Simulation updates

											<u>. </u>							<u> </u>				<u> </u>	<u> </u>		_						
+																															
																													ł		
									in								ΪÏ													í	
	İİİ							1 11		111				1 1			II I					i i		il i							
Ц															Ц				Ш												
															ЦЦ															L	
Î																															
											<u> </u>																				
				1						111	1	1 11					11			1111					1		1 11			ĺ	
																	11		ii.	11				1	1				11	ł	
Ti					11	ī		11		<u> </u>	1		1				11		Ш						Ti -	11			1	T	
I	Î I	111				Ì					11						ÎI Î					li i			11					I	
				1.11	111																										
											1 A 4				1 10 10		1 I I									ЦЦ			11		
											Ц		_Ш						_												
Щ.																			i							ЦЦ					
ļ																															

12-11-2010 F.Giorgi

What's new

- Architecture
 - New Barrel1 and Barrel2 optimized for synthesis compilation time and number of cells
 - New Sweeper featuring:
 - Optimized sweeping algorithm (compilation and cells)
 - Data Push/Triggered selectable working mode, selectable trigger latency
 - BC and trigger signals: doubly registered on input (RDclk)
- Test bench
 - More information stored after each run (logs, reports, raw data, waveforms, check results... → optimized sim/human-check cycle: night-long simulations/day analysis)
 - New cross check algorithms (python script to be converted and integrated with previous C++ compiled routines).
 - TS order check
 - Search for triggered hits not found on output
 - Search for not-triggered hits found on output

Trigger working mode

- Trigger interface fixed in agreement with M. Villa
- Machine trigger processed by DAQ boards, and "translated" to FE chips
 - Trigger logic as simple as possible on chip
 - Programmable trigger logic on DAQ boards
- Trigger signal aligned with BC clock:

- Trigger latency selectable via I2C slow control
 - 0 -255 value range (Time counter range)
 - units of BC periods
 - Triggered TS \rightarrow corresponding hits are swept out of the matrix
- Not triggered TS \rightarrow corresponding hits are deleted on the matrix

Trigger working mode

Waveform example

- BC period 100 ns
- Trigger latency 50 BC (5 us)
 - Trigger frequency: 1 trigger every 7 BC (1.4 MHz) (random trigger implemented also)

Tests

- 1st test: does what used to work (Data Push) still work fine?? → hits check passed
- Many short functional tests (200 us → ~20k hit each)
 - Many latencies
 - Random trigger and modulo trigger
 - Latency=0
 - Latency=0 ,Trigger "all-in" → data push, sort of.
 - → hits check and waveform inspection passed
- Long runs for efficiency estimation
 - 2 latency scans performed in the 4 \rightarrow 8 us range (1.2 MHz/mm² and 1.0 MHz/mm²)
 - 3 ms simulated for each run (~half million events each)
 - hits check passed

Triggered mode efficiency results

		Flux(MHz/		
RUN	Lat (us)	mm²)	efficiency	
453	3,0	1,2	99,0	
468	4,0	1,2	98,7	
469	5,0	1,2	98,5	
470	6,0	1,2	98,2	
471	7,0	1,2	97,9	
472	8,0	1,2	97,6	% 99,5
				99,0
496	4,0	1,0	98.9	98,5
497	5,0	1,0	98.7	98,0
498	6,0	1,0	98.4	97,5 97,0
499	7,0	1,0	98.2	96,5
500	8,0	1,0	97.9	

Matrix behavior on first TS=0 reset

🛛 🔲 Terminal 📄 icfb - Log: /hom 🗋 Virtuoso® Schem. 🗋 [Virtuoso® Schem. 📄 [Virtuoso® Verllo] 🎓 link to Tezz 🔯 Matrix_Superpix1] 🔍 /home/morsani/ 📄 [/home/morsani/] 芦 ihnl 📓 Terminal 🔯 hdlFilesDir 🖾 Evolution - Mail 👔 Verllog netist di 🕯 🚳 Superpix1_Vlog_

Conclusions

Many thanks to student F. Conti (code optimization, triggered mode, check scripts)

- What did we achieve?
 - Enforced test bench
 - Triggered mode implemented and preliminary tested
 - Preliminary measurements of efficiency carried out
 - Barrel and sweeper code optimizations tested
 - Is the efficiency acceptable at the expected latency of 6 us?
- Is the pixel TS-dependent reset a real issue?
- Close to come:
 - Architecture tailoring on submission dimensions
 - Code branching node \rightarrow as late as possible
 - Mandatory for real matrix model test \rightarrow as soon as possible_
- AARGH

Synthesis on Synopsys DC.