
Introduction Status Plans

Building tools for SuperB

Marco Corvo

CNRS and INFN

SuperB R&D Computing Workshop

November 17, 2010



Introduction Status Plans

Current build system

SoftRelTools was the standard in BaBar, but it has several
limitations. Besides technologies have improved since SRT was
developed.
SRT issues:

SRT changed a lot over years

It supports very old and no more used OSes and software

Hand written Makefiles, which are difficult to manage and
debug

Impractical code dependencies and complex dependency
management (what goes where, etc.)

Online/SRT base issues where you want most flexibility &
agility depended on this huge blob of SRT base

In other words: difficult to clean up or reorganize, Better to write
from scratch



Introduction Status Plans

Solution(s) for these issues

1 Write SRT from scratch

Possible, but not very practical (at least in terms of man
power)

2 Use available third party tools

Autotools
SCons
CMake



Introduction Status Plans

What are Autotools?

Pros

Complete tool chain of several programs, each with different
”macro” syntax

Easy to use for users (./configure && make && make install)

Cons

Same as point one of Pros (too many programs)

Creates big build scripts and helper files even for a hello world
example

Hard to extend, hard to understand



Introduction Status Plans

Autotools flowcharts



Introduction Status Plans

What is Scons?

SCons is an Open Source software construction tool: it’s a
cross-platform substitute for the classic Make utility with
integrated functionality similar to autoconf/automake and compiler
caches such as ccache.

Written in Python (a real OO programming language)

Reliable, automatic dependency analysis built-in for C, C++
and Fortran

Built-in support for C, C++, D, Java, Fortran, Yacc, Lex, Qt
and SWIG, and building TeX and LaTeX documents

Improved support for parallel builds

Very similar to CMake (features, cross platform support,
behaviour) has the advantage of being written in Python. From
my experience not so intuitive as CMake. Need to spend some
time to get comfortable with it.



Introduction Status Plans

What is CMake?

1 Generates native build environments

UNIX/Linux: Makefiles
Windows: VS Projects/Workspaces
Mac OS: Xcode

2 Opensource

3 Cross-platform

4 Integrates testing and packaging systems



Introduction Status Plans

CMake features

1 Manage complex, large build environments (KDE4)
2 Very Flexible and Extensible

Support for Macros
Modules for finding/configuring software (bunch of modules
already available)
Extend CMake for new platforms and languages
Create custom targets/commands
Run external programs

3 Very simple, intuitive syntax

4 Support for regular expressions (*nix style)

5 Support for In-Source and Out-of-Source builds

6 Cross Compiling

7 Integrated Testing and Packaging (Ctest, CPack)



Introduction Status Plans

Why Use CMake?

Pros

1 CMake depends only on C++ compiler

2 CMake supports great variety of platforms (basically every
*ix, Mac OS, Windows)

3 CMake generates only Makefiles for all supported platforms

4 CMake additionally can produce project files for IDE’s
(KDevelop, XCode, VStudio)



Introduction Status Plans

Why Use CMake?

Pros (cont’d)

1 More usefull error messages when making a mistake in editing
input files

2 Easy to use configure-like framework

3 CMake has simple syntax

4 CMake has a testing framework

5 CMake is faster than autotools (does not use libtools)

Furthermore, talking with CMS people, they also would use CMake
if they were to write from scratch their build system



Introduction Status Plans

Why Use CMake?

Special interesting features
CMake combines further subsystems

1 CTest: used to automate updating (using CVS for example),
configuring, building, testing, performing memory checking,
performing coverage, and submitting results to a CDash or
Dart dashboard system

2 CPack: software packaging tool which can be used with or
without CMake and is able to generate many different flavours
of installers (RPM, Debian, DragNDrop, PackageMaker)

3 CDash: CDash is an open source, web-based software testing
server. CDash aggregates, analyzes and displays the results of
software testing processes submitted from clients located
around the world. Developers depend on CDash to convey the
state of a software system.



Introduction Status Plans

Current status of FastSim build

Currently the prototype to build SuperB software with CMake
works with the Head (trunk) of FastSim V0.2.6:

CMakeLists files in place for every FastSim package

Bunch of CMake macros and scripts to configure the release

Third party packages configuration and management (CLHEP,
Root. . . )
Specific platform settings (compiler definitions and flags)
Bash script to run cmake executable in a more friendly way

Already ongoing tests using the CTest framework

Next development release V0.2.7 will come with the support to
CMake build.



Introduction Status Plans

Short term

First impression and first experience with FastSim is good.
CMake is simple to use, flexible and has a large number of
modules to set up and manage third party software (for
FastSim I used CMake modules to configure Root and
CLHEP)

Current system is still a prototype which needs further and
deeper work in order to turn it into a stable and widely usable
one

First goal is to get a really usable and useful CMake framework for
FastSim builds



Introduction Status Plans

Future plans

Future plans consider developing prototypes with CMake combined
with CPack, CTest and CDash

1 CPack

CPack can be used also without CMake as a standalone tool
Same syntax as CMake
Support for many different package generators (RPM, Debian,
OSX, Cygwin)

2 CTest

Useful also combined with Valgrind to perform code profiling
and to submit results to a CDash

3 CDash

Useful to set up a sort of alarm system based on email
notification when build fails



Introduction Status Plans

CDash snapshot



Introduction Status Plans

CDash with Valgrind


	Introduction
	CMake Intro

	Status
	Status

	Plans
	Short term
	Medium/Long term


