); De Florian, Der, Fabre ('18); Delto, Jaquier, Melnikov, R.R. ('19); Bonciani, Buccioni, Rana, Triscari, Vicini ('19); Buccioni *et al.* ('20); Cieri, De Florian, Der, Mazzitelli ('20); Bonciani, Buccioni, Rana, Vicini ('20); Behring *et al.* ('20); Buonocore, Grazzini, Kallweit, Savoini, Tramontano ('21); Bonciani *et al.* ('21); Armadillo *et al.* ('22)]

$$\hat{\sigma}_{ij} = \hat{\sigma}_{ij}^{(0,0)} + \alpha_s \hat{\sigma}_{ij}^{(1,0)} + \alpha_s^2 \hat{\sigma}_{ij}^{(2,0)} + \alpha_s^3 \hat{\sigma}_{ij}^{(3,0)} + \dots + \alpha \hat{\sigma}_{ij}^{(0,1)} + \alpha_s \alpha \hat{\sigma}_{ij}^{(1,1)} + \dots$$

- Couplings $\alpha_s \sim 0.1; \quad \alpha \sim 0.01$
- Mixed QCD-EW corrections $\sim \mathcal{O}(\alpha_s \alpha) \sim 0.1\%$
- Experimental precision usually percent level.
- Why do we need this level of precision in theoretical predictions?

$$\hat{\sigma}_{ij} = \hat{\sigma}_{ij}^{(0,0)} + \alpha_s \hat{\sigma}_{ij}^{(1,0)} + \alpha_s^2 \hat{\sigma}_{ij}^{(2,0)} + \alpha_s^3 \hat{\sigma}_{ij}^{(3,0)} + \dots + \alpha \hat{\sigma}_{ij}^{(0,1)} + \alpha_s \alpha \hat{\sigma}_{ij}^{(1,1)} + \dots$$

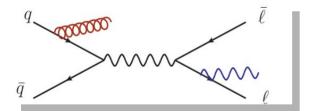
- Couplings $\alpha_s \sim 0.1; \quad \alpha \sim 0.01$
- Mixed QCD-EW corrections $\sim O(\alpha_s \alpha) \sim 0.1\%$
- Experimental precision usually percent level.
- Why do we need this level of precision in theoretical predictions?
 - 1. Target precision is sometimes below percent level: m_W measurement.
 - 2. QCD-EW corrections enhanced at high energies.

$$\hat{\sigma}_{ij} = \hat{\sigma}_{ij}^{(0,0)} + \alpha_s \hat{\sigma}_{ij}^{(1,0)} + \alpha_s^2 \hat{\sigma}_{ij}^{(2,0)} + \alpha_s^3 \hat{\sigma}_{ij}^{(3,0)} + \dots + \alpha \hat{\sigma}_{ij}^{(0,1)} + \alpha_s \alpha \hat{\sigma}_{ij}^{(1,1)} + \dots$$

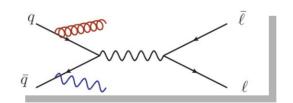
- Couplings $\alpha_s \sim 0.1; \quad \alpha \sim 0.01$
- Mixed QCD-EW corrections $\sim O(\alpha_s \alpha) \sim 0.1\%$
- Experimental precision usually percent level.
- Why do we need this level of precision in theoretical predictions?
 - 1. Target precision is sometimes below percent \triangleleft Onshell vector boson production + decay level: m_w measurement.
 - 2. QCD-EW corrections enhanced at high energies.
 Dilepton production

Mixed QCD-EW corrections to onshell vector boson production

UNIVERSITÀ DEGLI STUDI DI MILANO QCD-EW corrections to onshell vector boson production



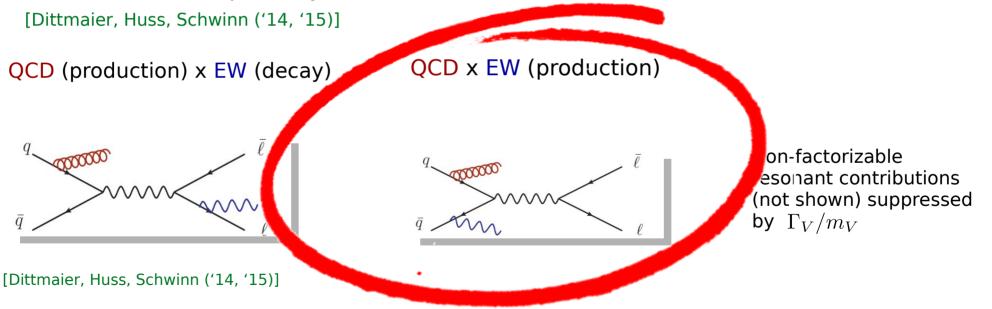
- Consider onshell vector boson production and decay $\ pp \to V \to \ell \bar{\ell}$
- In resonance region, QCD-EW corrections to production and decay processes can be treated separately.


[Dittmaier, Huss, Schwinn ('14, '15)]

QCD (production) x EW (decay)

QCD x EW (production)

[Dittmaier, Huss, Schwinn ('14, '15)]



Non-factorizable resonant contributions (not shown) suppressed by Γ_V/m_V

W UNIVERSITÀ DEGLI STUDI DI MILANO QCD-EW corrections to onshell vector boson production

- Consider onshell vector boson production and decay $pp \to V \to \ell \bar{\ell}$
- In resonance region, QCD-EW corrections to production and decay processes can be treated separately.

QCD-EW corrections to onshell vector boson production

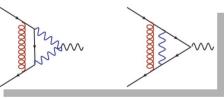
Two major challenges in computing higher order corrections: •

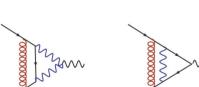
- 1. Loop amplitudes
- 2. Handling infrared singularities
- Loop amplitudes:

UNIVERSITÀ

DEGLI STUDI DI MILANO

Two-loop form factors —


- Known for Z production. [Kotikov, Kühn, Veretin ('08)] ۶
- Computed for first time for W production. ≻
 - [Behring et al. ('20)]


One-loop real-virtual amplitudes

Standard one-loop programs, e.g. OpenLoops

[Cascioli, Maierhöfer, Pozzorini ('12); Buccioni, Pozzorini, Zoller ('18): Buccioni et al. ('19)]

UNIVERSITÀ DEGLI STUDI DI MILANO QCD-EW corrections to onshell vector boson production

- Two major challenges in computing higher order corrections:
 - 1. Loop amplitudes
 - 2. Handling infrared singularities
- Infrared singularities with different origins appear simultaneously:
 - Virtual photons;
 - Virtual partons;
 - Unresolved real photons;
 - Unresolved real partons.
- Insight from NNLO QCD: treatment of IR singularities with non-trivial structure.

Higher order corrections contain IR singularities from soft and/or collinear radiation.

- Real corrections
 - Integrate over phase space of radiated parton:

$$- \mathbf{I} \mathcal{M}|^2 F_J d\phi_g \text{ diverges}$$

- Virtual corrections
 - Explicit IR singularities from loop integration

$$\longrightarrow \mathcal{M}_{1-\text{loop}} = \frac{c_{-2}}{\epsilon^2} + \frac{c_{-1}}{\epsilon} + c_0$$

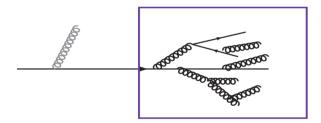
- Singularities unphysical, guaranteed to cancel in sum (KLN theorem).
- Cancellation only manifest after integrating over full phase space of emitted parton:
 - \rightarrow lose kinematic information.

Subtraction scheme: extract singularities without integrating over full phase space of radiated parton:

• Singularities manifest as poles in $1/\epsilon$ cancel against poles in virtual correction \rightarrow finite fully differential result.

$$\int |\mathcal{M}|^2 F_J d\phi_d = \int \left(|\mathcal{M}_J|^2 F_J - S \right) d\phi_4 + \int S d\phi_d$$

Finite;Counterterm;integrate in 4-dim.Explicit singularities


- Subtractions at NLO fully solved. [Catani, Seymour ('96); Frixione, Kunszt, Signer ('96, '97)]
- More complicated singularity structure at NNLO constructing NNLO subtraction schemes is an active area of research.

[Caola, Melnikov, R.R. (2017)]

- Extension of FKS subtraction to NNLO.
- Exploits color coherence of onshell, gauge-invariant amplitudes
 - Used in resummation & parton showers; not manifest in subtractions.

 Soft gluon cannot resolve details of collinear splittings; only sensitive to total color charge.

No overlap between soft and collinear limits – treated independently:

- Energies and angles decouple.
- Regularize soft singularities first, then collinear singularities iterative subtraction of divergences.

- Overlapping soft singularities separated by energy ordering.
- Overlapping collinear singularities separated using partitioning and sectoring of phase space.
 - > Natural splitting by rapidity.
- Fully local and fully analytic.

[Caola, Melnikov, R.R. ('19); Asteriadis, Caola, Melnikov, R.R. ('19)] [Delto, Frellesvig, Caola, Melnikov ('18); Delto, Melnikov ('19)]

- Clear physical origin of singularities (soft & collinear).
- Used for several phenomenological studies (VH, VBF, $gg \rightarrow H/A$, ...)
- Flexible \rightarrow straightforward adaptation for mixed QCD-EW singularities.

UNIVERSITA DEGLI STUDI DI MILANO QCD-EW corrections to onshell vector boson production

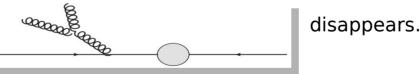
Consider onshell vector boson production $\,pp \to V \to \ell \bar{\ell}$

- Qualitatively new feature: photon radiated off W.
- Collinear limits regulated by W-mass, but soft limit is singular.
- Changes form of eikonal function in soft limit:

Soft gluon
$$\rightarrow \operatorname{Eik}_g(p_1, p_2; p_g) = \frac{2C_F(p_1 \cdot p_2)}{(p_1 \cdot p_g)(p_2 \cdot p_g)}$$

$$\bar{q}$$

Soft photon
$$\rightarrow \operatorname{Eik}_{\gamma}(p_1, p_2, p_W; p_{\gamma}) = Q_u Q_d \frac{2(p_1 \cdot p_2)}{(p_1 \cdot p_{\gamma})(p_2 \cdot p_{\gamma})} - Q_W^2 \frac{p_W^2}{(p_W \cdot p_{\gamma})^2} + Q_W \left(Q_u \frac{2(p_W \cdot p_1)}{(p_W \cdot p_{\gamma})(p_1 \cdot p_{\gamma})} - Q_d \frac{2(p_W \cdot p_2)}{(p_W \cdot p_{\gamma})(p_2 \cdot p_{\gamma})} \right)$$


More complicated function, but method is conceptually unchanged!

U. of Genova 12 May 2022

Can make subtraction scheme simpler:

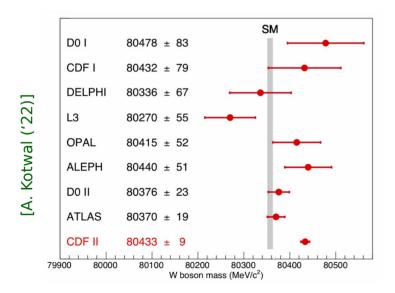
- NNLO QCD: soft limits of gluons overlap \rightarrow introduced energy ordering.
- Mixed QCD-EW: soft limits of gluons and photons are independent → no energy ordering needed.
- Soft subtraction: iterated NLO-like soft limits.
- Genuine NNLO-like singularities in collinear limits → require phase-space partitioning and sectoring.
- Fewer collinear limits, e.g.

 \rightarrow Fewer sectors required.

Can make subtraction scheme simpler:

NNLO QCD:	See	`
Mixed QCD needed.Soft subtra	Implemented this subtraction method to compute mixed QCD- EW corrections to production of onshell <i>Z</i> and <i>W</i> bosons.	g
	[Delto, Jaquier, Melnikov, RR ('19);	
 Genuine N sectoring. 	Buccioni, Caola, Delto, Jaquier, Melnikov, RR, ('20) Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, RR ('20)]	nd
• Fewer colli	 How could these corrections impact the measurement of the W-mass? 	
\rightarrow Fewer set)

Impact of mixed QCD-EW corrections on the W-mass measurement

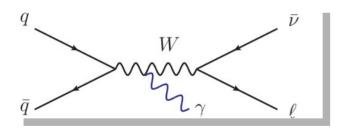


SM is overconstrained – predict parameters of SM Lagrangian (e.g. m_w) using global electroweak fits.

 $ightarrow m_W = 80.354 \pm 0.007 \; {
m GeV}$ [Gfitter Group: Haller et al. ('18)]

 Comparison with direct measurements tests self-consistency of SM and probes BSM effects.
 [e.g. Bjørn, Trott ('16)]

- Tension between new CDF measurement and other measurements.
- Higher precision desirable.
- Uncertainty dominated by physics modeling.



- W mass directly measured in $pp \rightarrow W \rightarrow \ell \nu$
- Template fit: simulate data for different values of W-mass and fit to data.
- Three most relevant observables: $p_{T,\ell}, p_{T,\mathrm{miss}}, m_{T,W}$
- Strongest pull from $p_{T,\ell}$, also most sensitive to higher order corrections. [Carloni Calame *et al.* ('16)].
- Uncontrolled non-perturbative effects enter at the level of $\Lambda_{QCD}/Q \sim 0.01$ \rightarrow theoretical predictions not reliable at the desired precision of 0.1 per mille.
- Use excellent control of process $pp \to Z \to \ell \bar{\ell}$ to calibrate detector response, tune generators, and verify results.

- Implicit assumption: higher-order corrections to W and Z production strongly correlated.
- Reasonable for QCD corrections:
 - > Minor differences: pdfs, masses, helicity structures, ...
- EW corrections: qualitatively different W charged, can radiate:

- Mixed QCD-EW corrections potentially decorrelated.
- Possible impact on W-mass measurements at desired precision.

- <u>Estimate</u> effect of QCD-EW corrections on W mass measurement, due to decorrelations between Z and W production.
- Correlation between average transverse momentum of leptons and mass of boson:

$$\frac{m_W}{m_Z} = \frac{\langle p_{T,l}^W \rangle}{\langle p_{T,l}^Z \rangle} \Rightarrow m_W^{\text{meas.}} = m_Z \frac{\langle p_{T,l}^{W,\text{meas.}} \rangle}{\langle p_{T,l}^{Z,\text{meas.}} \rangle} C_{\text{th.}}$$

 Theoretical correction: assume input masses, compute W-mass, and compare with input W-mass.

$$\Rightarrow C_{\rm th.} = \frac{m_W^{\rm in}}{m_Z^{\rm in}} \frac{\langle p_{T,l}^{Z,{\rm th.}} \rangle}{\langle p_{T,l}^{W,{\rm th.}} \rangle}$$

 \rightarrow estimate impact of decorrelations in W and Z spectra from higher order corrections:

$$\underbrace{\frac{\delta m_W^{\text{meas.}}}{m_W^{\text{meas.}}} = \frac{\delta C_{\text{th.}}}{C_{\text{th.}}} = \frac{\delta \langle p_{T,l}^{Z,\text{th.}} \rangle}{\langle p_{T,l}^{Z,\text{th.}} \rangle} - \frac{\delta \langle p_{T,l}^{W,\text{th.}} \rangle}{\langle p_{T,l}^{W,\text{th.}} \rangle} }$$

[Behring et al. ('21)].

Shifts in W-mass, inclusive:

- NLO EW: $\Delta m_W = 1 \, \mathrm{MeV}$
 - QCD-EW: $\Delta m_W = -7 \text{ MeV}$
- → Impact of QCD-EW corrections larger than NLO EW:
 - > NLO EW corrections suppressed in G_{μ} scheme.
 - > NLO EW corrections more correlated between W and Z production.

$$\frac{\delta m_W^{\text{meas.}}}{m_W^{\text{meas.}}} = \frac{\delta C_{\text{th.}}}{C_{\text{th.}}} = \frac{\delta \langle p_{T,l}^{Z,\text{th.}} \rangle}{\langle p_{T,l}^{Z,\text{th.}} \rangle} - \frac{\delta \langle p_{T,l}^{W,\text{th.}} \rangle}{\langle p_{T,l}^{W,\text{th.}} \rangle}$$
NLO EW: $\Delta m_W = -31 \text{ MeV} + 32 \text{ MeV}$
QCD-EW: $\Delta m_W = +54 \text{ MeV} - 61 \text{ MeV}$

$$\sqrt{s} = 13 \text{ TeV}$$

$$G_{\mu} \text{ scheme}$$

$$m_{Z} = 91.1876 \text{ GeV}$$

$$m_{W} = 80.398 \text{ GeV}$$

$$m_{t} = 173.2 \text{ GeV}$$

$$m_{H} = 125 \text{ GeV}$$

$$G_{F} = 1.16339 \cdot 10^{-5} \text{ GeV}^{-2}$$

$$\text{NNPDF31_luxQED}$$

$$\mu_{R} = \mu_{F} = m_{V}/2$$

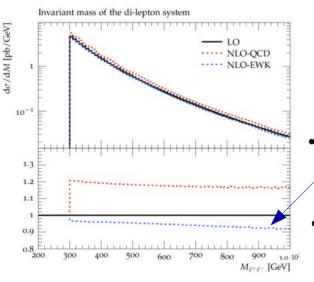
Shifts in W-mass: fiducial setup

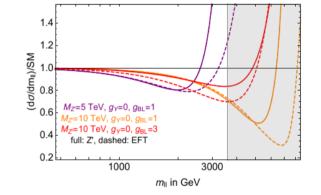
- Inclusive setup: $\Delta m_W = -7 \; {
 m MeV}$
- "ATLAS" cuts: $\Delta m_W = -17 \,\,\mathrm{MeV}$
- "Tuned" cuts: $\Delta m_W = -1 \,\, {
 m MeV}$
 - → Cuts can have dramatic impact: shifts vary by factor of ~20.
 - → QCD-EW shifts potentially relevant for target precision of 8 MeV.

```
\begin{split} p_{T,\ell}^Z &> 25 \,\, {\rm GeV}; \, |\eta_\ell^Z| < 2.4 \\ \text{"ATLAS" cuts: } p_{T,\ell}^W &> 30 \,\, {\rm GeV}; \, p_{{\rm T},{\rm miss}}^W > 30 \,\, {\rm GeV}; \, |\eta_\ell^W| < 2.4. \\ \text{"Tuned" cuts: } p_{T,\ell}^W &> 25.44 \,\, {\rm GeV}; \, p_{{\rm T},{\rm miss}}^W > 25.44 \,\, {\rm GeV}; \, |\eta_\ell^W| < 2.4. \end{split}
```


- These results are estimates of impact of QCD-EW corrections on W-mass measurements at the LHC.
- Indicate that QCD-EW corrections could be relevant for 0.1 permille precision on W-mass measurements.
- Further investigations are essential:
 - > What is the impact when using the full transverse momentum spectrum?
 - What is the impact on other observables?
 - How well are these captured with standard experimental simulation tools?
 - How reliable are these results do we need to include parton showers to handle multiple photon emissions?

Mixed QCD-EW corrections to dilepton production





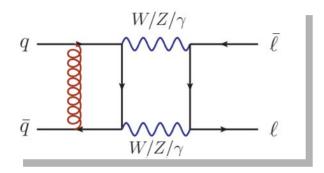
Consider $pp \to V^* \to \ell \bar{\ell}$ and focus on high-mass tail.

• Indirect probe of New Physics at very high scales.

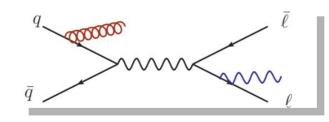
[cf. Rizzo ('09); Greljo, Marzocca ('17); Alioli, Farina, Pappadopulo, Ruderman ('17)]

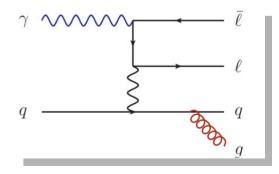
[Alioli, Farina, Pappadopulo, Ruderman ('17)]

EW corrections enhanced by Sudakov logarithms


 $\log^2{\left(s/m_W^2
ight)}\simeq 25\,$ for s ~ 1 TeV.

 Cannot separate into production and decay – consider corrections to complete dilepton production process!

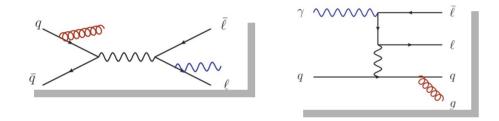

• Two-loop amplitudes are extremely challenging!

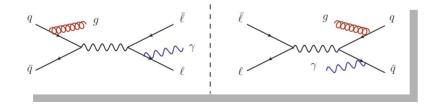


- Several energy scales.
- Recent computations:

[Heller, von Manteuffel, Schabinger, Spiesberger ('20); Bonciani *et al.* ('21); Armadillo, Bonciani, Devoto, Rana, Vicini ('22)]

 IR singularities arising from emission of photons from leptons as well as quarks.




Three new complications arise in regulating IR singularities:

- 1. Photons radiated from leptons lead to singularities in soft and collinear limits.
- 2. New diagrams from initial state photons.

→ extend partitions to isolate singularities from configurations with collinear photons and leptons

3. Interference between "initial-initial" and "initial-final" corrections

- Only singular for soft photons.
- Soft singularities can be treated as iterated NLO-like singularities.

Three new complications arise in regulating IR singularities: 1. Photons radiated from leptons lead to singularities in soft and collinear limits. 2. New diagrams Extending subtraction method to dilepton production is conceptually straightforward (in practice quite 00000 ate intricate). ~~~~ ations with \rightarrow compact expressions for integrated subtraction bns counterterms. \rightarrow results for $pp \rightarrow \ell^- \ell^+$ 3. Interference be [Buccioni, Caola, Chawdhry, Devoto, Heller, von Manteuffel, Melnikov, RR, Signorile-Signorile ('22)] Soft singularities can be treated as iterated 1 mo ٠ NLO-like singularities.

LO Corrections $\sim \mathcal{O}(\alpha_s^i \alpha^j)$

σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta\sigma^{(0,1)}$	$\delta\sigma^{(2,0)}$	$\delta\sigma^{(1,1)}$
q ar q	1561.42	340.31	-49.907	44.60	-16.80
$\gamma\gamma$	59.645		3.166		
qg		0.060		-32.66	1.03
$q\gamma$			-0.305		-0.207
$g\gamma$					0.2668
gg				1.934	
sum	1621.06	340.37	-47.046	13.88	-15.71

• LHC 13.6 TeV

- NNPDF31_nnlo_as_0118_luxqed
- G_{μ} input scheme for EW parameters.
- Massless leptons, clustered with photons if $\Delta R_{\ell\gamma} < 0.1$ ("lepton jets")

•
$$\mu_R = \mu_F = \mu = m_{\ell\ell}/2$$

•
$$m_{\ell\ell} > 200 \text{ GeV}$$

 $p_{T,\ell^{\pm}} > 30 \text{ GeV}$

 $|y_{\ell^{\pm}}| < 2.5$

$$\sqrt{p_{T,\ell^+} p_{T,\ell^-}} > 35 \text{ GeV}$$

LO Corrections ~ $\mathcal{O}(\alpha_s^i \alpha^j)$

σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta\sigma^{(0,1)}$	$\delta\sigma^{(2,0)}$	$\delta\sigma^{(1,1)}$
$q \bar{q}$	1561.42	340.31	-49.907	44.60	-16.80
$\gamma\gamma$	59.645		3.166		
qg		0.060		-32.66	1.03
$q\gamma$			-0.305		-0.207
$g\gamma$					0.2668
gg				1.934	
sum	1621.06	340.37	-47.046	13.88	-15.71

Impact of corrections:

- NLO QCD: +20%
- NLO EW: -3%
- NNLO QCD: +0.9%

Compatible with sizes of couplings $lpha_s\sim 0.1; \qquad lpha\sim 0.01$

LO Corrections $\sim \mathcal{O}(\alpha_s^i \alpha^j)$

σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta\sigma^{(0,1)}$	$\delta\sigma^{(2,0)}$	$\delta \sigma^{(1,1)}$
q ar q	1561.42	340.31	-49.907	44.60	-16.80
$\gamma\gamma$	59.645		3.166		
qg		0.060		-32.66	1.03
$q\gamma$			-0.305		-0.207
$g\gamma$					0.2668
gg				1.934	
sum	1621.06	340.37	-47.046	13.88	-15.71

- Cancellation between partonic channels at NNLO QCD
 - NNLO QCD corrections slightly suppressed
- Fairly large photon-initiated contribution at LO.

LO Corrections $\sim \mathcal{O}(\alpha_s^i \alpha^j)$

σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta\sigma^{(0,1)}$	$\delta\sigma^{(2,0)}$	$\delta\sigma^{(1,1)}$
q ar q	1561.42	340.31	-49.907	44.60	-16.80
$\gamma\gamma$	59.645		3.166		
qg		0.060		-32.66	1.03
$q\gamma$			-0.305		-0.207
$g\gamma$					0.2668
gg				1.934	
sum	1621.06	340.37	-47.046	13.88	-15.71

- Mixed QCD-EW corrections: -1%
 - > Much larger than permille corrections expected at $O(\alpha_s \alpha)$
 - Larger in magnitude than NNLO QCD corrections.
 - > About 1/3 of NLO EW corrections.
- Earlier calculation of mixed QCD-EW corrections using massive leptons.

[Bonciani, Buonocore, Grazzini, Kallweit, Rana, Tramontano, Vicini ('21)].

• Results show same qualitative features.

• Fiducial cross section to NNLO QCD + NLO EW:

 $\sigma^{(0,0)} + \delta\sigma^{(1,0)} + \delta\sigma^{(0,1)} + \delta\sigma^{(2,0)} = 1928.3^{+1.8\%}_{-0.15\%} \text{ fb}$

- Theoretical uncertainty:
 - > Vary scale μ by factor of 2 in either direction.
 - > Change input scheme for EW parameters to $\alpha(m_Z)$ -scheme.
 - > Take envelope of these results.
- Mixed QCD-EW corrections (~ -1%) comparable to theoretical uncertainty.
- Including mixed QCD-EW corrections decreases theoretical uncertainty (mainly through decreasing dependence on EW input scheme)

$$\sigma^{(0,0)} + \delta\sigma^{(1,0)} + \delta\sigma^{(0,1)} + \delta\sigma^{(2,0)} + \delta\sigma^{(1,1)} = 1912.6^{+0.65\%}_{-0\%} \text{ fb}$$

(*) Uncertainties from pdfs not included

٠

DEGLI STUDI DI MILANO Phenomenological Results: Cross sections in mass windows

- At high energies, EW corrections dominated by universal Sudakov logarithms.
- Look at fiducial cross section in 4 mass windows:

 $\Phi^{(1)}: 200 \text{ GeV} < m_{\ell\ell} < 300 \text{ GeV},$

 $\Phi^{(2)}$: 300 GeV < $m_{\ell\ell}$ < 500 GeV,

 $\Phi^{(3)}$: 500 GeV < $m_{\ell\ell}$ < 1.5 TeV,

 $\Phi^{(4)}$: 1.5 TeV < $m_{\ell\ell} < \infty$.

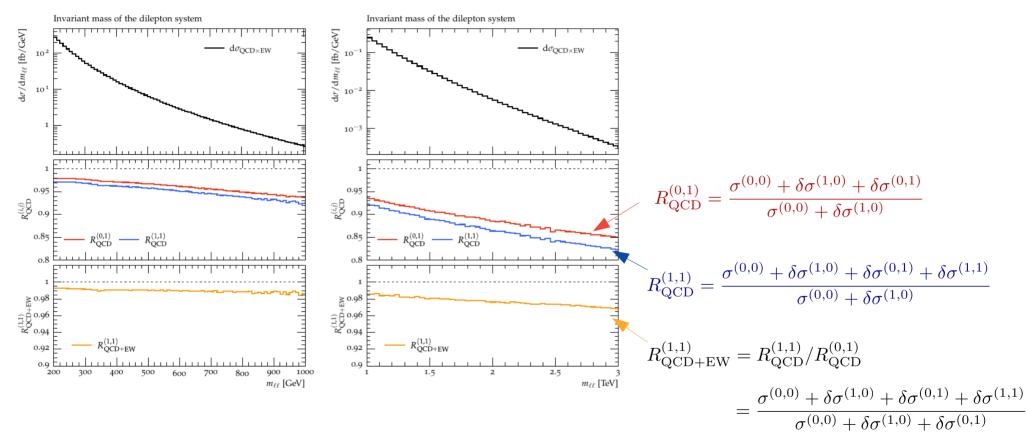
σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta \sigma^{(0,1)}$	$\delta\sigma^{(2,0)}$	$\delta\sigma^{(1,1)}$	$\delta \sigma_{\rm fact.}^{(1,1)}$	$\sigma_{ m QCD imes EW}$
$\Phi^{(1)}$	1169.8	254.3	-30.98	10.18	-10.74	-6.734	$1392.6^{+0.75\%}_{-0\%}$
$\Phi^{(2)}$	368.29	71.91	-11.891	2.85	-4.05	-2.321	$427.1^{+0.41\%}_{-0.02\%}$
$\Phi^{(3)}$	82.08	14.31	-4.094	0.691	-1.01	-0.7137	$91.98^{+0.22\%}_{-0.14\%}$
$\Phi^{(4)} \times 10$	9.107	1.577	-1.124	0.146	-0.206	-0.1946	$9.500^{+0\%}_{-0.97\%}$

Raoul Röntsch (U. of Milan and INFN)

- NLO EW corrections: ~ 3% in low-mass window, 12% in high-mass window
- QCD-EW corrections: ~1% in low-mass window, 2% in high-mass window
- EW corrections enhanced at high invariant mass, as expected from Sudakov logs.
- Can QCD-EW corrections be described by factorized QCD and EW corrections?

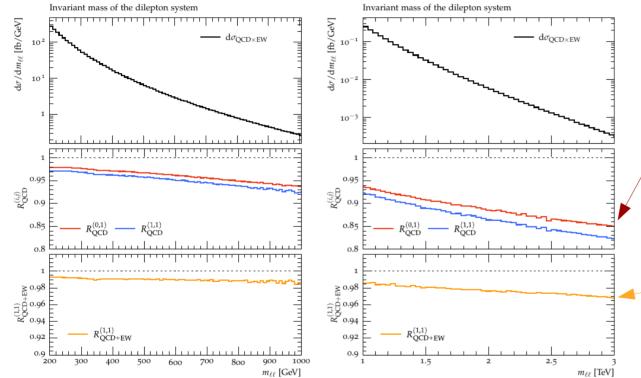
σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta\sigma^{(0,1)}$	$\delta\sigma^{(2,0)}$	$\delta \sigma^{(1,1)}$	$\delta \sigma_{\rm fact.}^{(1,1)}$	$\sigma_{ m QCD imes EW}$
$\Phi^{(1)}$	1169.8	254.3	-30.98	10.18	-10.74	-6.734	$1392.6^{+0.75\%}_{-0\%}$
$\Phi^{(2)}$	368.29	71.91	-11.891	2.85	-4.05	-2.321	$427.1_{-0.02\%}^{+0.41\%}$
$\Phi^{(3)}$	82.08	14.31	-4.094	0.691	-1.01	-0.7137	$91.98^{+0.22\%}_{-0.14\%}$
$\Phi^{(4)} \times 10$	9.107	1.577	-1.124	0.146	-0.206	-0.1946	$9.500^{+0\%}_{-0.97\%}$

Factorized approximation:


$$\delta \sigma_{\text{fact.}}^{(1,1)} = \frac{\delta \sigma^{(1,0)}}{\sigma^{(0,0)}} \times \frac{\delta \sigma^{(0,1)}}{\sigma^{(0,0)}} \times \sigma^{(0,0)}$$

- Very good approximation in high mass bin $\, m_{\ell\ell} \geq 1.5 \,\, {\rm TeV}$
- Underestimates mixed QCD-EW corrections for all lower bins.
- Factorized approx. provides Sudakov logarithms that are dominant in TeV range.

σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta\sigma^{(0,1)}$	$\delta\sigma^{(2,0)}$	$\delta \sigma^{(1,1)}$	$\delta \sigma_{\rm fact.}^{(1,1)}$	$\sigma_{ m QCD imes EW}$
$\Phi^{(1)}$	1169.8	254.3	-30.98	10.18	-10.74	-6.734	$1392.6^{+0.75\%}_{-0\%}$
$\Phi^{(2)}$	368.29	71.91	-11.891	2.85	-4.05	-2.321	$427.1^{+0.41\%}_{-0.02\%}$
$\Phi^{(3)}$	82.08	14.31	-4.094	0.691	-1.01	-0.7137	$91.98^{+0.22\%}_{-0.14\%}$
$\Phi^{(4)} \times 10$	9.107	1.577	-1.124	0.146	-0.206	-0.1946	$9.500^{+0\%}_{-0.97\%}$

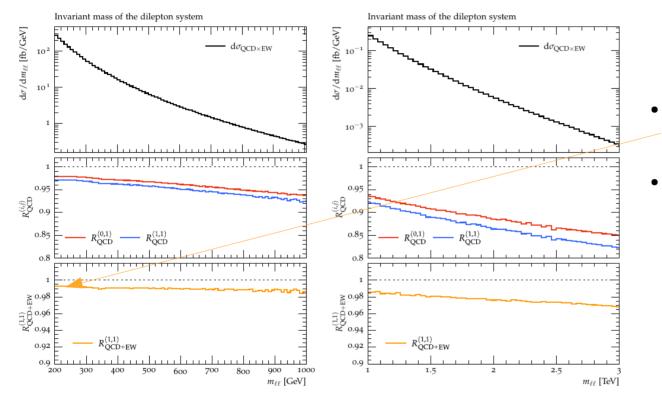


U. of Genova 12 May 2022

 NLO EW corrections grow substantially with invariant mass

-15% at 3 TeV

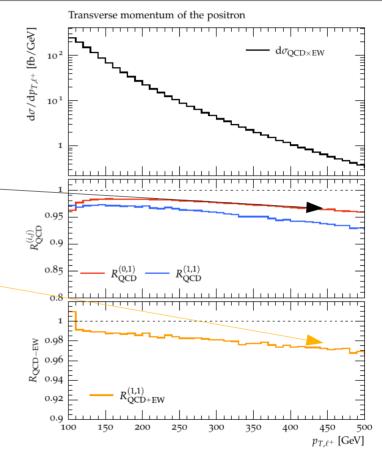
- Mixed QCD-EW corrections largely follow shape of NLO EW corrections.
- But do have some additional dependence on invariant mass:


-3% at 3 TeV

.

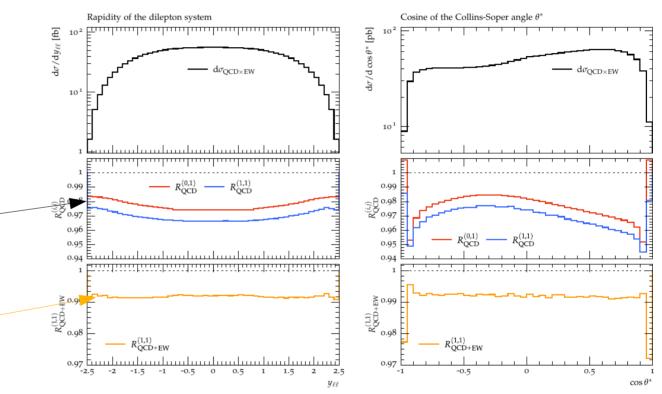
 Consistent with Sudakov logarithms

- At $m_{\ell\ell} \simeq 200 \text{ GeV}$, QCD-EW corrections are ~ -1%
- Relatively large size of mixed QCD-EW corrections to fiducial cross sections not due to Sudakov logarithms!


U. of Genova 12 May 2022

Similar pattern for p_{T,ℓ^+} :

- NLO EW and QCD-EW corrections become more important at high transverse mass.
- QCD-EW corrections have slightly stronger dependence on transverse momentum compared to NLO EW corrections.
- Reach ~ -3% at $p_{T,\ell^+} \simeq 500 \text{ GeV}$



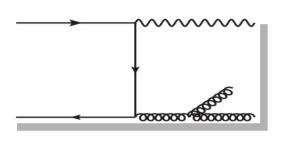
 NLO EW corrections to angular and rapidity distributions show minor shape changes.

 Mixed QCD-EW corrections very flat.

- Mixed QCD-EW corrections in Drell-Yan production are important for:
 - Precision determination of the W-mass;
 - Searches for NP in the high energy regime.
- Nested soft-collinear subtraction scheme can be extended in a straightforward manner to treat IR singularities appearing in mixed QCD-EW corrections to DY.
- Allowed calculation of mixed QCD-EW corrections to onshell Z and W production.
- Estimated impact on measurement of W-mass at LHC \sim 10 MeV.
 - Strongly cut-dependent.
 - Potentially relevant for target uncertainty of 0.1 per mille.
 - Further investigations needed.

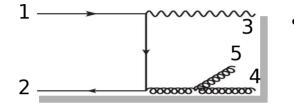
- Calculation of mixed QCD-EW corrections to massless dilepton production:
 - > Mixed QCD-EW corrections ~ -1% larger than naive power counting at $\mathcal{O}(\alpha \alpha_s)$
 - ➢ Increase with energy to ~ -3% at $m_{\ell\ell} \sim 3 \text{ TeV}$
 - > Well-approximated by factorized QCD and EW corrections in TeV regime.
 - > Relatively flat corrections to angular and rapidity distributions.

THANK YOU FOR YOUR ATTENTION



BACKUP SLIDES

Consider double-real emissions in vector boson production: $q\bar{q} \rightarrow V + g + g$


Singularities arise when:

- *Either* gluon or *both* gluons \rightarrow soft.
- *Either* gluon or *both* gluons→ collinear to either initial state quark.
- Gluons \rightarrow collinear to each other.
- Any combination of above overlapping singularities.
 - Can approach each limit in different ways.
- Need to separate the singularities.
- Multiple approaches: qT, N-jettiness, antennas, STRIPPER, CoLoRFulNNLO, Projection-to-Born, nested soft-collinear subtraction, geometric subtraction, local analytic subtraction, unsubraction, Loop-Tree Duality, ...

• Consider partonic process $q(p_1)\overline{q}(p_2) \rightarrow V(p_3)g(p_4)g(p_5)$

• Define

 $F_{LM}(1,2,4,5) = dLips_V |\mathcal{M}(1,2,4,5,V)|^2 \mathcal{F}_{kin}(1,2,4,5,V)$

$$\implies 2s \cdot \mathrm{d}\sigma^{\mathrm{RR}} = 1/2! \int [\mathrm{d}g_4] [\mathrm{d}g_5] F_{LM}(1,2,4,5) \qquad [\mathrm{d}g_i] = \frac{\mathrm{d}^{d-1} p_i}{(2\pi)^d 2E_i} \theta(E_{\mathrm{max}} - E_i)$$

- Overlapping double-soft and single-soft singularities: $E_4, E_5 \rightarrow 0; \quad E_4 \rightarrow 0; \quad E_5 \rightarrow 0.$
- Order energies: $E_4 > E_5 \rightarrow$ soft singularities: either double soft or g_5 soft.

$$\Rightarrow 2s \cdot d\sigma^{RR} = 1/2! \int [dg_4] [dg_5] F_{LM}(1, 2, 4, 5)$$
$$= \int [dg_4] [dg_5] \theta(E_4 - E_5) F_{LM}(1, 2, 4, 5) \equiv \langle F_{LM}(1, 2, 4, 5) \rangle$$

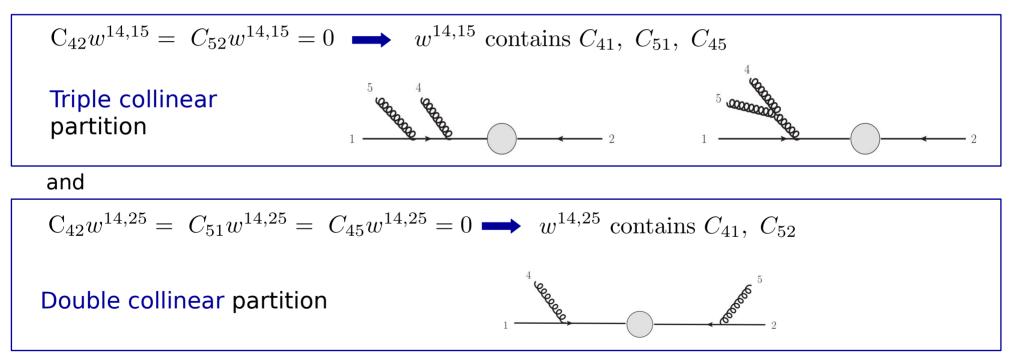
• **Regulate** the soft singularities:

$$\langle F_{LM}(1,2,4,5) \rangle = \langle \mathscr{S}F_{LM}(1,2,4,5) \rangle + \langle (I-\mathscr{S})F_{LM}(1,2,4,5) \rangle$$

$$= \langle \mathscr{S}F_{LM}(1,2,4,5) \rangle + \langle S_5(I-\mathscr{S})F_{LM}(1,2,4,5) \rangle$$
 Double- and single-soft counterterms
$$+ \langle (I-S_5)(I-\mathscr{S})F_{LM}(1,2,4,5) \rangle.$$
 Soft-subtracted term – still bas

$$(1 - S_5)(I - S)F_{LM}(1, 2, 4, 5)$$
. Soft-subtracted term – still has (overlapping) collinear singularities

- $\boldsymbol{\mathcal{S}}$: Extracts double-soft limit
- S_5 : Extracts $E_5 \rightarrow 0$ limit


U. of Genova 12 May 2022

Separate overlapping collinear limits in two stages:

1. Introduce phase-space partitions $1 = w^{14,15} + w^{24,25} + w^{14,25} + w^{15,24}$.

UNIVERSITÀ

DEGLI STUDI **DI MILANO**

(b)

(a)

 $\eta_{ij} = (1 - \cos \theta_{ij})/2$

2. Sector decomposition to remove remaining overlapping singularities in triple collinear partitions.

- η_{51} Define angular ordering to separate • sincularities, $1 = \theta \left(\eta_{51} < \frac{\eta_{41}}{2} \right) + \theta \left(\frac{\eta_{41}}{2} < \eta_{51} < \eta_{41} \right)$ (c) $+ \theta \left(\eta_{41} < \frac{\eta_{51}}{2} \right) + \theta \left(\frac{\eta_{51}}{2} < \eta_{41} < \eta_{51} \right)$ $\equiv \theta^{(a)} + \theta^{(b)} + \theta^{(c)} + \theta^{(d)}.$
 - Thus the limits are •
 - $\theta^{(a)}: C_{51} \qquad \theta^{(b)}: C_{45}$ $\theta^{(c)}: C_{41} \qquad \theta^{(d)}: C_{45}$
 - Achieved using angular phase-space parametrization [Czakon ('10, '11)].

Separates collinear limits – subtract iteratively from soft-regulated term

$$\langle (I - S_5)(I - \mathcal{S})F_{LM}(1, 2, 4, 5) \rangle =$$

 $\langle F_{LM}^{s_r c_s}(1,2,4,5) \rangle + \langle F_{LM}^{s_r c_t}(1,2,4,5) \rangle + \langle F_{LM}^{s_r c_r}(1,2,4,5) \rangle$

(Soft-regulated) single and triple collinear counterterms.

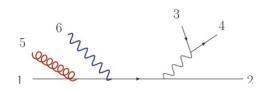
Fully subtracted term – finite

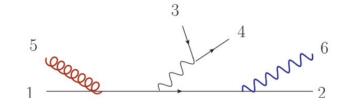
Integrate four singular counterterms

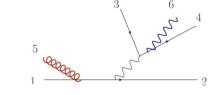
 $\langle \mathcal{S}F_{LM}(1,2,4,5) \rangle \langle S_5(I-\mathcal{S})F_{LM}(1,2,4,5) \rangle \langle F_{LM}^{s_r c_s}(1,2,4,5) \rangle \langle F_{LM}^{s_r c_t}(1,2,4,5) \rangle$

over unresolved phase space :

- cancel IR poles against loop amplitudes;
- Finite remainder: subtraction counterterm.

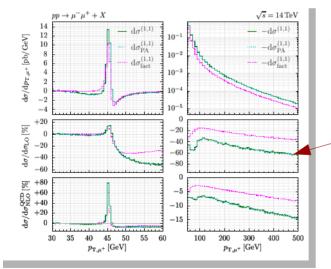

 $q(p_1)\bar{q}(p_2) \to e^-(p_3)e^+(p_4)g(p_5)\gamma(p_6)$


• Partitioning:


 $1 = w^{15,16} + w^{25,26} + w^{15,26} + w^{16,25} + w^{15,36} + w^{15,46} + w^{25,36} + w^{15,46}$

• Triple collinear sectors

• Double collinear sectors


- Additional partitions have only double collinear limits
 - ~ NLO x NLO simple!

- First mixed QCD-EW corrections to dilepton production presented by [Bonciani, Buonocore, Grazzini, Kallweit, Rana, Tramontano, Vicini ('21)].
- Two-loop amplitudes evaluated with help of semi-analytic method.cf. Armadillo et al. ('22)]
- IR singularities regulated by qT subtractions as implemented in MATRIX.

[Grazzini, Kallweit, Wiesemann ('17)]

- Results for massive leptons (collinear singularities regulated by mass):
 - Fiducial cross section increased by 0.5% relative to LO.
 - Larger impact at high-pT: -60% correction
 - High invariant mass: correction $\sim -1.5\%$.
 - Factorized approximation works well at Jacobian peak, fails at higher pT.