

# LHC data for Tier0 and Analysis

Massimo Lamanna / CERN (for the IT-DSS group)

### Introduction

- IT DSS is responsible of the data management for physics data at CERN
  - Mainly but not exclusively the LHC experiments
  - Physics data (disk and tapes): notably AFS and CASTOR
- Production mode but not a steady-state world
  - Technology evolves
  - New ideas are being discussed within HEP
  - Running LHC data management: experience
  - Data are coming! Lots of data
    - 10+ M files per month
    - Times 3 in total size in the next few years (40 PB → 120 PB in 2015)
    - Real data are more interesting than MonteCarlo (users, users, users)
    - Master operational load!

# CASTOR: examples of recent activity

- Heavy-ion run (Fall 2010)
- Verify the compatibility of running ALICE and CMS concurrently
  - ALICE 2.5 GB/s continuous (with LHC duty cycle 100%)
  - CMS 1.8 GB/s assuming a ~50% LHC duty cycle)
    - With 100% duty cycle CMS would alternate data collection to data export
  - Substantially higher than expected (cfr. LCG TDR)
    - At these rates: collect data and export "after the run" (always the case for ALICE).
    - CMS: in January data compression step (factor 5-10) and then an export

#### Actions:

- Put on the floor 2011 resources
  - Provide a "local" copy (since there is no Tier1 export during the run)
- Prepare a CASTOR update to improve especially tape handling
- Perform a test!
- Coexist with ATLAS (~300 MB/s) during heavy ions + reprocessing, LHCb (2010 reprocessing), COMPASS, LHC user analysis (pp data)





### **ALICE HI test**

ALICE T0export

ALICE tapes



# **ALICE** datadisk



### **CMS HI test**

**CMS T0export** 

**CMS** 

**CMS** tapes





# COPY t0alice → alicedisk + reco

### Last week in CASTOR

Record and partial export





#### Record and export

### **ATLAS**



### **CMS**



#### CMS pool activity (t0export)



#### CMS pool activity (t0 to tape)



#### **CASTOR** tape infrastructure



# HI Test - HI Run



# From Tier0 to Analysis

- CASTOR is coping with the LHC data rate
  - Often substantially higher than expected!
  - And the machine is steadily improving!
- As expected, user analysis is increasing
  - Lot of the load on the Tier1/2/3 infrastructure
  - CERN?
- Analysis at CERN
  - Sizeable! (and growing!!!)
  - Potentially interfering with data taking (and other "organised" activities)
  - Moving from RFIO to xroot in some areas (especially analysis)

# Requirements for analysis

- Multi PB facility
- RW file access (random and sequential reads, updates)
- Fast Hierarchical Namespace
  - Target capacity: 10<sup>9</sup> files, 10<sup>6</sup> containers (directories)
- Strong authorization
- Quotas
- Checksums
- Distributed redundancy of services and data
  - Dependability and durability
- Dynamic hardware pool scaling and replacement without downtimes
  - Operability

# Starting points

- April 2010: storage discussions within the IT-DSS group
  - Prototyping/development started in May
- Input/discussion at the Daam workshop (June 17/18)
  - Demonstrators
  - Build on xroot strengths and know-how
- Prototype is under evaluation since August
  - Pilot user: ATLAS
  - Input from the CASTOR team (notably operations)
  - ATLAS Large Scale Test (pool of ~1.5 PB)
- Now being opened to ATLAS users
  - Ran by the CERN DSS-FDO operations team
- Still much work left to do
  - Good points:
    - Early involvement of the users
    - Operations in the project from the beginning
- This activity is what we call EOS



### Selected features of EOS

- Is a set of XRootd plug-ins
  - And speaks XRoot protocol with you
- Just a Bunch Of Disks...
  - JBOD no hardware RAID arrays
  - "Network RAID" within node groups
- Per-directory settings
  - Operations (and users) decide availability/performance (n. of replicas by directory – not physical placement)
    - One pool of disk different classes of service
- Dependable and durable
  - Self-healing
  - "Asynchronous" operations (e.g. replace broken disks when "convenient" while the system keeps on running)

# **EOS Architecture**



### Head node

Namespace, Quota Strong Authentication Capability Engine File Placement File Location

# Message Queue

Service State Messages File Transaction Reports

### File Server

File & File Meta Data Store
Capability Authorization
Checksumming & Verification
Disk Error Detection (Scrubbing)

# **EOS** Namespace

#### **Version 1 (current)**

In-memory hierarchical namespace using Google hash Stored on disk as a changelog file Rebuilt in memory on startup

#### Two views:

- hierarchical view (directory view)
- view storage location (filesystem view)

very fast, but limited by the size of memory

 $-1GB = \sim 1M$  files

#### **Version 2 (under development)**

Only view index in memory Metadata read from disk/buffer cache Perfect use case for SSDs (need random IOPS)  $10^9$  files = ~20GB per view 16

| Namespace                                          | V1                                                       | V2*                               |
|----------------------------------------------------|----------------------------------------------------------|-----------------------------------|
| Inode<br>Scale                                     | 100 M inodes                                             | 1000 M inodes                     |
| In-Memory Size                                     | 80-100 GB<br>(replicas have minor space<br>contribution) | 20 GB<br>x n(replica)             |
| Boot Time                                          | ~520 s **                                                | 15-30 min ** (difficult to guess) |
| Pool size assuming<br>avg. 10 Mb/file + 2 replicas | 2 PB                                                     | 20 PB                             |
| Pool Nodes assuming<br>40 TB/node                  | 50                                                       | 500                               |
| File Systems assuming 20 / node                    | 1.000                                                    | 10.000                            |

# High Availability - Namespace scaling

#### **HA & Read Scale out**

active-active RO

slaves



#### **Write Scale out**



### File creation test

| # Namespace Statistic |                   |         |        |         |         |            |    |      |
|-----------------------|-------------------|---------|--------|---------|---------|------------|----|------|
| <br>ALL               | Files             | 5008898 |        |         |         |            |    |      |
|                       | Directories       | 5073    |        |         |         |            |    |      |
| who<br>#              | command           | sum     | 5s     | 1min    | 5min    | <b>1</b> h |    |      |
| #<br>ALL              | Commit            | 5006939 | 926.00 | 1104.64 | 1054.88 | 914.63     |    |      |
| ALL                   | Exists            | 5007435 | 926.00 | 1104.66 | 1054.88 | 914.63     |    |      |
| ALL                   | Find              | 0000005 | 0.00   | 0.00    | 0.00    | 0.00       |    |      |
| ALL                   | Mkdir             | 0005022 | 1.25   | 1.10    | 1.05    | 0.92       |    |      |
| ALL                   | 0pen              | 5007195 | 926.00 | 1104.66 | 1054.88 | 914.63     |    |      |
| ALL                   | OpenDir           | 0000010 | 0.00   | 0.00    | 0.00    | 0.00       |    |      |
| ALL                   | OpenFailedQuota   | 0000240 | 0.00   | 0.00    | 0.00    | 0.00       |    |      |
| ALL                   | OpenProc          | 0000151 | 0.25   | 0.03    | 0.01    | 0.02       | _  |      |
| ALL                   | OpenWriteCreate   | 5006955 | 926.00 | 1104.66 | 1054.88 | 914.63     | 11 | KH 7 |
| ALL                   | OpenWriteTruncate | 0000240 | 0.00   | 0.00    | 0.00    | 0.00       | _  |      |
| ALL                   | Rm                | 0000240 | 0.00   | 0.00    | 0.00    | 0.00       |    |      |
| ALL                   | Stat              | 0000413 | 0.00   | 0.00    | 0.00    | 0.11       |    |      |

NS Size: 10 Mio Files

\* 22 ROOT clients 1 kH

23681 daemon 0 8173m 7.9g 4356 S 0 6.3

<sup>\* 1</sup> ROOT client 220 Hz

# File read test



NS Size: 10 Mio Files

\* 100 Million read open

\* 350 ROOT clients 7 kHz

\* CPU usage 20%

# Replica layout



Network IO for file creations with 3 replicas:



500 MB/s injection result in

- 1 GB/s output on eth0 of all disk servers
- 1.5 GB/s input on eth0 of all disk servers

Plain (no replica)
Replica (here 3 replicas)
More sophisticated redundant storage
(RAID5, LDPC)

# Replica healing



Client **RW** reopen of an existing file triggers

- creation of a new replica
- dropping of offline replica

# Replica placement



In order to minimize the risk of data loss we couple disks into scheduling groups (current default is 8 disks per group)

- The system selects a scheduling group to store a file in in a round-robin
- All the other replicas of this file are stored within the same group
  - Data placement optimised vs hardware layout (PC boxes, network infrastructure, etc...)

# EOS ATLAS test (LST)



### Hammer Cloud Test

HC 10001181

#### **EOSATLAS POOL 27 Disk Server RAID0**





#### EOSATLAS POOL reconfigured to 8 Disk Server JBOD



# Hardware replacement test

#### Life Cycle Management

Exercise to migrate 27 disk server with 10 Raid-0 FS to 8 new with 20 JBOD FS [ partially overlapped with HC Tests ]



### Data verification test



### **Plans**

- Operation
  - Opening EOS to ATLAS users on Nov 15
  - Run by IT DSS operations team
- Development
  - Implement Version 2 of the namespace
- Field testing
  - EOS is one end point in ATLAS
    - Managed by IT operations
    - Used by ATLAS users and looked after by ATLAS shifts (as any Tier1/2/(3))
- Larger Testbed (if available)
  - Scale the instance from todays 600 disks to 2,000-8,000 disks (4 16 PB)

Remark: could also support NFS4.1 protocol - implementation is running inside xrootd servers but files can be accessed with any protocol supporting client stalling & redirection



