XROOTD/LUSTRE
COMPARISON USING
CMS ANALYSIS JOBS

GIACINTO DONVITO
INFN-BARI

OUTLOOK

CMS job description
e Configuration on CMSSW framework

Xrootd:

e Features and configuration
 Performance

Lustre:
e Features and configuration
e Performance

Miscellaneous test and interesting scenarios

CMS JOB DESCRIPTION

e The job used is:

e An “analysis” job (MTR3), which reads ~40 branches (PDFs,
{Gen,Calo,PF}]Jets, Electrons, Muons, Photons, Tracks) and
performs basic computations (invariant masses, track isolation),
and produces no output

e This produces a lot of pseudo random seek and very small read
operation (from 4k to 64k)

o CMSSW used:
B ENISSW 3.9 () preb
e Dataset used:

e O(10TB) of MC data written with an quite old CMSSW version
(BE6RX)

This is simply a typical “non optimised scenario” that is quite
common in every-day analysis

CMS FRAMEWORK CONFIGURATION

e Starting from the 3_8_x release, CMSSW allow few
configuration in order to improve data access:

e cacheHint

e The cacheHint indicates how file caching requested in
PoolSource.cacheSize should be implemented. Possible values are
"application-only", "storage-only", "lazy-download" and "auto-
detect".

e cacheSize

e Size of TTree read cache in bytes. If the value is the default zero,
ROOT will not cache anything. If the value is non-zero, then the
[/O layer caching options affect how the value is interpreted.

e readHint

e The readHint indicates how I/O reads should be performed.
Possible values are "direct-unbuffered", "read-ahead-buffered"
and "auto-detect".

XROOTD: FEATURE TESTED

* We are testing a couple of very interesting features
of this storage software:
e parallel stream (using more than one source server)

e automatic caching files

* General comments:
e Parallel stream is easy to implement:

e itis enough to have multiple copy of the same file
on different servers

e Automatic caching is quite easy to configure and
very flexible

XROOTD: PARALLEL STREAMS

TN NN I IS IS S S S S S B S B S B S B S . .- 1

[t is enough to have a
file copied “manually”

xrootd xrootd

to more than one server

and it will be used from

/var/spod, krootd/inph

|
:
|
:
|
:
|
I the cluster
|

:

|

[
[
[
[
[
[
file_1 [var/spogt/xrootdfinput_file_1 I
[
[
[
[

xrootd Data Strea xrootd Data Stream

xrdcp root:) krootd.ba.Infn.it//var/spool/xrootd/input_file_1 /tmp/

XROOTD: PARALLEL STREAMS

xrdep -d 1 -f root://gridsel4.ba.infn.it//mnt/sdh/0000/EC3C02B0-442C-
DF11-97BB-000423D6BA18.root [tmp/

e ~20.1 MB/s

xrdep -d 1-S 12 -froot://gridsel4.ba.infn.it//mnt/sdi/0000/EC3C02B0-442C-
DF11-97BB-000423D6BA18.root [tmp/

e ~589MB/s

xrdep -d 1-S 12 -x -f xroot://qgridsel4.ba.infn.it/[var/spool/xrootd/mons.log1 /
tmp/
e ~100.2MB/s

Using parallel streams increase the performance but requires
much more CPU on the client side (typically a factor 3 in CPU
utilization)

“-x” allow reading from multiple servers

this method could be used only with “xrdcp” command line

XROOTD: AUTOMATIC CACHING FILES

I
xrootd

XROOTD: AUTOMATIC CACHING FILES

: Coordinates
: Staging &
: Migration

I
xrootd ‘ frm_xfrd \

Removes
unused frm_purged
files

Displays &

[
[
[
[
[
[
[
I Manages

frm_admin

XROOTD: AUTOMATIC CACHING FILES

e e e e -
xrdcp
: Coordinates dq2get
I Staging & globus-url-copy MSS
I Migration o NAS
| S Foreign Cluster
Any kind of script

Remote
Storage

Transfer

f f
rm_xfrd J—

I
xrootd

Removes
unused frm_purged
files

Displays &

frm_admin Manages

XROOTD: AUTOMATIC CACHING FILES

Rt o, = T e e s =
xrdcp

| Holds T_mnsfer Coordinates dq2get

| Transfer Queue Staging & 8lobus-url-copy MSS

I requests Migration v:;zt NAS

| l, -

| A Foreign Cluster

Transfer
Agent

. Remote
Client xrootd frm_xfrd Storage
Removes

unused frm_purged
files

Displays &

frm_admin Manages

XROOTD: AUTOMATIC CACHING FILES

* You can easily specify (or customize) the

command to be used, the source of the files:

e mps.xfremd = /root/20100315-1007 /bin/xrdcp %sfn %ttn
e mps.mssdir root:/ /origin_source.ba.infn.it/

e Each single request trigger a check on the local
file-system:
e cacheHIT: the file served immediately
e cacheMISS:
e an automatic copy is triggered while the client is
waiting
e as soon as the whole file is cached the client starts
getting data

XROOTD: PERFORMANCE CONSIDERATION

e MTR3 CMS job looks like very random application:
e Small read operation
e quite random read seek operation

e We measure the CPU efficiency during the run (CPUTime/
WallTime)
e Used bandwidth is not a good metrics

e Surprisingly big RAID5 with Fiber Channel controller
performs worst than simple single SATA disk for a single
job
e [t was difficult to obtain >40% in cpu efficiency using raid5
e While it was easy to got 90% with a single disk

e The problem seems to be correlated with IOPS and stripe
size on the controller
e The initial test point is 1IMB of stripe size

XROOTD: PERFORMANCE CONSIDERATION

e Reconfiguring the raid to 256kb of stripe size we
easily got 86% of CPU efficiency for a single job

e ‘"cacheSize" value="20048576" ## "cacheHint" value="storage-only"
"readHint" value="read-ahead-buffered"

e looking to the used bandwidth: a single job is able to
read at about 3MB /s constantly

e We tested: xfs, ext3, ext4
* no mayor differences observed

e We tried to run up to 120 concurrent jobs against
the same server:

e 100MB/s of aggregated bandwidth at maximum
e ~40% of CPU eftficiency

XROOTD: PERFORMANCE CONSIDERATION

e Itis clearly limited by disk IO
e High I/O wait on the server

e The network is not a big issue here

e Changing the IO parameters in CMSSW do not add big
improvements

e The raid controller under test do not support smallest
stripe size

e This gives a measure of the scalability in “job-per-
server” of the disk sub-system

* maybe a single-disk configuration could give better
performances

e more test are still needed using “JBOD configuration”

LUSTRE: FEATURE

Fully natively posix compliant
Multi purpose file-system

e experiments data and users data could share the
same file-system

Two different caches at Operative System level
e on the server and on the client side

Strong capability to re-order random I/O
requests

High performance on big files:

e if needed a single file could be split on more than
one server

LUSTRE: PERFORMANCE

 Tuning a bit CMSSW parameters we easily got

~86% of CPU etficiency

e "cacheSize" value="20048576" ## "cacheHint" value="lazy-
download" ## "readHint" value="read-ahead-buffered"

e Using a posix file-system the framework do not
really download the files, but does only read-
ahead-buffered

e The configuration of the raid controller here do not
affect to much the performance

e With this configuration a single job could read
data with spikes of 50-60MB /s

e there are, obviously, periods of time in which the
job do not read data

LUSTRE: PERFORMANCE

® |n case of lustre, we observed that
increasing the "cacheSize" could

reduce the I/O on the disks %CPU

e but this easily could become a
bottleneck on the network

e For example running 120 jobs
against a single disk server could
require more than 250MB/s on the
network

e If we reduce the "cacheSize" to
2MB this reduces the load on the
network but increases the load on
the disk subsystem

22,5

CPU efficiency

90,0
67,5 D\O\o
45,0

We need to
repeat the test
with a more
powerful
network
infrastructure

LUSTRE: PERFORMANCE

CMS

Hepix Tests

e Xrootd add a very = +—+

|[AFS | 140 MB/sec 155 MB/sec 153 MB/sec 146 MB/sec |

Small Overhead ln [chu16.4G| 262977 evs 277992evs 267193 evs 252982 evs |
56 MB/sec Dlea 77 MB/segf” 86 MB/sec |
terms of amount of | 336000 evs 439417 evs A7T9MYys 510183 evs

AFS/VILAM| 375 MB/sec 618 MB/sec 744 MB/sec 802 MB/sec |
data tranSferred 3.05| 291375evs 460075 evs 540152 evs 556916 evs |

168 MB/sec 170 MB#Sec 170 MB/sec

* Lustre requires 2

: 679249 evs
time the same 70 MBlsec 82WM&/sed 88 MB/sec
563798 evs 651225 €VS, 686875 evs

bandwidth

[Xrootd | 69 MB/sec 81 MB/se

88 MB/sec
[tuned | 558414 evs 647442 eVl 683015 ev

e Also in this test the disk subsystem is the real bottleneck

e The number of event is quite the same with lustre or
xrootd

SSD TEST

e In order to be sure that we have a limitation on the
storage sub-system we tested an SSD disk with an
Xrootd server

e asingle MLC SSD (256GB) is able to provide
data to 50 concurrent jobs without losing in CPU
efﬁciency CPU efficiency

86,0 M

64,5
43,0

21,5

1 job O CPU% 50 jobs

XROOTD OVER LUSTRE

e Xrootd over Lustre could be interesting as lustre
adds some missing feature to Xrootd like:
e transparency of data access (one xrootd server can go
down and the data are still available)
® more uniform storage management in a multi-VO
computing farm
® posix compliance

Client

xrootd

XROOTD OVER LUSTRE:
PERFORMANCE

e Xrootd give at worst the same performance if the
infrastructure is correctly tuned:
e the network bandwidth among the xrootd doors
and the lustre servers should never be a bottleneck
e The “lustre read-ahead” on the xrootd machine
should be tuned carefully looking at the real use
case
e as this could easily Client
overkill the lustre
servers

xrootd

TIER2 - TIER3/DESKTOP DATA
SERVING

Small Tier3

>

';.:, 3 "

Xrootd
door

| Lustre
FS

e The data hosted at T2
could be accessed by
Xrootd remotely

e Small Tier3 or Desktop
could read data without
a storage installation

Users Desktop

XROOTD CACHE IN MULTI-SITE

ENVIRONMENT
Small TierN+1

Xrootd
door

xrootd
cache

| Lustre
FS

e The complexity of a resilient storage
system is duty for biggest site, while
smallest could easily set-up a "“live-
cache” of the “hot-data” required by the

user, dynamically managed by the
system

XROOTD CACHE IN THE SAME SITE

Slow disk

SErvers

e SATA disks are becoming bigger but not faster while SAS/
SSD are getting cheeper

e while we cannot use the "“Tiered storage” paradigm
e to cache data depending on the requests of the users

