Neutrino SuperBeams at Fermilab

Neutrino SuperBeams at Fermilab

Tevatron: CDF \& D0

- 36×36 bunches
- bunch crossing 396 ns
- Run II started in March 2001
- Peak Luminosity:3.5E32 $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$
- Run II delivered $\sim 10 \mathrm{fb}^{-1}$

Peak Intergrated Luminosity:
$3.5 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{sec}^{-1} \times 3 \times 10^{7} \mathrm{sec} \approx 10 \mathrm{fb}^{-1} / \mathrm{yr}$

Collider Run II Integrated Luminosity

Peak \bar{p} Collection Rate: Peak \bar{p} Burn Rate:
$7 \times 10^{7} / \mathrm{sec}$
$3.5 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{sec}^{-1} \times 100 \mathrm{mb}=3.5 \times 10^{7} / \mathrm{sec}$

Intensity Frontier:

Fermilab Intensity Frontier Experiments

Intensity Frontier:

Fermilab Intensity Frontier Experiments

Maybe back to Energy Frontier with Muon Collider

Long Baseline Neutrino Exporment

Long Baseline Neutrino Experiment

 Pointer $43^{\circ} 03^{\prime} 56.44^{\prime \prime} \mathrm{N} \quad 95^{\circ} 10^{\circ} 42.53^{\prime \prime}$ WStreaming IIIOOIILILIOO\%

Long Baseline Neutrino Experiment

Kansas

Image NASA 2008 Tele Atlas Image (8) 2008 TerraMetrics 2008 Europa Technologies $95^{\circ} 10^{\circ} 42.53^{\prime \prime}$ WStreaming |IIIDIIIID 100%

Ontario-

Illinois

Google Eye alt 1108.62 km

Long Baseline Neutrino Experiment

Long Baseline Neutrino Experiment

Ontario

Pointer $43^{\circ} 03^{\prime} 56.44^{\prime \prime} \mathrm{N} 95^{\circ} 10^{\circ} 42.53^{\prime \prime}$ wStreaming \|IIUUIIII 100%

Illinois

Long Baseline Neutrino Experiment

North Dakota

New Neutcine Beam at Fermilab. Iowa
...Directed towards NSP's proposed DUSEL
Precision Near Detector on the Fermilab site
Illinois
100 kT Water Cherenkov Detector

Long Baseline Neutrino Experiment

New Neutcines Beam at Fermilab. Iowa
Directed towards NSF's proposed DUSEL
Precision Near Detector on the Fermilab site
Illinois
100 kT Water Cherenkov Detector 20. kT LiquidAEGon TPC Far Detector

Image NASA 2008 Tele Atlas

Missouri Image (o) 2008 TerraMetrics 2008 Europa Technologies Pointer $43^{\circ} 03^{\prime} 56.44^{\prime \prime} \mathrm{N} 95^{\circ} 10^{\prime} 42.53^{\prime \prime}$ WStreaming IUIUUIU\| 100%

Eye alt 1108.62 km

Google

Masses \& Mixings:

Fractional Flavor Content varying $\cos \delta$

$$
\delta m_{\text {sol }}^{2}=+7.6 \times 10^{-5} \mathrm{eV}^{2}
$$

$$
\left|\delta m_{a t m}^{2}\right|=2.4 \times 10^{-3} \mathrm{eV}^{2}
$$

$$
\left|\delta m_{\text {sol }}^{2}\right| /\left|\delta m_{\text {atm }}^{2}\right| \approx 0.03
$$

$$
\sqrt{\delta m_{a t m}^{2}}=0.05 \mathrm{eV}<\sum m_{\nu_{i}}<0.5 \mathrm{eV}=10^{-6} * m_{e}
$$

$$
\sin ^{2} \theta_{13} \equiv\left|U_{e 3}\right|^{2}, \quad \sin ^{2} \theta_{12} \equiv \frac{\left|U_{e 2}\right|^{2}}{\left(1-\left|U_{e 3}\right|^{2}\right)}, \quad \sin ^{2} \theta_{23} \equiv \frac{\left|U_{\mu 3}\right|^{2}}{\left(1-\left|U_{e s}\right|^{2}\right)}
$$

Masses \& Mixings:

In Matter:

$$
P_{\mu \rightarrow e} \approx\left|\sqrt{P_{a t m}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{s o l}}\right|^{2}
$$

where $\sqrt{P_{a t m}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31} \mp a L\right)} \Delta_{31}$

$$
\begin{aligned}
& \text { and } \sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21} \\
& \boldsymbol{a}=\boldsymbol{G}_{\boldsymbol{F}} \boldsymbol{N}_{\boldsymbol{e}} / \sqrt{\mathbf{2}}=(\mathbf{4 0 0 0} \mathbf{k m})^{-1}
\end{aligned}
$$

$$
\Delta=\frac{\delta m^{2} L}{4 E}
$$

In Matter:

$$
P_{\mu \rightarrow e} \approx\left|\sqrt{P_{a t m}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{\text {sol }}}\right|^{2}
$$

$$
\text { where } \sqrt{P_{\text {atm }}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31}
$$

$$
\text { and } \sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
$$

$$
a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1},
$$

For $L=1200 \mathrm{~km}$
and $\sin ^{2} 2 \theta_{13}=0.04$

$$
\Delta=\frac{\delta m^{2} L}{4 E}
$$

In Matter:

$$
P_{\mu \rightarrow e} \approx\left|\sqrt{P_{a t m}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{s o l}}\right|^{2}
$$

$$
\text { where } \sqrt{P_{\text {atm }}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31} \mp a L\right)}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31}
$$

$$
\text { and } \sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
$$

For $L=1200 \mathrm{~km}$ and $\sin ^{2} 2 \theta_{13}=0.04$

$$
\begin{gathered}
a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1} \\
\Delta=\frac{\delta m^{2} L}{4 E}
\end{gathered}
$$

Anti-Nu: Normal Inverted dashes $\delta=\pi / 2$ solid $\delta=3 \pi / 2$

Neutrino Beam:

Beam requirements (driven by v_{e} appearance):

- wide band beam to cover both $1^{\text {st }}$ and $2^{\text {nd }}$ oscillation maxima
- minimize flux above 5 GeV to avoid feed down of NC background to low energy
- minimize beam v_{e} contamination

Neutrino

Anti-Neutrino

LBNE Sensitivities:

Sensitivities:

Disappearance

directly comparable to reactor

$$
1-P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=\sin ^{2} 2 \theta_{13}
$$

New Neutrino Beamline at Fermilab

Aiming the Beam to DUSEL

Target and Horns

Target, Horn, Decay Pipe, and Absorber Engineering

- Technical components designed for 700 kW beam (Main Injector with NOvA upgrades.
- Facilities designed to handle 2.3 MW beam (Project X).

Alternate Neutrino Beam Designs

Alternate Extraction from Main Injector

Alternate Neutrino Beam Designs

Several options under consideration:

13 Jan 2011

J. Strait - LBNE

Near Detector Options

Water Cherenkov Far Detector

Water Cherenkov Detector

Liquid Argon TPC Far Detector

To be located 800 feet underground in DUSEL, in the old Homestake Gold Mine in Lead, SD

Liquid Argon TPC

Liquid Argon TPC

Also considering designs: 3.75 m drift; two detectors in a common cavern.

Time Line

LBNE Project Time Line

-DOE CD-0 (Approve Mission Need) January 2010

- CD-1 $2^{\text {nd }}$ half CY2011*
- CD-2 (Project baseline) depending on funding . . . mid/late FY2013
- CD-3 (start construction) depending on funding . . . 2014 ~ 2015
- Project complete : no sooner than 2020

Currently dealing with TPC (total project funding) issues and DOE-NSF partnership issues

Altemative Sites

DUSEL
 Deep Underground

Science and

Engineering laboratory

,

4
©2010

Alternative Sites

DUSEL
Deep Underground
Science and

Engineering loboratory

$$
\text { Menderson } 1500 \mathrm{~km}
$$

Altemative Sites

DUSEL

Deep Underground
Science and

Engineering
 Engineering laboratory

5. . 2 . Menderson 1500 km

WIPP 1700 km

क
©2010

Altemative Sites

DUSEL

Deep Underground
Science and

Engineering
 Engineering laboratory

Yuced Mith 2300 km

क
©2010

Altemative Sites

Henderson-WIPP-Yucca Mtn

In Matter:

$$
P_{\mu \rightarrow e} \approx\left|\sqrt{P_{a t m}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{s o l}}\right|^{2}
$$

$$
\text { where } \sqrt{P_{a t m}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31}
$$

$$
\text { and } \sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
$$

$$
a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1}
$$

$$
P_{\mu \rightarrow e} \approx \mid \sqrt{P_{a t m}} e^{-i\left(\Delta_{32} \pm \delta\right)}
$$

$$
\text { where } \sqrt{P_{a t m}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31} \neq a L\right)}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31}
$$

$$
\text { and } \sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
$$

$$
a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1}
$$

In Matter:

$$
P_{\mu \rightarrow e} \approx\left|\sqrt{P_{a t m}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{s o l}}\right|^{2}
$$

$$
\text { where } \sqrt{P_{a t m}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31}
$$

$$
\text { and } \sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
$$

$$
a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1}
$$

In Matter:
$\boldsymbol{P}_{\mu \rightarrow e}$

where $\sqrt{P_{a t m}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31}$

$$
\text { and } \sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
$$

$$
a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1}
$$

In Matter:

Max for one Hierarchy and 0 other

$$
\begin{aligned}
& \boldsymbol{P}_{\boldsymbol{\mu} \rightarrow \boldsymbol{e}} \approx \mid \sqrt{\boldsymbol{P}_{\text {tm }} \boldsymbol{e}^{-\boldsymbol{i}\left(\boldsymbol{\Delta}_{\mathbf{3 2}} \pm \boldsymbol{\delta}\right)}+\left.\sqrt{\boldsymbol{P}_{\text {sol }}}\right|^{\mathbf{2}}} \\
& \text { where } \sqrt{P_{a t m}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31}
\end{aligned}
$$

$$
\text { and } \sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
$$

$$
a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1}
$$

Sushant K. Raut, Ravi Shanker Singh, S.Uma Sankara arXiv:0908.3741
Amol Dighe, Srubabati Goswami, Shamayita Ray arXiv:1009.1093
"Bi-Magic" Baseline and Energy
Choose L such that
$\left.P_{a t m}\right|_{I H}=0$ and $\left.P_{a t m}\right|_{N H}$ is max. at $E_{I H}$ and
$\left.P_{a t m}\right|_{N H}=0$ and $\left.P_{a t m}\right|_{I H}$ is max. at $E_{N H}$
$\mathrm{L}=2540 \mathrm{~km}$ and $E_{I H}=3.3 \mathrm{GeV}$ and $E_{N H}=1.9 \mathrm{GeV}$
flip when ν and $\bar{\nu}$ interchange

Approx. Fermilab to Yucca Men:

Project X

- A neutrino beam for long baseline neutrino oscillation experiments
- 2 MW proton source at $60-120 \mathrm{GeV}$
- High intensity, low energy protons for kaon and muon based precision experiments
- Operations simultaneous with the neutrino program
- A path toward a muon source for possible future Neutrino Factory and/or a Muon Collider
- Requires $\sim 4 \mathrm{MW}$ at $\sim 5-15 \mathrm{GeV}$

- Possible missions beyond P5
- Standard Model Tests with nuclei and energy applications

Reference Design

Reference Design Capabilities

- 3 GeV CW superconducting H - linac with 1 mA average beam current.
- Flexible provision for variable beam structures to multiple users
- CW at time scales $>1 \mu \mathrm{sec}, 10 \%$ DF at $<1 \mu \mathrm{sec}$
- Supports rare processes programs at 3 GeV
- Provision for 1 GeV extraction for nuclear energy program
- 3-8 GeV pulsed linac capable of delivering 300 kW at 8 GeV
- Supports the neutrino program
- Establishes a path toward a muon based facility
- Upgrades to the Recycler and Main Injector to provide $\geq 2 \mathrm{MW}$ to the neutrino production target at $60-120 \mathrm{GeV}$.
\Rightarrow Utilization of a CW linac creates a facility that is unique in the world, with performance that cannot be matched in a synchrotron-based facility.

LBNE Sensitivities:

Project X

Joint PX/NF/MC Strategy
 0

- Project X shares many features with the proton driver required for a Neutrino Factory or Muon Collider
- NF and MC require ~4 MW @ $10 \pm 5 \mathrm{GeV}$
- Primary issues are related to beam "format"
- NF wants proton beam on target consolidated in a few bunches; Muon Collider requires single bunch
- Project X linac is not capable of delivering this format

\Rightarrow It is inevitable that a new ring(s) will be required to produce the correct beam format for targeting.

Project X : Time Line

Project X Timeline

- Assumed Critical Decision dates
- CD-0: January 2011
- CD-1: July 2012
- CD-2: August 2013
- CD-3: September 2014

5 yr construction

- CD-4: September 2019

Project X could also be up and running in ~2020 :
All depends on funding profiles...

Muon Collider

- $\mu^{+} \mu^{-}$Collider:
- Center of Mass energy: 1.5-5 TeV (focus 3 TeV)
- Luminosity $>10^{34} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$ (focus $400 \mathrm{fb}^{-1}$ per year)
- Compact facility
- Superb Energy Resolution
- MC: 95% luminosity in $\mathrm{dE} / \mathrm{E} \sim 0.1 \%$
- CLIC: 35% luminosity in $\mathrm{dE} / \mathrm{E} \sim 1 \%$

Muon Collider:

Comparison of Particle Colliders

To reach higher and higher collision energies, scientists have built and proposed larger and larger machines.

Minimum Luminosity for Muon Collider

D Universal behavior for s-channel resonance $\sigma(E)=\frac{2 J+1}{\left(2 S_{1}+1\right)\left(2 S_{2}+1\right)} \frac{4 \pi}{k^{2}}\left[\frac{\Gamma^{2} / 4}{\left(E-E_{0}\right)^{2}+\Gamma^{2} / 4}\right] B_{\text {in }} B_{\text {out }}$ Convolute with beam resolution $\Delta \mathrm{E}$. If $\Delta E \ll$

$$
R_{\text {peak }}=(2 J+1) 3 \frac{B\left(\mu^{+} \mu^{-}\right) B(\text { visible })}{\alpha_{\mathrm{EM}}^{2}}
$$

D Can use to set minimum required luminosity

- Likely new physics candidates:
- scalars: h, H^{0}, A^{0}, \ldots.
- gauge bosons: Z^{\prime}
- new dynamics: bound states
- ED: KK modes
- Example - new gauge boson: Z^{\prime}
- SSM, E6, LRM
- 5σ discovery limits: 4-5 TeV at LHC (@ $300 \mathrm{fb}^{-1}$)

The integrated luminosity required to produce $1000 \mu^{+} \mu^{-} \rightarrow Z^{\prime}$ events on the peak

Summary:

- LBNE: Fermilab to DUSEL (or ?) will probe leptonic CPV and determine the mass hierarchy down to $\sin ^{2} 2 \theta_{13} \sim 0.01$
- Project X : Increases the beam power from 700 kW to 2 MW and provide another 3MW at 3 GeV for K's, $\mu / \mathrm{s}, \ldots$.
- If $\sin ^{2} 2 \theta_{13}<0.01$ a Neutrino Factory is a possible option. Maybe Low Energy NuF.
- This could be a natural stepping stone to a Muon Collider. New physics such as a Z^{\prime} would make this very compelling.

Summary:

- LBNE: Fermilab to DUSEL (or ?) will probe leptonic CPV and determine the mass hierarchy down to $\sin ^{2} 2 \theta_{13} \sim 0.01$
- Project X: Increases the beam power from 700 kW to 2 MW and provide another 3MW at 3 GeV for K's, $\mu / \mathrm{s}, \ldots$.
- If $\sin ^{2} 2 \theta_{13}<0.01$ a Neutrino Factory is a possible option. Maybe Low Energy NuF.
- This could be a natural stepping stone to a Muon Collider. New physics such as a Z^{\prime} would make this very compelling.

funding?

LBNE Collaboration

Alabama: J. Goon, I Stancu
Argonne: M. D'Agostino, G. Drake. Z. Djurcic, M. Goodman, X. Huang, V.
y, R. Talaga, M. Wetstein
Brookhaven: M. Bishai, R. Brown, H. Chen, M. Diwan, J. Dolph, G. Geronimo R. Gill, R. Hackenberg, R. Hahn, S. Hans, D. Jaffe, S. Junnarkar, J.S.
Kettell, F. Lanni, L. Littenberg, J. Ling, D. Makowiecki, W. Marciano, W. Kettell, F. Lanni, L. Littenberg, J.' Ling, D. Makowiecki, W. Marciano, W.
Morse, Z. Parsa, C. Pearson, V. Radeka, S. Rescia, T. Russo, N. Samios, R. Morse, Z. Parsa, C. Pearson, V. Radeka, S. Rescia, T. Russo, N. Sami
Sharma, N. Simos, Sondericker, J. Stewart, H. Tanaka, C. Thorn, B. Sharma, N Simos, J. Sondericker, J. Stewart, H. Tanaka
Viren, Z. Wang, S. White, L. Whitehead, M. Yeh, B. Yu
Caltech: R. McKeown, X. Qian, C. Zhang
Cambridge: A. Blake, M. Thomson
Catania/INFN: V. Bellini, G. Garilli, R. Potenza, M. Trovato
Chicago: E. Blucher
Colorado: R. Johnson, A. Marino, M. Tzanov, E. Zimmerman
Colorado State: M. Bass B. Berger, J. Brack, N. Buchanan, J. Harton, V. Kravtsov, W. Toki, D. Warner, R. Wilson
Columbia: R. Carr, L. Camillieri, C.Y. Chi, G. Karagiorgi, C. Mariani, M. Shaevitz,

W. Willis

Crookston: D. Demuth
Dakota State: B. Szcerbinska
Davis: R. Breedon, T. Classen, J. Felde, P. Gupta, M. Tripanthi, R. Svoboda
Drexel: C. Lane, J. Maricic, R. Milincic, K. Zbiri
Duke: J. Fowler, J. Prendki, K. Scholberg, C. Walter, R. Wendell
Duluth: R. Gran, A. Habig
Fermilab: D. Allspach, B. Baller, D. Boehnlein, M. Campbell, A. Chen, S Childress, B. DeMMaat, A. Drozhdin, T. Dykhuis, A. Hahn, S. Hays, J. Howell,
P. Huhr, J. Hylen, M. Johnson, J. Johnstone, T. Junk, B. Kayser, G. Koizumi, T. Lackowski, P. Lucas, B. Lundberg, T. Lundin, P. Mantsch, N. Mokhov, C.

Moore, J. Morfin, B. Norris, V. Papadimitriou, R. Plunkett, C. Polly, S. Pordes, O. Prokofiev, G. Rameika, B. Rebel, D. Reitzner, K. Riesselmann, R. Rucinski, R. Schmidt, D. Schmitz,
Vaziri, G. Velev, G. Zeller, R. Zwaska

Hawaii: S. Dye, J. Kumar, J. Learned, S. Matsuno, S. Pakvasa, M. Rosen, G.
Indian Universities: V. Singh (BHU); B. Choudhary, S. Mandal (DU
B. Bhuyan $\operatorname{liTT}(\mathrm{G})$]; V. Bhatnagar, A. Kumar, S. Sahijpal(PU)

Indiana: W. Fox, C. Johnson, M. Messier, S. Mufson, J. Musser, R. Tayloe, J
Iowa State: M. Sanchez

IPMU/Tokyo: M. Vagins
Irvine: G. Carminati, W. Kropp, M. Smy, H. Sobel
Kansas State: T. Bolton, G. Horton-Smith
LBL: R. Kadel, B. Fujikawa, D. Taylor
Livermore: A. Bernstein, R. Bionta, S. Dazeley, S. Ouedraogo
Livermore: A. Bernstein, R.
London-UCL: J. Thomas
Los Alamos: S. Elliott, V. Gehman, G. Garvey, T. Haines, D. Lee, W. Louis,
C. Mauger, G. Mills, A. Norrick, Z. Pavlovic, G. Sinnis, W. Sondheim,
R. Van de Water, H. White
H. White

State. W. Coleman, T. Kutter, W. Metcalf, M. Tzanov
Maryland: E. Blaufuss, R. Hellauer, T. Straszheim,
Michigan State: E. Arrieta-Diaz, C. Bromberg,
Min. Edmunds, J. Huston, B. Pag
Minnesota: M. Marshak, W. Miller
MIT: W. Barletta, J. Conrad, T. Katori, R. Lanza, L. Winslow
NGA: S. Malys, S. Usman
New Mexico: B. Becker, J. Mathews
Notre Dame: J. Losecco
Oxford: G. Barr, J. DeJong, A. Weber
Pennsylvania: J. Klein, K. Lande, A. Mann, M. Newcomer, R. vanBerg
Pittsburgh: D. Naples, V. Paolone
Princeton: Q. He, K. McDonald
Rensselaer: D. Kaminski, J. Napolitano, S. Salon, P. Stoler
Rochester: R. Bradford, K. McFarland
SDMST: X. Bai, R. Corey
SMU: T. Liu, J. Ye
South Carolina: H. Duyang, S. Mishra, R. Petti, C. Rosenfeld
South Dakota State: B. Bleakley, K. McTaggert
Texas: S. Kopp, K. Lang, R. Mehdiyev
Tufts: H. Gallagher, T. Kafka, W. Mann, J. Schnepps
UCLA: K. Arisaka, D. Cline, K. Lee, Y. Meng, F. Sergiampietri, H. Wang
Virginia Tech: E. Guarnaccia, J. Link, D. Mohapatra, R. Raghavan
Washington: S. Enomoto, J. Kaspar, N. Tolich, H.K. Tseung
Wisconsin: B. Balantekin, F. Feyzi, K. Heeger, A. Karle, R. Maruyama, D
Yale: E. Church, B. Fleming, R. Guenette, M. Soderberg, J. Spitz

