
Xrootd/Lustre
comparison using
CMS analysis jobs

Giacinto Donvito
INFN-BARI

Outlook
• CMS job description

• Configuration on CMSSW framework

• Xrootd:
• Features and configuration
• Performance

• Lustre:
• Features and configuration
• Performance

• Miscellaneous test and interesting scenarios

CMS Job Description

• The job used is:
• An “analysis” job (MTR3), which reads ~40 branches (PDFs,

{Gen,Calo,PF}Jets, Electrons, Muons, Photons, Tracks) and
performs basic computations (invariant masses, track isolation),
and produces no output

• This produces a lot of pseudo random seek and very small read
operation (from 4k to 64k)

• CMSSW used:
• CMSSW_3_9_0_pre5

• Dataset used:
• O(10TB) of MC data written with an quite old CMSSW version

(3_6_x)

This is simply a typical “non optimised scenario” that is quite
common in every-day analysis

CMS Framework configuration

• Starting from the 3_8_x release, CMSSW allow few
configuration in order to improve data access:
• cacheHint

• The cacheHint indicates how file caching requested in
PoolSource.cacheSize should be implemented. Possible values are
"application-only", "storage-only", "lazy-download" and "auto-
detect".

• cacheSize
• Size of TTree read cache in bytes. If the value is the default zero,

ROOT will not cache anything. If the value is non-zero, then the
I/O layer caching options affect how the value is interpreted.

• readHint
• The readHint indicates how I/O reads should be performed.

Possible values are "direct-unbuffered", "read-ahead-buffered"
and "auto-detect".

Xrootd: Feature tested

• We are testing a couple of very interesting features
of this storage software:

• parallel stream (using more than one source server)
• automatic caching files

• General comments:
• Parallel stream is easy to implement:

• it is enough to have multiple copy of the same file
on different servers

• Automatic caching is quite easy to configure and
very flexible

Xrootd: parallel streams

xrootd

cmsd

xrootd

Xrootd	

Client

xrdcp	
 root://xrootd.ba.infn.it//var/spool/xrootd/input_file_1	
 	
 /tmp/

/var/spool/xrootd/input_file_1/var/spool/xrootd/input_file_1

xrootd	
 Data	
 Stream xrootd	
 Data	
 Stream

It is enough to have a
file copied “manually”
to more than one server
and it will be used from
the cluster

Xrootd: parallel streams
• xrdcp -d 1 -f root://gridse14.ba.infn.it//mnt/sdh/0000/EC3C02B0-442C-

DF11-97BB-000423D6BA18.root /tmp/
• ~20.1 MB/s

• xrdcp -d 1 -S 12 -f root://gridse14.ba.infn.it//mnt/sdi/0000/EC3C02B0-442C-
DF11-97BB-000423D6BA18.root /tmp/

• ~58.9 MB/s

• xrdcp -d 1 -S 12 -x -f xroot://gridse14.ba.infn.it//var/spool/xrootd/mons.log1 /
tmp/

• ~100.2 MB/s

• Using parallel streams increase the performance but requires
much more CPU on the client side (typically a factor 3 in CPU
utilization)

• “-x” allow reading from multiple servers
• this method could be used only with “xrdcp” command line

Xrootd: Automatic caching files

xrootdClient

xrootd	
 Data	
 Server

cmsd

Configura2on	
 File

Xrootd: Automatic caching files

xrootd frm_xfrd

frm_purged

Client

xrootd	
 Data	
 Server
frm_admin

cmsd

Coordinates
Staging	
 &	

Migra0on

Displays	
 &
Manages

Removes
unused
files

Configura2on	
 File

Xrootd: Automatic caching files

xrootd frm_xfrd

frm_purged

Client

xrootd	
 Data	
 Server

Transfer
Agent

Remote
Storage

frm_admin

cmsd

xrdcp
dq2get

globus-­‐url-­‐copy
scp
wget

Any	
 kind	
 of	
 script

MSS
NAS

Foreign	
 Cluster

Coordinates
Staging	
 &	

Migra0on

Displays	
 &
Manages

Removes
unused
files

Configura2on	
 File

Xrootd: Automatic caching files

xrootd frm_xfrd

frm_purged

Transfer
Queue

Client

xrootd	
 Data	
 Server

Transfer
Agent

Remote
Storage

frm_admin

cmsd

xrdcp
dq2get

globus-­‐url-­‐copy
scp
wget

Any	
 kind	
 of	
 script

MSS
NAS

Foreign	
 Cluster

Coordinates
Staging	
 &	

Migra0on

Displays	
 &
Manages

Holds
Transfer
requests

Removes
unused
files

Configura2on	
 File

Xrootd: Automatic caching files

• You can easily specify (or customize) the
command to be used, the source of the files:

• mps.xfrcmd = /root/20100315-1007/bin/xrdcp %sfn %tfn
• mps.mssdir root://origin_source.ba.infn.it/

• Each single request trigger a check on the local
file-system:

• cacheHIT: the file served immediately
• cacheMISS:

• an automatic copy is triggered while the client is
waiting

• as soon as the whole file is cached the client starts
getting data

Xrootd: performance consideration

• MTR3 CMS job looks like very random application:
• Small read operation
• quite random read seek operation

• We measure the CPU efficiency during the run (CPUTime/
WallTime)

• Used bandwidth is not a good metrics
• Surprisingly big RAID5 with Fiber Channel controller

performs worst than simple single SATA disk for a single
job

• It was difficult to obtain >40% in cpu efficiency using raid5
• While it was easy to got 90% with a single disk

• The problem seems to be correlated with IOPS and stripe
size on the controller

• The initial test point is 1MB of stripe size

Xrootd: performance consideration

• Reconfiguring the raid to 256kb of stripe size we
easily got 86% of CPU efficiency for a single job

• "cacheSize" value="20048576" ## "cacheHint" value="storage-only"
"readHint" value="read-ahead-buffered"

• looking to the used bandwidth: a single job is able to
read at about 3MB/s constantly

• We tested: xfs, ext3, ext4
• no mayor differences observed

• We tried to run up to 120 concurrent jobs against
the same server:

• 100MB/s of aggregated bandwidth at maximum
• ~40% of CPU efficiency

Xrootd: performance consideration

• It is clearly limited by disk IO
• High I/O wait on the server

• The network is not a big issue here
• Changing the IO parameters in CMSSW do not add big

improvements
• The raid controller under test do not support smallest

stripe size
• This gives a measure of the scalability in “job-per-

server” of the disk sub-system
• maybe a single-disk configuration could give better

performances
• more test are still needed using “JBOD configuration”

Lustre: Feature

• Fully natively posix compliant
• Multi purpose file-system

• experiments data and users data could share the
same file-system

• Two different caches at Operative System level
• on the server and on the client side

• Strong capability to re-order random I/O
requests

• High performance on big files:
• if needed a single file could be split on more than

one server

Lustre: Performance

• Tuning a bit CMSSW parameters we easily got
~86% of CPU efficiency

• "cacheSize" value="20048576" ## "cacheHint" value="lazy-
download" ## "readHint" value="read-ahead-buffered"

• Using a posix file-system the framework do not
really download the files, but does only read-
ahead-buffered

• The configuration of the raid controller here do not
affect to much the performance

• With this configuration a single job could read
data with spikes of 50-60MB/s

• there are, obviously, periods of time in which the
job do not read data

0

22,5

45,0

67,5

90,0

1 job 50 jobs 120 jobs

CPU efficiency

%CPU

Lustre: Performance

• In case of lustre, we observed that
increasing the "cacheSize" could
reduce the I/O on the disks

• but this easily could become a
bottleneck on the network

• For example running 120 jobs
against a single disk server could
require more than 250MB/s on the
network

• If we reduce the "cacheSize" to
2MB this reduces the load on the
network but increases the load on
the disk subsystem

We need to
repeat the test
with a more
powerful
network
infrastructure

• Xrootd add a very
small overhead in
terms of amount of
data transferred

• Lustre requires 2
time the same
bandwidth

Lustre: Performance

Hepix Tests

• Also in this test the disk subsystem is the real bottleneck
• The number of event is quite the same with lustre or

xrootd

SSD test

• In order to be sure that we have a limitation on the
storage sub-system we tested an SSD disk with an
Xrootd server

• a single MLC SSD (256GB) is able to provide
data to 50 concurrent jobs without losing in CPU
efficiency

0

21,5

43,0

64,5

86,0

1 job 50 jobs

CPU efficiency

CPU%

Xrootd over Lustre

• Xrootd over Lustre could be interesting as lustre
adds some missing feature to Xrootd like:

• transparency of data access (one xrootd server can go
down and the data are still available)

• more uniform storage management in a multi-VO
computing farm

• posix compliance

xrootd

Lustre	

storage	

servers

xrootd
xrootd

Client

Xrootd over Lustre:
performance

• Xrootd give at worst the same performance if the
infrastructure is correctly tuned:

• the network bandwidth among the xrootd doors
and the lustre servers should never be a bottleneck

• The “lustre read-ahead” on the xrootd machine
should be tuned carefully looking at the real use
case

xrootd

Lustre	

storage	

servers

xrootd
xrootd

Client• as this could easily
overkill the lustre
servers

Tier2 - Tier3/Desktop data
serving

Lustre
FS

Lustre
FS

Lustre
FS

Lustre
FS

Xrootd
door
Xrootd
door
Xrootd
door

Small Tier3

Users Desktop

• The data hosted at T2
could be accessed by
Xrootd remotely
• Small Tier3 or Desktop

could read data without
a storage installation

Xrootd cache in multi-site
environment

Lustre
FS

Lustre
FS

Lustre
FS

Lustre
FS

Xrootd
door
Xrootd
door
Xrootd
door

Small TierN+1

• The complexity of a resilient storage
system is duty for biggest site, while
smallest could easily set-up a “live-
cache” of the “hot-data” required by the
user, dynamically managed by the
system

TierN
Client

xrootd	

cache
xrootd	

cache
xrootd	

cache

Xrootd cache in the same site

Slow disk
servers

• SATA disks are becoming bigger but not faster while SAS/
SSD are getting cheeper

• while we cannot use the “Tiered storage” paradigm
• to cache data depending on the requests of the users

Client xrootd	

cache
xrootd	

cache
xrootd	

cache

Slow disk
servers
Slow disk
servers

ClientClientClientClientClientClientClientClientClientClientClient

