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GOAL

» Computation of collinear contributions to QCD resummations starting from collinear
factorisation of scattering amplitudes and defining appropriate collinear functions.

» As an example of our framework we consider two well known observables such as
transverse momentum () and N-jettiness (TIN).

» For the transverse momentum case, we use a time-like auxiliary vector to avoid rapidity
divergences 1n our calculation.
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1. Introduction



DIFFERENTIAL CROSS SECTION: GENERAL STRUCTURE

» We consider the production of a system of colourless particles F given by

additional radiation

hi(p1) + ha(p2) — {({%}) + X~/

c(xip1) + c(zap2) = F(q = Z(]z) ququ = M?*

» The differential cross section in a generic variable W can be theoretically separated into
following two parts

wo reg.
/\ lim dwldor” _

1 . . wo— d
do g da?ng da}?g o ’
— = (: [d()' F]) - (process dependent)
(g, 70) dw dw dw
9
'\/ Processk?{llnnw] ,5(w)}
independent Wolg

» Singular contributions are of Soft and Collinear origin. Hence, they have some degree of
universality that leads to Resummation of these terms.



TRANSVERSE MOMENTUM RESUMMATION

» Using the formalism of qT-resummation [1-2], singular part of the differential cross section
in conjugate space has the following structure [2]

LO contribution Sudakov form factor

~

dor] =2 30 [dor] [ G S.0LY
5 C= ; g . (27‘-)2
(p1 +p2

d d
X Z/ Zl/ = H"C\C C2] voraray Jar /i (£1/21,65/6%) farjny (w2/22,05/0%)

o ) \_/ g
— —YE
parton densities bg = 2e

hard collinear factor

» Other equivalent formulations do exist in the literature that are based either on TMD
factorisation or on SCET methods [3].

[1] Collins, Soper, Sterman (1985)
[2] Catani, Cieri, de Florian, Ferrera, Grazzini (1311.1654)
[3] Becher, Neubert (1007.4005); Echevarria, Idilbi, Scimemi (1111.4996); Chiu, Jain, Neill, Rothstein (1202.0814)



HARD COLLINEAR FACTOR: STRUCTURE

» For the quark anti-quark annihilation channel, the hard coll. factor has the following form

[HFCHCz]CE;alaZ = H! (z1p1, 12p2; Q; a5 (M?)) Ceqy (215 s (5/6%)) Cray (225 s (5/0%))

> collinear
SRS SN -4

of the system F

» For the gluon gluon fusion channel, it has the form given by

[HFCHCQ} = HY (371171,552192;9;043(]\42))

gg;ai1az2 Hivi,p2l2
X CHIVL (21;p1, D2, b s (b5 /67)) CH2Y2 (293 p1, p2, b; s (b5 /67))

where [1]

(s. élzimlghally azimuthally
independent part ﬁ correlated part

ClY (2301, p2,bs as) = d" (p1,p2)Cya(2, as) + DM (p1, p2; b)Gya(2; a)

pips + PapY / < bHbY

p1-p2 D™ (p1,p2;b) = d™ (p1,p2) — 25

d" (p1,p2) = —g"" +

b = (0,b,0)

the indices it and 1V are the Lorentz indices of the gluon 1n hard scattering amplitude and its
conjugate amplitude, respectively.

[1] Catani, Grazzini (1011.3918)



COLLINEAR FUNCTIONS: PERTURBATIVE EXPANSION

» Azimuthally independent collinear functions are recently known to N3LO 1in QCD coupling

Cap (z:05) = 8,081 —2) + BB () + () 0@ )+ () 0D+ 3 () 2

s r —
< [1] <[2] < [3] "

» Azimuthally correlated collinear functions are recently known to NNLO in QCD coupling

G yalz; 05) = G(l)( )+ (Oés) (2) ) + Z (Cks> (n)

s
<[4] <[5]

» Similar functions do exist for the processes related by crossing such as SIDIS and production
of hadrons from a pair of leptons and they are called Time-Like collinear functions or

Fragmenting Jet functions.

[1] de Florian, Grazzini (0108273)

[2] Catani, Grazzini (1106.4652); Catani, Cieri, de Florian, Ferrera, Grazzini (1209.0158); Gehrmann, Lubbert, Yang
(1209.0682, 1403.6451); Echevarria, Scimemi, Vladimirov (1604.07869); Luo, Wang, Xu, Yang, Yang, Zhu
(1908.03831); Luo, Yang, Zhu, Zhu (1909.13820)

[3] Luo, Yang, Zhu, Zhu (1912.05778); Ebert, Mistlberger, Vita (2006.05329); Luo, Yang, Zhu, Zhu (2012.03256)

[4] Catani, Grazzini (1011.3918)
[5] Luo, Yang, Zhu, Zhu (1909.13820); Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov (1907.03780)



ZERO-JETTINESS RESUMMATION

» Using the formalism of resummation, the singular part 1s given by [1]

inverse Laplace transform
ﬁ L:1.,(z0; ,uF,ozS(,uF))
Z le dZQ 400
Lo e_ny dt 6_C;t[ca (ZatnuFaOfs(:u%’))

ai,a2 ( 0 D
F transverse virtualit
< [H 1112]‘“ oa Jar /i (@1/21,00/0) faa nz (2] 22, 00/0) } prop to O-jettinessy

dor] = 22 Y [a00] £

€=4q,4,9

» Matching coefficients for the beam functions ﬁ known: NLO [2]—NNLO [3]—N3LO [4]

[HFflfz] = HY (z1p1, T2p2; ; Oés(M2)) Iea, (21508(00/0)) Lzay (22;a8(00/0))

CcC;a1 a2

g equally valid for N-jettiness resummation

» Unlike qT case, we do not have azimuthally correlated contributions for the 0-jettiness
I* (2;p1,p2; 08) = d* (p1, p2)Iga(z, as)

[1] Stewart, Tackmann, Waalewijn (1004.2489)

[2] Stewart, Tackmann, Waalew1jn (1002.2213); Berger, Marcantonini, Stewart, Tackmann, Waalew1ijn (1012.4480);
Ritzmann, Waalew1jn (1407.3272)

[3] Gaunt, Stahlhofen, Tackmann (1401.5478); Gaunt, Stahlhofen, Tackmann (1405.1044)

[4] Melnikov, Rietkerk, Tancredi, Wever (1809.06300); Melnikov, Rietkerk, Tancredi, Wever (1809.02433); Behring,
Melnikov, Rietkerk, Tancredi, Wever (1910.10059); Baranowski (2004.03285); Ebert, Mistlberger, Vita (2006.03056)



2. Our Framework



COLLINEAR FACTORISATION OF MATRIX ELEMENT

» The collinear factorisation of hard scattering matrix element having N collinear partons

in 1ts most general form 1s given by [1] reduced matrix element. a

auxiliary vector <7 fa vector in colour+spin space
M ({ai}; ki, kw) P = M@} k) P({a)s k- ks n) IM({aids k) + - .

- Q
11. limit of E ks splitting kernel encoding singular o
non-coll. partons COLL It o — behaviour in the coll. Timit non-singular terms

» In general the collinear splitting kernel depends on the momenta and quantum numbers
(colour) of non-collinear partons in addition to its dependence on the collinear partons.

» The TL collinear region is defined by » The SL collinear region 1s defined by
0 0
{ki} >0 k) < 0

» The splitting kernel 1s process independent | » Strict collinear factorisation is instead

and this property of factorisation 1s called violated in SL collinear region.
strict collinear factorisation.

[1] Catani, de Florian, Rodrigo (1112.4405)



SPLITTING KERNEL: TL COLLINEAR REGION

» The projection of TL splitting kernel for both quark and gluon splitting into colour+spin
space spanned by collinear partons is given by

denoting colour+spin

spin index of parent quark e\ ﬁ of coll. partons
(s$;15,+ | P k k ESEE
s Iay c—ai-an 1y e y 1 9

N
— Pc—>a1°--aN(k17°'° 7kN;n) 58(57'?:’“' I 1 |ri7‘ > ) c=4q,9q,
L c-number functions e\ trivial dependence

(.u’;ria'”|’Pg—>a1---aN(k17"'7kN;n) |l/,7':,> P:ial aN(kla"'7kN;n) <‘T’z,|1|7':,>

Lorentz index of parent gluon L x g", ki k;]’./T

» The remaining dependence of the splitting kernel is due to scalar functions of collinear

momenta of the form [1 .
omenta of the 1o [1] > an auxiliary vector far
T n, kz away from the coll. region

Szj - kak] —_— = —
- .CL‘j TL]{?]'
/‘én =0

» In our work, we consider a light-like auxiliary vector while dealing with zero-jettiness
and a time-like auxiliary vector while dealing with transverse momentum case.

—5n?>0

[1] Catani, Grazzini (9908523) 10



COMMENTS ON THE USE OF AUXILIARY VECTOR

» In the literature, the splitting kernels are usually calculated using a light-like auxiliary vector.
Indeed this choice 1s very convenient for direct specific computations of the splitting kernels.
However, we emphasize that one can also set

n* %

» By changing the auxiliary vector from light-like to time-like, we do not modify any formal
expression of the splitting kernels in the literature and this 1s due to the fact that it depends on
the auxiliary vector only through the ratio

.il?j nkj

hence, the change only affects the non singular/power suppressed terms in the collinear limit.

» Finally, we note that the projection of SL splitting kernels may not be c-number functions
depending on the order of the perturbation theory. Actually, starting from N3LO 1t depends
on the colour quantum numbers of the non-collinear partons [1].

[1] Catani, de Florian, Rodrigo (1112.4405)

11



DIFFERENTIAL COLLINEAR FUNCTIONS:TL REGION

» We define the differential collinear functions in the TL region as follows [1] T}t‘\
k,\],|
+oo N-1 N-1 g W%ZL'G’
Fort (p, k) [H / ™0, (K2, ] 5(d)<k k) -
N=2 i=1 - duw(pin) ~., A (D5 1) o0
Qv Lk Lk Pg_’al ay ~ ,Zl_ 9 Pg—ml an “d 9 7’5%1 an ?
" Z Pg—)al AN ( 1gee9 VN, n) prorr. _ DIW(p’ n; kT, ) P“V _ uu(p;n,kT; 6) i
A0y anN-—1 SF (al, o ’a,N_l) gng e (d - 2)(d - 3) i (d - 2)(d - 3) S
Bose symmetry fact0r<) (i) = —g 4 BT B kg, ) = d*(pym) — (d — 2) SO
np (np) K
’szml anN (kl, srie ¥ )kN; n) = du#’(p; ) ’P;—l;al .an (kla pioey kN; n) du’u(p; n) dﬁ“/(p; n)DMU(pv n; kT7 6) =0 ?
d;w(p; n) dﬂu(p; n) =d-—2 )
I;Luu(p, k: TI,) = dIW(p; n) ]:;c‘zLa.z in. (p k:n) * 'D’w(pa n; kT: ) 'ngLcorr (p$ k: TL) D;w(p, n; kT:G)DuU(p7 n; kT’ 6) = (d - 2)(d - 3)
K
;N\z :
and for the quark c F
+oo N-1 N-1
5 (k1,...,kn;n) _
L . (d) _ ) c—ai...ay \1 AE _
]:ca (p7 k) n) H / 27‘- d 1 5 (k ; k7,>al ”.ZGN_I SF (a17 . 7a'N—1) P ’ C q,q

» TL Splitting kernels for various splitting processes are fully known to second order [2] and
partially known to third order [3] in the QCD strong coupling.

[1] Stefano Catani + PKD
[2] Bern, Del Duca, Kilgore, Schmidt, Catani, Grazzini, Campbell, Glover, Kosower, Uwer, Sborlini, de Florian, Rodrigo
I

3] Catani, de Florian, Rodrigo, Del Duca, Frizzo, Maltoni, Birthwright, Glover, Khoze, Marquard, Duhr, Haindl,
Lazopoulos, Michel, Sborlini, Rodrigo, Badger, Buciuni, Peraro, Bern, Dixon, Kosower, Gehrmann, Jaquier, Czakon,

Sapeta 12



DIFFERENTIAL COLLINEAR FUNCTIONS:SL REGION

»  We define the differential collinear functions in the SL region as follows Spin

e [ N— No(e) = (—1)*n4(a, €)n.(a
m(({qz}p,kn Z[ ]5(@( Z) 9 = Ve onde

dependence on non- « Z ,ﬁé—ml...a]v ({agi}; k1, ..., k)
collinear partons SF (a1,...,an_1)

# of spin polarisations
# of colours

N(e) T M9 =20 -9 - )
Na(e) N (€) = N (e) = —2N.

a1,..,aN—1 kn=—p

aN=a

» Note that both the SL splitting kernels and SL differential collinear functions are process

dependent through their dependence on the momenta and quantum numbers (actually, only
colour) of the non-collinear partons.

» SL Splitting kernels for various splitting processes are fully known to second order and
partially known to third order [1-3] in the QCD strong coupling.

[1] Catani, de Florian, Rodrigo (1112.4405)
[2] Forshaw, Seymour, Siodmok (1206.6363)
[3] Dixon, Herrmann, Yan, Zhu (1912.09370)

13



INTEGRATED COLLINEAR FUNCTIONS:TL CASE

» We define the transverse momentum dependent collinear functions for the gluon case as
follows

K
l-'/z/

Foi' " (z:p/2 ar;n) = 8(1 — 2) 8" (ar) dea d*(p;n) )+ Wé e
E z

dy. s(d—2) kT 1—2 TL pv
+ [ d°k 0" ¥ (kt +qr) ¢ — Foo (P, k3 )

: p* z Leads to logarithmically
with phase space in coll. limite> enhanceg contributions
F. ¥ (2 p/2,qmsn) = d*(pin) Fop'pun | 2191 i + D" (p,n;qr, €) Flycor| 291" ndr”
ga ) Y ) ) ga, az. in. ) (2n / )2 ? ) ) ga, corr. ) (2np/Z)

» For the quark case, it 1s given by

F Xy qu : i == (5 1—2 5(d 2) qT 5
ca ) ) (2 p/ )2 ( ) ( ) ca
k 1—2

- / d?k 6“4 (kr + qr) 5(p+

) Fol(p,kin) , c=q,q

<

» We also define zero-jettiness partonic beam functions as follows

TL [ . _ _ . " d o v TL
B (,t, (2np/z)2> 5(1—2)5(t)0 +/d ko(t — 2zpk) o (p+ . )]—" (p, k;n)

14



INTEGRATED COLLINEAR FUNCTIONS:SL CASE

» We define the transverse momentum dependent collinear functions for both quark and gluon
splitting as follows

Foo({g:}; 2 2p,ar;n) = 1 6(1 — 2) 6“2 (qr) de

(@
/
kt g AIE
+ z/ddk 62 (kr + qr) 5(—+ —~14 z) Fea{a:}; 0, k; )
dependence on non- p s’ 2
. -2
collinear partons phase space in coll. limit 6) /
a SN
» We define the zero-jettiness partonic beam functions for both quark and gluon splitting as

follows

B..({q:};2;2p,t;m) =1 0(1 — 2) 6(t) Ocq

kt
d : ;
process dependent T8 / d’k o(t — 22pk) 5(]7"' -1+ z) Feal{ai};ip, k;n)
Q transverse virtuality

» Note that until now our framework 1s quite general 1.e. without restricting to any perturbative
order. For the purpose presenting our perturbative results, from now on we are restricting
ourselves to NNLO in perturbation theory. Up to this order SL collinear and beam functions

are also process independent. Hence, like TL region the functions we will be dealing with are
as follows

2 2 2 2 2 2 2
: . 2 TgT L2 AT e 2 AT . n”i
Fg’z’j(z7 Zp, qTa n) b Fga,a.z.in.(zy QT ? (2an)2> ? Fga,, corr.('z) QT ? (zzpn)Q) y Fca (Z, QT b ) Iy Bca (z7 t)

15



COMMENTS ON COLLINEAR FUNCTIONS IN SCET

» There are related definitions of TMD collinear functions and zero-jettiness beam functions
from SCET. These functions are defined in a process independent way using auxiliary Wilson
line operators along light-like directions.

» For TL case at the partonic level, SCET functions are equivalent to our collinear functions by
using a light-like auxiliary vector [1].

» Same equivalence holds true for the SL region 1s only up to second order in strong coupling.
This 1s due to the fact that ours results in general process dependent and this dependency
goes away 1f we are within NNLO 1n perturbation theory.

[1] Ritzmann, Waalew1jn (1407.3272)

16



TMD FUNCTIONS & RAPIDITY DIVERGENCES

» While defining collinear functions at the integrated level, we approximated the phase space
in the collinear limit. While this approximation greatly simplifies the calculation, 1t forces
one to enter non-collinear region ( £ < k™ < 4+00). As a result one encounters divergences
from the upper limit of the integration called rapidity divergences.

2
. . +
Collinear phase space —> %—T+ <k~ < oo => Rapidity divergences (%ln Z—_)

17



TMD FUNCTIONS & RAPIDITY DIVERGENCES

» While defining collinear functions at the integrated level, we approximated the phase space
in the collinear limit. While this approximation greatly simplifies the calculation, 1t forces
one to enter non-collinear region ( £ < k™ < 4+00). As a result one encounters divergences
from the upper limit of the integration called rapidity divergences.

2
. . +
Collinear phase space => %—T+ < k= < oo = Rapidity divergences (%ln Z—_)

» Any specific observable 1s free from rapidity divergences and the cancellation happens
among the components of the resummation formula.

» For the computation of individual components such as soft functions, collinear functions

etc. there are very many rapidity regulators that exist in the literature and they are
introduced at the integrated level.

» We avoid rapidity divergences in our computation by introducing a time-like auxiliary
vector at the matrix element level.

» Finally, N-jettiness coefficient functions are free from these divergences as the minus
component of the total momentum 1s fixed and small from the observable’s definition.

17



3. Perturbative Results



DIFFERENTIAL COLLINEAR FUNCTIONS

» SL differential collinear functions up to NNLO have the following perturbative expansion [1]

F(p, k;n) = FOB(p, k;n) + [ FOB (p, k;n) + FEV)(p k;n) | + O(ad)

single real contribution \> _ N
double real contribution I-loop r;al ylrtual
contribution

» Azimuthally independent contributions @ O (ag)

notice the explicit

S. = (47 e 7E)" n-dependence
u ,,2¢ 3 YE § k2 1 =

ca, az.in. . rl—e¢ pk 2 \ C T o

real contributions

» Azimuthally correlated contributions (@ O (ag)
to Altarelli-Parisi

FOR) () kom) = — o p2e S e §,.(k*)Cp 1— 2, splitting functions
gg,corr.\t”» ' s 71_1_6 pk 2722 Y
FUR () = BH S € 5 () Cp -z
ga,corr. \t”» "V . rl—e pk z% ) )
s 2 ~ 1—
Pog(x3€) = %CF [ll—ia; _5(1_55)] ; Pag(x;€) = Ca [lf:c+ mx—l—x(l—x)] ;
A — ~ — 7)2 ﬁ—x;e=ﬁ1x;e =I5—z:c;e=
Palsid =3 Ta[1- 2020 Pa(aig = 3 o |[FEE= ] (23 €) = Fog (21€) = Fag (3]

[1] Stefano Catani + PKD



TMD COLLINEAR FUNCTIONS IN MOMENTUM SPACE

» At the bare level, azimuthally independent collinear functions at NLO are obtained as follows

explicit n-dependence and it is
proportional to delta function

u 2€S€ EYE C 1l = 1 2 2
— XsHo0e 4 [( © +2(1 —2)+ 2 55(1 —2)In ((ZZEZ)2>]

F(lR) '
99,az.1n. T ml—e qT2 1 — Z)+ z
u,,2€ A EYE j 1 — 1 2 2
Fq(;-i)z " - aSIJ’O S el CF2 [ <z + ( 6)( Z) . _5(1 _ Z) ].n ( n QT 2)]
) Azl T 7w fqr? [(1—2)4 2 2 (2zpn)
pan a";unge e’ Cr [1—2 n 1-— Ez FOR) afs*’ugese e'E Th 1 B 2(1—2)
gq,az.in. ~ . 7_‘_1_6 qu > 2 qg9,az.in. ~ T 7_‘_1_6 qu 2 1—¢

» Azimuthally correlated collinear functions at O(as) are obtained as follows

U, ,2€ EYE _ 2
oS e’ Cpl—2 POR) atp2eS, e Cy1—2
) — = .
gg, corr. r  wleqp? 2

FQaR)
94, corr. T wieqp? 2

» General formulae for the Fourier transformation from momentum space to conjugate

impact parameter space

In™(qr?) 4=4-2 d”

dd—2 —-ib.qT N -
/ Lk (az?)*? dp™ | T(1+d—p)’

4

- (bz) o I'(p—€—9)
p=0

o ibae D™ (QT?) —4se M b2\ 2 T4 p—e—ib)
dd 2qT e ib.qT D" p,M; QT di)% A 7.‘_1_E (_) P DH n; b).
/ (qp?)1+e ( ) dpm 5 4 T(2+6—p) (p, )

19



/ZERO-JETTINESS BEAM FUNCTIONS IN t-SPACE

» At the bare level, the partonic beam functions at NLO [1] are obtained as follows

U, ,2€ EYE

as:u’O SE € C —1—¢
= t
r I(l—¢ 4

x Kl - Z) (1 _ZQZ +2(1—2)+ 11__Z:> ¥ ((11__Zi_e)+ . %5(1 —z)] |

u,,2€ YE
Og o S€ € C —1—¢
= t
r Ll—¢ ©

() (9 ) (B2 gy

1—-2z 1-—c¢ 3 :a’;,ugeSe eVE
22 2 |’ 4 7w T'(1—c¢)

ng

o QS e
aq —

—1—e _1+€ 1 _ —€
- I‘(l—e)CFt 271 - 2) [

1=
TRt—l—eZ1+e(1 _ z)—e [ 1 Z]

% 1—&|”
» The general transform formula from t-space to conjugate Laplace space is given by

oo 1 m ™m
/ dt et — v & o* T (p—10) .
0

p=0

t1+5 dpm

[1] Ritzmann, Waalew1jn (1407.3272)

20



RENORMALIASTION: TMD COLLINEAR FUNCTIONS

» QCD strong coupling renormalisation

aqu,lu,gese = as <b(2)/b2> (@)6 [1 B s (bO/b ) BO 4+ O (Oég (bg/b2>>]

b2 T €

2 €
=as(32) 1-22v0(@)] | g-lo,

b2 T €

» Infrared factorisation in b-space

n?b? n2b? ~ n2b?

2z2pn)2b? -
AP splitting
</ ) (ﬁ functions

~ n2b3
C (z; O . agje= O) = Cu (25 8) pO,
(22pn)=b® T (z;a8) = 0;;0(1 — 2) — as Bij (7)

» Infrared factorisation factors for both gluon and quark are as follows

1 1 2712 2
zg=1+%[%(—+-m( b ))ﬁ‘) cA;’—4]+o(a§)

T | 2 \e € (2znp)2b? &

2

_ 14 % (Or (1 1 nbs e o 2
Z,=1+ [ ( + ln(( +o CF24 + O(a3)

€2 € 22np)2b?
( Resummation
scheme-dependent




RENORMALIASTION: BEAM FUNCTIONS

» QCD strong coupling renormalisation

atu's. = as (ou/o) (2) 1= LD 4 6 (03 (0001

0) T €
amﬁﬁb—%@+o(ﬂ
o) €
» Infrared factorisation
d .
Beo (23085 €) = 2. (as; e / - ana)Fba(i§aS§€)
X

~ 2

Iy (z3ag85€e =0) = I (25 a8)

» Infrared factorisation factors for both gluon and quark are as follows

% as Bo
Zg:1+7r(62 6)"‘0((1%)

o as CF 3CF 2
=1+ ( e >+O(as),

QNI

22



PERTURBATIVE RESULTS @ O (as)

» TMD collinear functions [1]

CO(z) =Trz(1 - 2), ; < ,
1 G —C -
Cg;)(Z) =§CF(1 — Z) y 99 (Z) = yA

» Beam function matching coefficients [2]

IO (2) :% {Z+ ], 4 (lz— z)? In (1 ; z)} :
Ig(slz)(z) —C, { [ln(l — Z)] e (% = D g s z2) In(l1-—2)— (12_(12;*_;)2)2 ln(z)} :

1—2

IO(z) =T {z(l —2)+ Z+ (; —2" ), (1 — z)} ,

<

IO (z) =% {1 —z+2 [ln(l — Z)L (42— -7 ln(z)} .

11—z 1—2

» Our results are 1n full agreement with those 1n the literature.

[1] de Florian, Grazzini (0108273); Catani, Grazzini (1106.4652)
[2] Stewart, Tackmann, Waalew1jn (1002.2213); Ritzmann, Waalewijn (1407.3272)
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PERTURBATIVE RESULTS @ O (a3)

» Azimuthally correlated TMD collinear functions are obtained as follows

l—2 9 1 l—m2
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» Our results are in full agreement with those in the literature [1].

[1] Luo, Yang, Zhu, Zhu (1909.13820); Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov (1907.03780)
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PERTURBATIVE RESULTS @ O (a3)

» Azimuthally correlated TMD collinear functions in the TL region are obtained as follows
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» Our results are in full agreement with those in the literature [ 1].

[1] Luo, Yang, Zhu, Zhu (1909.13820)
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SUMMARY & OUTLOOK

» I have presented an alternative way to compute both SL and TL collinear functions for QCD
resummations using respective splitting kernels for the scattering amplitude.

» To compute these functions, we defined a differential version at the intermediate level and
integrate them using proper observable definition to obtain specific collinear functions for
both transverse momentum and zero-jettiness case.

» For the azimuthally independent collinear functions, we have presented results up to NLO
and for the azimuthally correlated case, we have results up to NNLO in perturbation theory.

» In our computation, we have stressed on the point that SL collinear functions, in general, can
be process dependent and this dependency smoothly flows from splitting kernels to collinear
functions.

» Instead of using a regulator to cure rapidity divergences those are present in the transverse
momentum case, we use a time-like auxiliary vector to avoid them at the matrix element
level.
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SUMMARY & OUTLOOK

» NNLO results for the azimuthally independent collinear functions are under completion.

» Residual soft functions at NNLO are also under completion.

» Our formalism can be extended and applied to other observables such as jet mass
distributions, energy-energy correlation functions etc.

» It would be interesting to extend our procedures to the next order 1.e. N3LO 1n perturbation
theory to understand the process dependence nature of SL splitting kernels and how i1t affects
the corresponding collinear functions.
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Thank you for your attention
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