
I/O Advances in
CMSSW

Brian Bockelman
Presented by Giacinto Donvito

The Setup
• CMSSW uses ROOT for its underlying I/O

layer.

• CMSSW is a generic framework used for
everything from Online to analysis. There
are dozens of use cases and even more
IO patterns

• We take the constant stream of innovations
from the ROOT team and adopt (or adapt)
them to fit our needs.

This presentation covers some recent work with
ROOT I/O in CMSSW.

Outline

• CMSSW I/O use cases.

• Additions in CMSSW over bare ROOT.

• Recent Work in ROOT and CMSSW.

• Sneak peak on the future.

CMSSW Use Cases
• CMSSW must support almost all CMS software

needs. Typically, a use case can be characterized
by:

• Percentage of branches it reads out.

• Whether the branches used varies from
event-to-event.

• We can’t enumerate the use cases, so we can’t
optimize per-user; additionally, some of our data
tiers have users with conflicting needs. One
must beware of optimizing one user at the cost
of another.

ROOT I/O
• By selecting the split-level (how many buffers a single

object is broken into), we can optimize a file for reading
whole events or just a small subset of branches.

• If we optimize for reading an entire event at a time,
we would write all data in an event contiguously in a
file.

• If we think users will read a small subset of the
branches, we want to write branches contiguously
on disk.

• There’s a continuum of settings between “event-
based” and “branch-based”; newer ROOT versions
make this somewhat moot - more later.

CMSSW Data Tiers

• Even though each there are many use cases, we can guess the
most common use cases of each data type and optimize
accordingly.

• RAW: Smallest number of branches as possible; no
reasonable user would want a small subset of one event.

• RECO: Medium number of branches; about the same size
as RAW per-event, and usages are extremely varied (in
terms of # of branches read and skim efficiency).

• AOD: Largest number of branches, highest split level.
Smallest events in terms of kilobytes. Heavily used for
analysis with a small subset of branches;used for skims.

CMS Read Ordering

• It’s convenient and useful for CMSSW to read events in the
same order they came out of the detector.

• For example, it is expensive to load conditions data to
switch between runs. We don’t want to do that often.

• Because of the asynchronous buffering and merging in
online, they are not in “detector order” in our files.

• ROOT is optimized to read the events in the order they are
written in the file; “file order”.

CMS Read Ordering
• Reading out in “detector order” was a disaster.

• We continuously thrashed the OS and ROOT buffers for
files where “file order” and “detector order” were
drastically different.

• As “file order” is too expensive due to conditions, we had a
compromise.

• We read a complete run/lumi combination at a time, in
“detector order” for that run/lumi. Within a run/lumi, we
read the events in “file order”.

• Assuming there are few run/lumi combos in a file, this
prevents most thrashing. It also tends to sort the files for
the next level of processing, which is important for the
“higher layers” where there are many lumis.

CMS File Layout

• The focus of all ROOT’s optimization and testing efforts is the
case where there is one TTree for Event data.

• I.e., asynchronous prefetching is a FIFO. If there are
multiple event TTrees, the asynchronous prefetch become
synchronous, as one TTree has to wait for the previous to
finish its entire prefetch.

• It’s fine to have multiple TTrees per file; you just want
that’s read for every event.

• Don’t fight the tide! CMS has slowly migrated to one
Events TTree, and has found many advertised
optimizations suddenly work better.

Prefetching with
TTreeCache

• ROOT provides a mechanism, TTreeCache, for managing
prefetch.

• TTC keeps a list of active branches (either learned
automatically or set by the framework).

• TTC will prefetch all the buffers for these branches for
the next N events, in one I/O operation, if possible.

• N is selected by ROOT so the prefetch will be about
20MB of size (configurable).

• When the entire prefetch buffer has been used, ROOT
will throw it away and fill it with the next N events.

TTreeCache in CMSSW
• CMS took a long time to adopt TTreeCache

because:

• Only one TTC can be active per file per TTree.
If you read multiple TTrees with the same cache,
it will thrash.

• We had the statistics to show the TTC was
making performance worse, but it took awhile
to figure out why.

• Statistics tell you when something is wrong,
but not necessarily how to fix it!

• We mistakenly thought TTC just didn’t work!

Lesson: Work with the Experts until you’re sure it works!

CMSSW I/O Additions

• CMS has implemented its own set of
plugins for TFile which interface to the
various protocols seen in the LHC (dcap,
rfio, POSIX, etc).

• These override the ones found in ROOT.

• But also implement a few things not in
ROOT.

I/O Addition: Statistics

• A typical CMSSW developer has access to
their desktop and CERN.

• Meaning they have little insight to how
CMSSW is affecting a far-away T2.

• While CPU patterns are likely the same
at each site, I/O patterns vary greatly.

• Good statistics are essential to isolate
problems to the I/O system. They’re a
necessary starting point for devs to debug.

Statistics

• CMSSW provides the max/min/average
time for each I/O call (read, write, open,
seek, etc).

• It also provides the total number of calls
and the volume of data read/write.

• ROOT has added most of these in 5.26 as
well as a histogram; we are investigating
combining the two sets of statistics.

I/O Addition: Lazy-
Download

• Users can always find a way to do a crazy IO pattern,
no matter how sane the defaults are.

• CMS’s lazy-download mode will divide the file into
128MB chunks, and download the chunk to local disk
the first time it is accessed. Care is taken to
guarantee the local disk space is released when the
process exits. Totally transparent to the user.

• This makes the load on the storage servers fairly
predictable - always 128MB reads, never more than
100% of the file read out.

I/O Addition: POSIX
Pre-fetching

• POSIX has a little-used function called
“fadvise” which requests the OS to
perform prefetching based on given I/O
patterns.

• CMS started using this 2 years ago, but care
must be taken because fadvise is blocking if
you use it at a high rate.

• ROOT has recently added this in 5.27.

Recent ROOT Work

• In older versions of ROOT, one must chose between
efficiency for jobs reading out 100% of the data and
jobs reading 10% of the data.

• In the 10% case, we write branches contiguously,
meaning a single event might be scattered across
100’s of MB in the file.

• In 5.26, ROOT started to auto-flush all baskets every
30MB (adjustable). It also adjusts the memory buffer
for each branch so each buffer holds approximately
the same number of events.

Reclustering in ROOT
• What does this do for us?

• People reading whole events can do this by
reading 30MB “clusters” at a time, which is
pleasant for modern hardware systems.

• People reading a small number of branches still
make all their reads inside one “cluster” at a
time.

• This and buffer-resizing prevents constant
backward-seeks, as buffers are not scattered
throughout the file.

Sneak Peak Of the
Future

• WARNING: the next few slides contains
forward-looking statements and personal
opinions of what I think will happen in the
next few years.

• THESE DO NOT REPRESENT OPINIONS,
PLANS, OR INTENTIONS OF CMS OR
ROOT.

Adaptive Cache
• The current algorithm for determining if a branch

should be in the cache is naive.

• Once the branch is in the cache, it stays there
for the rest of the job.

• I have a few ideas about a per-branch statistics-
based approach

• Rather than implement my own cache, I would like
a callout mechanism so each framework could
adopt it to their own needs.

Double-Buffering
• Currently, whenever a cache gets used,

computation pauses to refill the cache.

• Best case is asynchronous protocols,
where the “wait time” for the first buffers
to arrive is hopefully minimal.

• If we kept 2 buffers, then we could use one
while asynchronously filling the other,
eliminating the (possibly long) pause while
we wait for the next set of IO.

• ROOT seems interested - I’m excited
about this one!

Improved Merging

• CMS has always used the ROOT fast
merging capability.

• Unfortunately, fast merging does not use
the TTreeCache due to historic reasons.

• TTreeCache with a reclustered file would
make fast-merging near-optimal.

• I’m confident the fix will come quickly from
the ROOT team.

Conclusions

• CMS has successfully built its computing on top of
ROOT I/O. I’ve found the following rules of thumb:

1. Have only one TTree that’s read per event. This
is what the ROOT devs test with.

2. Make sure you collect I/O statistics for
debugging. Otherwise your framework
developers will not be aware of how the
software is affecting your storage, and will code
accordingly.

Conclusions
• Continued:

3. If not avoidable, make sure skipping backwards
in the TTree is very rare.

4. Prefetching is the difference between storage
system life and death. Make sure the
TTreeCache is effective for your jobs.

5. The new ROOT “reclustering” technique
increases data locality and hence performance in
most cases. Use it as soon as possible.

