

Neutrino Physics with the Borexino experiment

Emanuela Meroni On behalf of the Borexino Collaboration

Neutrino Telescopes, 2011

Physics and detection principles

- Borexino aims to measure low energy solar neutrinos in real time by elastic neutrino-electron scattering in a volume of highly purified liquid scintillator
 - Mono-energetic 0.862 MeV ⁷Be v is the main target
 - ⁸B, pep, CNO and possibly pp v
 - Geoneutrinos
 - Supernova v
- Detection via scintillation light
 - Very low energy threshold
 - Good position reconstruction
 - Good energy resolution
- Drawbacks:
 - No direction measurements
 - ν induced events can't be distinguished from $\beta\mbox{-decay}$ due to natural radioactivity

Extreme radiopurity of the scintillator

Background suppression: achievements

Radioisotopes	Typical	Goal	Achieved in Bx	detection
²³⁸ U	~10⁻⁵ ⁻ 10⁻ੰ g/g	10 ⁻¹⁶ g/g	1.9 x 10 ⁻¹⁷ g/g	²¹⁴ Bi-Po (τ=236μs)
²³² Th	~10⁻⁵ ⁻ 10⁻⁶ g/g	10 ⁻¹⁶ g/g	6.8 x 10 ⁻¹⁸ g/g	²¹² Bi-Po (τ=433ns)

There are two backgrounds which are out of specifications:

 210Po: started out at 6000 counts/day/100t (the origin of the contamination is not known);

- It decays away with its lifetime (200d)
- It is NOT in equilibrium with ²³⁸U nor ²¹⁰Pb; •
- ⁸⁵Kr : ~30 counts/day/100tons (probably because of a few liters air leak which happened during filling);

2.0

Borexino started taking data on May 15th 2007 Published results on ⁷Be solar neutrinos

Why measure Solar νs ?

MSW-LMA scenario is our current understanding of solar vs and v oscillations
 X Mainly from ⁸B neutrinos + plus radiochemical experiments + reactor

X Pee very poorly constrained !

- Borexino alone aims to independently confirm the MSW-LMA scenario with:
 - $\checkmark\,$ ^Be neutrino rate with a total error < 5%
 - ✓ DayNight asymmetry study (in progress)
 - ✓ ⁸B neutrino

Solar Physics:

- ✓ Sub-MeV Solar v flux
- Metallicity controversy
 - \checkmark The abundance of elements heavier than helium
 - (metallicity) is used as inputs in the Standard Solar Model
 - the neutrino fluxes depend on metallicity
- ⁷Be may yield useful infos if precision is good enough (5%)

Neutrino Telescopes, 2011

 $\Phi_{SNO}(^{8}B)=4.94x10^{6} \text{ cm}^{-2} \text{ s}^{-1}$

		Φ(n s ⁻¹ cm ⁻²) High-metallicity GS98	Φ(n s ⁻¹ cm ⁻²) Low-metallicity AGS05	ΔΦ
	рр	5.97 x 10 ¹⁰	6.04 x 10 ¹⁰	
	рер	1.41 x 10 ⁸	1.45 x 10 ⁸	
_	hep	7.90 x 10 ³	8.22 x 10 ³	
	⁷ Be	5.07 x 10 ⁹	4.55 x 10 ⁹	10%
L	⁸ B	5.94 x 10 ⁶	4.72 x 10 ⁶	21%
5)	¹³ N	2.88 x 10 ⁸	1.89 x 10 ⁸	31%
	¹⁵ 0	2.15 x 10 ⁸	1.34 x 10 ⁸	31%
	¹⁷ F	5.84 x 10 ⁶	3.25 x 10 ⁶	44%

Neutrino Telescopes, 2011

Energy scale and energy resolution

- > Before calibrating the energy scale was determined by means of internal contaminants (${}^{14}C$, ${}^{11}C$, ...);
- WARNING: life is not simple. Light quenching introduces non-linearities in the energy scale: this makes it crucial to have several calibrating points throughout the entire energy window of interest;

Thanks to the calibration campaigns:

- Precise calibration in the 0-7 MeV range
- the uncertainty on the energy scale between 0-2MeV is less than 1.3%;
- study of the uniformity of detector response as a function of position

he light yield is in the range of 500 p.e./MeV

 This high light-yield leads to a good energy resolution

9

$$\sigma(E)/E = 5\%$$
 at 1MeV;

Position reconstruction and FV definition

Position reconstruction is needed to select an inner fiducial region of the detector free from external background

Calibrations:

- Absolute position of the source determined by means of a LED and cameras with a precision of 2cm
- allowed to fine-tune the position reconstruction algorithm
- max difference between reconstructed and measured position = 2 cm !
- > Position resolution is $\sigma \sim 10$ cm at 1 MeV

systematic error on the Fiducial Volume determination from 6% down to 1.3%

Hypothesis	Expected rate (cpd/100t)
No oscillation +High Metallicity	74±4
No oscillation + Low Metallicity	67±4
Oscillation MSW + High Metallicity	48±4
Oscillation MSW + Low Metallicity	44±4

BX measurement confirms oscillations but cannot discriminate between High and Low metallicity

46.0 ± 1.5 (stat) ± 1.3 (sys)

Day/Night asymmetry of 7Be neutrinos

In the MSW framework, the neutrino rate at Night (when neutrinos cross Earth) could be significantly larger than the rate during the Day, because of regeneration effect;

If we define:

A_{dn} depends on the value of the oscillation parameters and on the neutrino energy.

		J. Bahcall JHEP07(2002)054	1
Observable	LMA	LOW $\Delta m^2 \approx 1$	$0^{-7} eV^2$
⁷ Be	0.64±0.07	0.58±0.05	Ι
ADN	~0%	23±11%	

- Therefore A_{dn} is a good probe to exclude the LOW solution;
- We recall that the LOW solution is significantly excluded only by reactor antineutrino data;
- It is important to independently exclude it with neutrino data

The day night preliminary result

The day night preliminary result

- The ⁷Be flux is obtained from the separated full fit of the day and night spectra
- Preliminary (and conservative) result: $A_{DN} = 2 \frac{\Phi_n \Phi_d}{\Phi_n + \Phi_d} = 0.007 \pm 0.073(stat)$
- \succ A_{DN} is well consistent with zero: further confirmation of the LMA!
- Unique measurement for solar ⁷Be neutrinos

- Result not sensitive to many systematic effect influencing the ⁷Be absolute measurement
- More refined analysis is in progress aiming to reduce the error

⁸B v at 3 MeV energy threshold

Measurement of the ⁸B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector Physical Review **D 82**, 033006 (2010)

- The very low intrinsic contamination of the scintillator has made it possible (almost unexpectedly) to measure $^8B~\nu$;
- In particular the low content in ²³²Th has made it possible to lower the threshold for the ⁸B analysis down to 3.0 MeV;

	Cut	Counts	Counts
	1	3.0–16.3 MeV	5.0-16.3 MeV
Main contribution to background	All counts	1932181	1824858
Muons;	Muon and neutron cuts	6552	2679
 External background: 	FV cut	1329	970
• Muon daughtong:	Cosmogenic cut	131	55
• Muon adugniers,	¹⁰ C removal	128	55
	²¹⁴ Bi removal	119	55
 Statistics collected in 	²⁰⁸ Tl subtraction	90±13	55 ± 7
345 3 days of livetime	¹¹ Be subtraction	79 ± 13	47±8
0 10:0 days of interime,	Residual subtraction	75 ± 13	46±8
	Final sample	75 ± 13	46±8
	BPS09(GS98) ⁸ B <i>v</i>	$86{\pm}10$	43±6
Neutrino Telescopes, 2011	BPS09(AGS05) ⁸ B ν	73±7	36±4 ⁶

Systematic errors

Source	E>3 MeV		E>5 MeV	
	σ_+	σ_{-}	σ_+	σ_{-}
Energy threshold	3.6%	3.2%	6.1%	4.8%
Fiducial mass	3.8%	3.8%	3.8%	3.8%
Energy resolution	0.0%	2.5%	0.0%	3.0%
Total	5.2%	5.6%	7.2%	6.8%

Energy threshold: ²⁴¹Am⁹Be neutron source, n capture on ¹H (2.2 MeV γ), on ¹⁴C (4.9MeV γ), on ⁵⁶Fe (7.6MeV γ), on ⁵⁶Fe (9.3MeV γ)
 Fiducial mass: off-axis source insertion system to place sources at several locations

⁸B rate in BX above 3 MeV 0.217 ± 0.038 (stat) ± 0.008 (sys) counts/(day × 100t)

$^{8}\text{B}\,\nu\,$ with 3 MeV energy threshold in Borexino

Observation of Geo-neutrinos

 $\overline{v} + p$

Anti-neutrino detection: inverse β -decay

Delayed signal Prompt signal

- **Prompt signal:** positron kinetic energy + 1.022 MeV of annihilation gammas
- Delayed signal: neutron is captured by proton (τ ~256 µsec) and emits 2.2MeV γ
- Delayed coincidence reaction is a very strong signature: small background
- Main background is due to reactor neutrinos (large distance);

Measuring anti-neutrinos from Earth

-spectroscopy of geo-neutrinos provides information on the radiochemical composition of Earth;

- -main contribution to radiogenic heat are expected to come from U,Th chains and K;
- -Borexino is on continental crust -Complementary information compared to KamLand

E_{th}=1.8 MeV

Backgrounds (besides reactors)

Background source	events/(100 ton-year)	Muon correlated events (τ = 150 ms)	
Cosmogenic ⁹ Li and ⁸ He	0.03 ± 0.02	Removed with 2 s detector veto	
Fast neutrons from μ in Water Tank (measured)	< 0.01	after each muon in Inner Detector	
Fast neutrons from µ in rock (MC)	< 0.04	outside IV	
Non-identified muons	0.011 ± 0.001	 2 ms veto 	
Accidental coincidences	0.080 ± 0.001		
Time correlated background	< 0.026		
(γ,n) reactions	< 0.003		
Spontaneous fission in PMTs	0.003 ± 0.0003	Radiogenic ¹³ C(a n) ¹⁶ O	
(α,n) reactions in the scintillator [²¹⁰ Po]	0.014 ± 0.001	 From ²¹⁰Po as α emitter: 12 c/(ton day) on average ¹³C / ¹²C abundance is low: 1.1 % 	
(α,n) reactions in the buffer [²¹⁰ Po]	< 0.061		
TOTAL	0.14 ± 0.02		

To be compared: 2.5 geo-v/100 ton-year assuming BSE)

GeoNeutrino Results:

- 21 candidates selected
- exposure= 483 live days (252.6 ton-year after all cuts) December 07 December 09

- Extract signal with an unbinned maximum likelihood fit using reference MonteCarlo shapes for both geo-neutrinos and reactor neutrinos, since small statistics;
- just the result is plot in a binned spectrum;
- result of the fit: amplitudes of the geo and reactor anti-v spectra;

$$N_{geo} = 9.9^{+4.1 + 14.6}_{-3.4 - 8.2}$$

$$N_{react} = 10.7^{+4.3 + 15.8}_{-3.4 - 8.0}$$

- the first clear observation of geoneutrinos at 4.2σ ;
- the rate is measured with 40% precision;
- confirmation/exclusion of geological models limited by the statistics;
- confirmation of oscillations (reactor antinu) at 1000 km @ 2.9σ;
- georeactor in the Earth core with > 3 TW rejected at 95% C.L.;

Conclusions

- Borexino has been running successfully since May 2007
- New measurement of ⁷Be rate with a reduced error to be published soon;
- Measurement of Day/Night asymmetry of ⁷Be neutrinos with reduced error to be published soon

THE FUTURE

- Search for pep neutrinos
- pp neutrinos (?)
- For this a new purification campaigns is in progress to reduce Kr and Bi
 - Purification with Water Extraction + N_2 stripping is in progress
- If successful, a new phase will start with the goal of observing other solar neutrino components, improve geo-neutrino measurement

