
CEPH: is it an interesting
solution in the long term

future?
Giacinto Donvito

INFN-BARI

CEPH: concept and architecture

An object based parallel file-system
Open source project (LGPL licensed)
Written in C++ and C
kernel level
Posix compliant
No SPOF

Both data and metadata could be replicated
dynamically

Configuration is config file based
 Flexible striping strategies and object sizes

Could be configured “per file”

CEPH: concept and architecture

Key goals:
Scale up to 10’000 storage servers
Petabytes of data
TB/sec aggregate throughput
Billions of files organized in one to thousands of files
per directory
File sizes that range from bytes to terabytes
Metadata access times in μsecs

Object and metadata are replicated using a policy
based algorithm that could be easily configured by
sysadmin
SAN (shared) disk is not needed to achieve HA

CEPH: concept and
architecture

Data Placement is realized by means of “hash functions”:
Location of data is calculated => no lookup tables

9

Ceph data placement

! Files striped over objects

! 4 MB objects by default

! Objects mapped to placement
groups (PGs)

! pgid = hash(object) & mask

! PGs mapped to sets of OSDs

! crush(cluster, rule, pgid) = [osd2, osd3]

! ~100 PGs per node

! Pseudo-random, statistically uniform

distribution

…

… … … …

OSDs

(grouped by

 failure domain)

Objects

PGs

…File

! Fast– O(log n) calculation, no lookups

! Reliable– replicas span failure domains

! Stable– adding/removing OSDs moves

few PGs

this means: unstable
mapping and adding disk
servers means reshuffling
“Rules” driven by replica:
“three replica should be in
different cabinet”
three concept could be
used:

Disk, Server, Rack

CEPH: concept and
architecture

6

A simple example

! fd=open(”/foo/bar”, O_RDONLY)

! Client: requests open from MDS

! MDS: reads directory /foo from object store

! MDS: issues capability for file content

! read(fd, buf, 1024)

! Client: reads data from object store

! close(fd)

! Client: relinquishes capability to MDS

! MDS out of I/O path

! Object locations are well known–calculated

from object name

MDS Cluster

Object Store

Client

CEPH: concept and
architecture

For example having 10 nodes, we can
configure:

Three monitors, on nodes 0–2
Three MDSes, on nodes 0–2
Eight OSDs, on nodes 2–9

NO SPOF

CEPH: concept and
architecture

Intelligent server: replicate data, migrate object, detect
node failures

this could happen because everyone know where
object belongs

inodes are stored together with the directory object: you
can load complete directory and inodes with a single I/O
(“find” or “du” are greatly faster)
It is easy to build a cluster of metadata servers (MDS)

Than it is scalable and adaptive
The work is moved from busy servers to idle ones

CEPH: concept and
architecture

Up to 128 MDS nodes and
250kops/s
I/O rates of potentially many
TB/s
File system containing many
petabytes of storage

25

Dynamic subtree partitioning

! Scalable
! Arbitrarily partitioned metadata, 10s-100s of nodes

! Adaptive
! Work moved from busy to idle servers
! Popular metadata replicated on multiple nodes

Root

Busy directory fragmented across many MDS’s

MDS 0

MDS 1

MDS 2

MDS 3

MDS 4

27

Failure recovery

! Nodes quickly recover
! 15 seconds—unresponsive node declared dead
! 5 seconds—recovery

! Subtree partitioning limits effect of individual failures on rest of cluster

28

Metadata scaling

! Up to 128 MDS nodes, and 250,000 metadata ops/second

! I/O rates of potentially many terabytes/second

! File systems containing many petabytes of data

CEPH: concept and
architecture

Subtree based usage accounting (half the work of a quota
system)
Near-posix, strong consistency
Support snapshots
kernel > 2.6.34 is required on client side or is there a FUSE
client with the kernel > 2.6.35 the server is already built-in

29

Recursive accounting

$ ls -al

drwx------ 1 root root 5438384 Oct 20 14:51 ./

drwx------ 1 root root 5438387 Oct 20 14:51 ../

drwxr-xr-x 1 root root 2342034 Apr 20 2009 ghostscript/

drwxr-xr-x 1 root root 276961 Apr 20 2009 libthai/

drwx------ 1 root root 2817666 Oct 20 14:51 python-support/

drwxr-xr-x 1 root root 1723 Apr 20 2009 readline/

$ getfattr -d libthai

file: libthai

user.ceph.dir.entries="3"

user.ceph.dir.files="3"

user.ceph.dir.rbytes="276961"

user.ceph.dir.rctime="1256075461.95929000"

user.ceph.dir.rentries="4"

user.ceph.dir.rfiles="3"

user.ceph.dir.rsubdirs="1"

user.ceph.dir.subdirs="0"

! Subtree-based usage accounting
! Solves “half” of quota problem (no enforcement)

! Recursive file, directory, byte counts, mtime

ceph: WRITE SEMANTICS

By default, OSDs use Btrfs as their local file
system (but ext3 works too). Data is written
asynchronously using copy-on-write, so that
unsuccessful write operations can be fully rolled
back.

CEPH: First test and feedback

Using standard Ubuntu 10.10
It is already compiled and available on default
kernel (2.6.35)
Installing and configuring it is quite simple:

apt-get install ceph
vi /etc/ceph/ceph.conf
mkcephfs -c ceph.conf --allhosts --mkbtrfs

Btrfs is already there

CEPH: First test and feedback

Test results:
Fully posix compliance (typical home directory usage) OK
Performance for small files OK

comparable with standard NFS mount point
Performance on typical HEP application => WORK IN
PROGRESS

0

125

250

375

500

Local Disk CEPH NFS Lustre

Second spent in “Kernel” Untar (single process)

ceph.conf
[global] user = setupuser
; where the mdses and osds keep their secret
encryption keys
keyring = /data/keyring.$name

; monitors
[mon]
;Directory for monitor files
mon data = /data/mon$id
[mon0]
host = node0
mon addr = 192.168.0.100:6789
[mon1]
host = node1
mon addr = 192.168.0.101:6789
[. . .}

[mds]
[mds0]
 host = node0
[mds1]

host = node1
[mds2]
host = node2

;OSDs
[osd]
; osd data is where the btrfs volume will be
mounted;
; it will be created if absent
osd data = /data/osd$id
; osd journal is the regular file or device to be used
for journaling
osd journal = /dev/sdb2
; The ‘btrfs devs’ partition will be formatted as
btrfs. btrfs devs = /dev/sdb1
host = node$id
[osd2]
[osd3]
[. . .}
[osd9]

CEPH: Current Status

snapshots — RBD supports read-only named snapshots
(and rollback)
scalable — disk device can be arbitrarily sized (and resized)
“thin provisioning” — space isn’t used in the cluster until
you write to it
osd: use new btrfs snapshot ioctls (2.6.37), parallel
journaling
mds: clustering, replay fixes
mon: better commit batches, lower latency updates
ceph: new gui (ceph -g)

CEPH: Current Status

Since the Ceph kernel client was pulled into Linux
kernel 2.6.34, interest in Ceph has greatly
increased.
Ceph is currently the only open source (LGPL
licensed) parallel file system that offers a
distributed metadata service that is linearly
scalable to at least 128 metadata service nodes,
supports the POSIX I/O API and semantics, and is
able to expand and contract with low overhead
without interrupting service.

CEPH: Current Status

CEPH has already plugins to interact Amazon’s S3 and
Hadoop so it can be deployed in virtual environments such
as Amazon’s EC2 cloud service, where frequent and
significant cluster size changes are the norm.
Overall Ceph addresses a number of shortcomings of HDFS,
i.e., HDFS’s limited name-node scalability, its heartbeat
overhead, and its highly specialized file access semantics.
As we write this, Ceph is still experimental and officially
not yet ready for production environments. Sage Weil,
Yehuda Sadeh, and Gregory Farnum are working full-time
on making Ceph production-ready, with new releases
coming out every 2 to 4 weeks.

