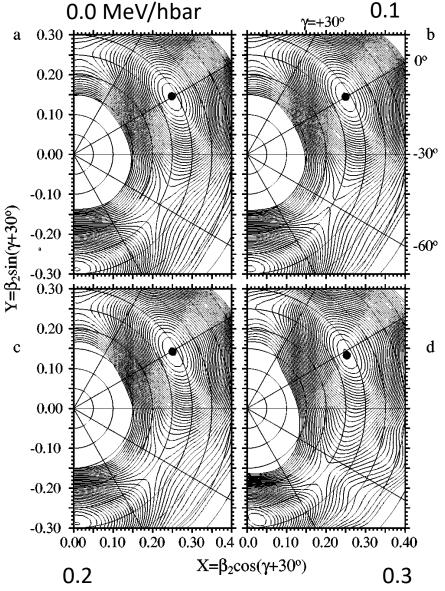


High Spin Evolution of the doubly midshell nucleus ¹⁷⁰Dy

A.J. Boston, J. Nyberg, P. Regan, J Simpson


Presentation overview

- Key Physics motivation
- How can you access ¹⁷⁰Dy?
- What is known?
- What could be expected?
- Preliminary simulations
- Expectations
- Summary

• • • • • • • • • • • • • •

Key physics motivation

- The nucleus ¹⁷⁰Dy has the largest value of the protonneutron valence product, N_pN_n, of all nuclei with A < 208.
- Theoretical predictions suggest that ¹⁷⁰Dy may be one of the stiffest axially deformed nuclei in nature [1], which has significant consequences for the robustness of the K quantum number.
- In addition, ¹⁷⁰Dy may represent the best case of the SU(3) dynamical symmetry of the interacting boson approximation of all nuclei.

• • • • • • • • • • •

How to access ¹⁷⁰Dy?

- The structure of ¹⁷⁰Dy is challenging to study experimentally.
- A number of attempts have been made using projectile fragmentation of a Pb beam [2]
- Multi-nucleon transfer reactions between ⁸²Se and ¹⁷⁰Er [3]
- Multi-nucleon transfer between ¹³⁶Xe and ¹⁷⁰Er [6]
- In-flight fission from where an isomeric state was observed [4]
- The most recent work nuclei in the ¹⁷⁰Dy region were produced by in-flight fission of a 345 MeV/u ²³⁸U beam on a Be target at RIBF in RIKEN [5]

[2] Zs. Podolyák, et al., in: J.H. Hamilton, W.R. Phillips, H.K. Carter (Eds.) 2000, p. 156

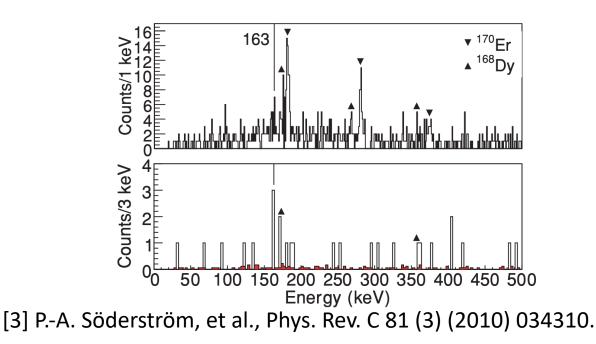
- [3] P.-A. Söderström, et al., Phys. Rev. C 81 (3) (2010) 034310.
- [4] D. Kameda, et al., RIKEN Accel. Prog. Rep. 47 (2014)
- [5] Söderström et.al. Physics Letters B 762 (2016) 404–408
- [6] A. Gengelbach. Licentiate Thesis, Uppsala Universitet (2021)

Candidate MN transfer reactions

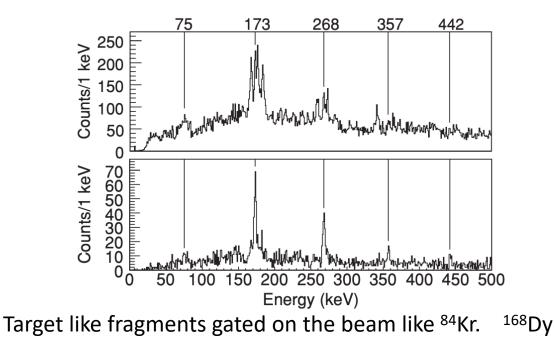
Routes open to populate ¹⁷⁰Dy:

 $^{48}Ca + ^{170}Er$ $^{136}Xe + ^{164}Dy$

⁸²Se + ¹⁷⁰Er

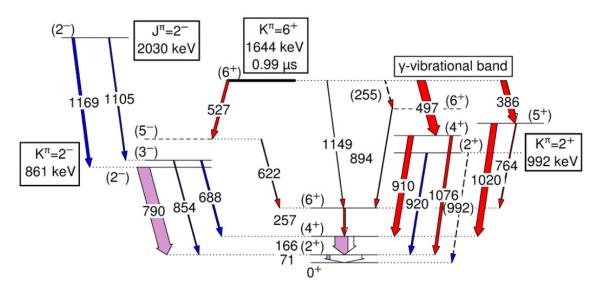

¹³⁶Xe + ¹⁷⁰Er -> increase in yield of neutron-rich products + angular momentum transferred [-2p +2n] (¹³⁶Ba)

	100	101	102	103	104	105	106
68	Er-168	Er-169	Er-170	Er-171	Er-172	Er-173	Er-174
67	Ho-167	Ho-168	Ho-169	Ho-170	Ho-171	Ho-172	Ho-173
66	Dy-166	Dy-167	Dy-168	Dy-169	Dy-170	Dy-171	Dy-172


What is known?

CLARA-PRISMA ⁸²Se and ¹⁷⁰Er

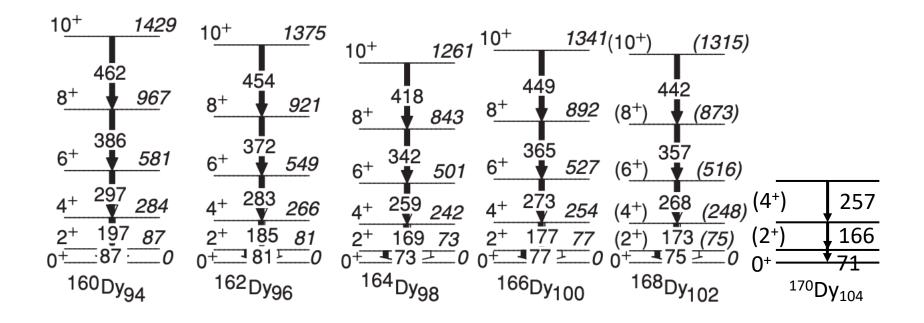
- Tandem-ALPI 460MeV beam ~2pnA
- 52⁰ Grazing angle
- 4⁺ -> 2⁺ ground-state band transition
- Candidate at 163 keV first reported


BLF	TLF _{max}	Transfer	$Y_{\rm rel}$
⁸¹ Kr	¹⁷¹ Dy	+2p - 3n	0.038 ± 0.007
⁸² Kr	¹⁷⁰ Dy	+2p - 2n	0.159 ± 0.009
⁸³ Kr	¹⁶⁹ Dy	+2p - 1n	0.457 ± 0.010
⁸⁴ Kr	¹⁶⁸ Dy	+2p	1.000 ± 0.02
⁸⁵ Kr	¹⁶⁷ Dy	+2p + 1n	1.230 ± 0.03
⁸⁶ Kr	¹⁶⁶ Dy	+2p + 2n	1.084 ± 0.03
⁸⁷ Kr	¹⁶⁵ Dy	+2p + 3n	0.652 ± 0.02
⁸⁸ Kr	¹⁶⁴ Dy	+2p + 4n	0.306 ± 0.022
⁸⁹ Kr	¹⁶³ Dy	+2p + 5n	0.154 ± 0.01
⁹⁰ Kr	162 Dy	+2p + 6n	0.069 ± 0.01

.

What is known?

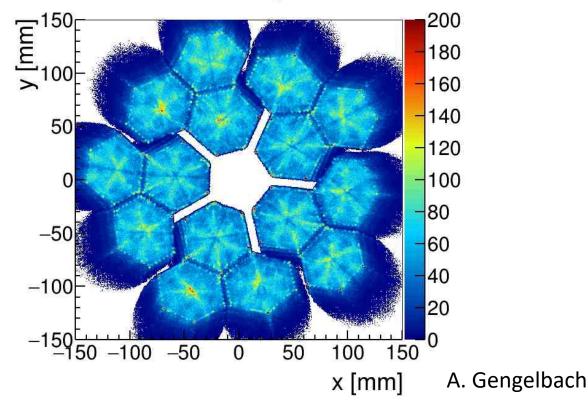
- The three lowest-lying excited states identified were assigned as the 2⁺, 4⁺ and 6⁺ members of the yrast ground-state rotational band
- Confirming the earlier assignment as the 4⁺ -> 2⁺



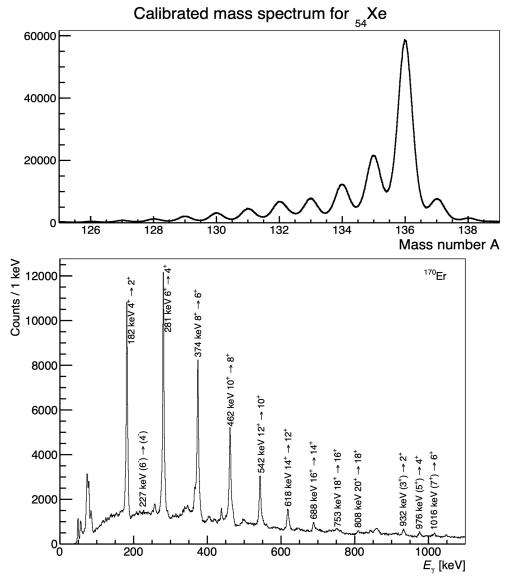
[5] Söderström et.al. Physics Letters B 762 (2016) 404–408

What is known?

Dy systematics and known yrast transitions



A programme of measurements


AGATA demonstrator – PRISMA ¹³⁶Xe + ¹⁷⁰Er

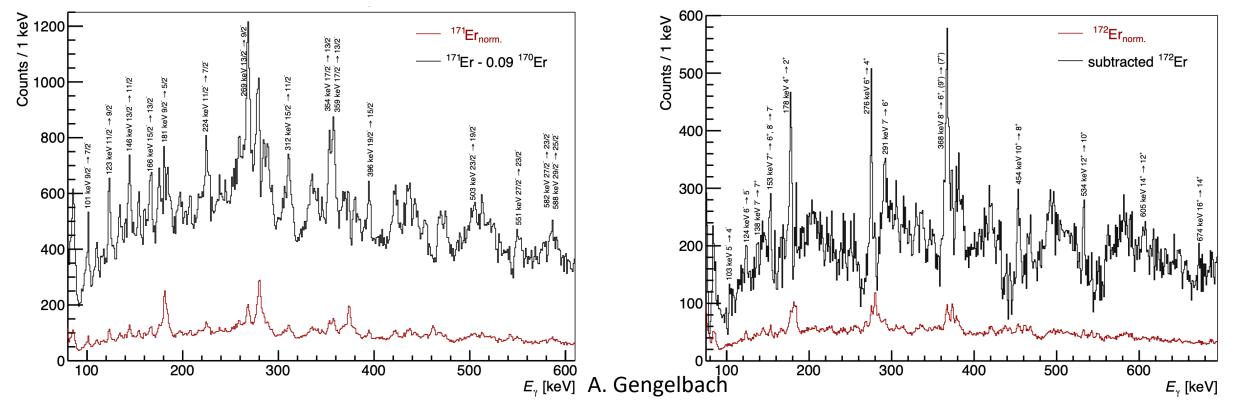
- Tandem-ALPI 859MeV beam ~1pnA (q=+28)
- 44⁰ Grazing angle 56.9x10⁶ AGATA-PRISMA

First interaction point

	100	101	102	103	104	105	106
68	Er-168	Er-169	Er-170	Er-171	Er-172	Er-173	Er-174
67	Ho-167	Ho-168	Ho-169	Ho-170	Ho-171	Ho-172	Ho-173
66	Dy-166	Dy-167	Dy-168	Dy-169	Dy-170	Dy-171	Dy-172

	100	101	102	103	104	105	106
68	Er-168	Er-169	Er-170	Er-171	Er-172	Er-173	Er-174
67	Ho-167	Ho-168	Ho-169	Ho-170	Ho-171	Ho-172	Ho-173
66	Dy-166	Dy-167	Dy-168	Dy-169	Dy-170	Dy-171	Dy-172

A programme of measurements

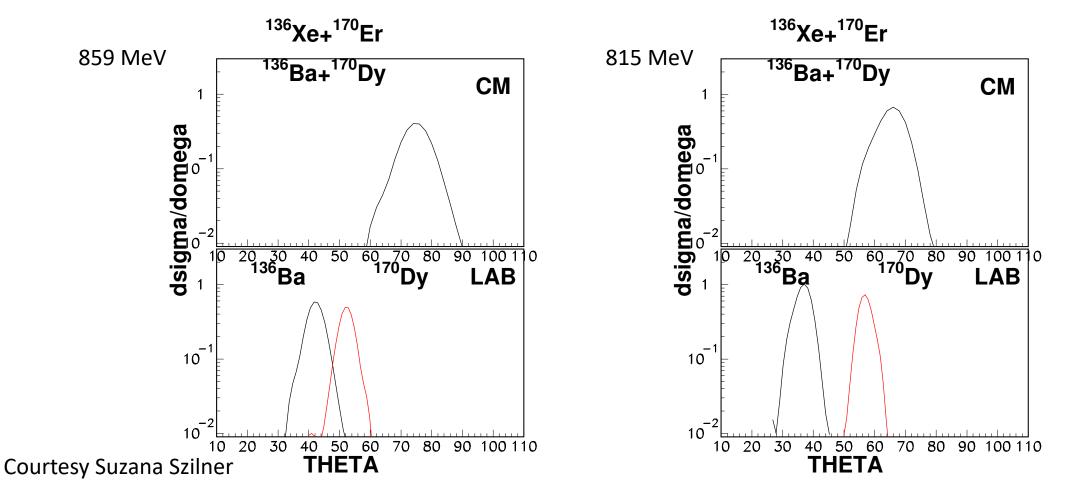

AGATA demonstrator – PRISMA ¹³⁶Xe + ¹⁷⁰Er

Observations: Limited γ - γ , potentially further optimisation of grazing angle required

Issue with DANTE detector during experiment and resulting limited efficiency

-n channel ¹⁷¹Er

-2n channel ¹⁷²Er



A programme of measurements

	100	101	102	103	104	105	106
68	Er-168	Er-169	Er-170	Er-171	Er-172	Er-173	Er-174
67	Ho-167	Ho-168	Ho-169	Ho-170	Ho-171	Ho-172	Ho-173
66	Dy-166	Dy-167	Dy-168	Dy-169	Dy-170	Dy-171	Dy-172

AGATA demonstrator – PRISMA ¹³⁶Xe + ¹⁷⁰Er 44⁰ Grazing angle

Observations Limited γ - γ , further optimisation of grazing angle required

Preliminary simulations

⁸²Se + ¹⁷⁰Er Tracked energy spectra with 15 ATC yeild 10⁵ 160,162,164,166,168 Dy (10⁺ to 0⁺) ¹⁶⁸ Dy 10⁴ E Reach spin 20 (all combinations of 2-gamma gates) for ¹⁶⁸Dy 10³ 10² 10 200 400 800 600 1000 1200 Energy [keV]

Courtesy Marc Labiche

What could we expect?

Gating on the delayed γ rays in ^{134,136}Ba, it will be possible to identify decays in the binary partners ^{168,170}Dy

The advantages of using AGATA coupled to PRISMA and DANTE in this experiment is the high γ -ray efficiency (particularly the γ - γ efficiency)

GRAZING calculations ¹⁷⁰Dy can be populated with a cross-section of 1.3 mb for this reaction

	100	101	102	103	104	105	106
68	Er-168	Er-169	Er-170	Er-171	Er-172	Er-173	Er-174
67	Ho-167	Ho-168	Ho-169	Ho-170	Ho-171	Ho-172	Ho-173
66	Dy-166	Dy-167	Dy-168	Dy-169	Dy-170	Dy-171	Dy-172
67	Tb-165	Tb-166	Tb-167	Tb-168	Tb-169	Tb-170	Tb-171
68	Gd-164	Gd-165	Gd-166	Gd-167	Gd-168	Gd-169	Gd-170

• • • • • • • • • • •

Questions to address

We were not able to assess the interest of DANTE in the measurement. Is it really useful?

- Neutron-evaporation suppression using a time-of-flight gate means it is possible to obtain clean gamma spectra for the target-like fragments
- This technique will be complemented using the DANTE detector array and the detection of known delayed gamma-rays in AGATA (isomer tagging).
- The target will produce the projectile-like nuclei ¹³⁴Ba and ¹³⁶Ba
 - contain 10+ isomeric states (half-lives of 2.63 µs and 91 ns), respectively
- Those that do not enter PRISMA or the beam dump will be stopped in the vicinity of the target chamber.
 - By gating on the strongly populated delayed gammas in ^{134,136}Ba, it will be possible to identify decays in the binary partners ^{168,170}Dy.
 - It could be used also to gate the A~170 fragments and increase yeild

• • • • • • • • • • •

What would the requirement be?

- 1. Beam: ¹³⁶Xe, energy = 900 MeV, current \sim 2 pnA
- 2. Target: ¹⁷⁰Er of thickness 0.5 mg/cm², cross-section: ¹⁷⁰Dy = 1.3 mb
- 3. Average AGATA efficiency with 15 ATC
- 4. Beam-like fragments will be identified in the PRISMA
- 5. Neutron-evaporation suppression using a time-of-flight gate to obtain clean gamma-ray spectra for the target-like fragments
- 6. Isomer gating with DANTE and increase of yield target like fragments
- 7. Trigger condition will be an OR of the AGATA Ge core signals and either DANTE or PRISMA.

Taking into account the solid angle for the PRISMA spectrometer and an efficiency of 30% for the detection of the target-like fragments in DANTE, estimated 5 days of beamtime.

• • • • • • • • • • • •

Summary

- 1. The advantages of using AGATA coupled to PRISMA and DANTE in this experiment is
 - 1. the high γ-ray efficiency, excellent Doppler correction and isomer tagging capabilities of AGATA
 - 2. the very good A, Z identification and velocity vector determination of PRISMA
 - 3. the high efficiency and precise determination of the angle of the target-like fragments of DANTE.
- 2. The use of a ¹³⁶Xe beam will give a large increase of the yield of neutron-rich reaction products as well as of the angular momentum transferred to the fragments, compared to the ⁸²Se induced reaction
- 3. We expect to establish the knowledge of the high-spin structure of ¹⁶⁸Dy up to and beyond the backbending region and significantly increase the knowledge of ¹⁷⁰Dy
- 4. ¹⁶⁶Gd , ¹⁶⁸Gd , ¹⁷²Dy and ¹⁷⁴Dy are within reach

High Spin Evolution of the doubly midshell nucleus ¹⁷⁰Dy

<u>A.J. Boston</u>, H.C. Boston, L. Harkness-Brennan, E.S. Paul, F. Holloway, University of Liverpool, UK <u>J. Nyberg</u>, Uppsala University, Sweden <u>P.H. Regan</u>, Zs. Podolyàk, University of Surrey, UK <u>J. Simpson</u>, M. Labiche, STFC Daresbury Laboratory, UK P-A. Söderström, ELI-NP, Romania M. Bentley, University of York, UK J. Smith, University of the West of Scotland, UK