XIV International Workshop on "Neutrino Telescopes" Venice, March 15-18, 2011

CUORICINO, CUORE-O AND CUORE: AN UPDATE

C. Brofferio, University of Milano Bicocca on behalf of the CUORE Collaboration

THE BOLOMETRIC WAY TO DBD

The key point when using a bolometer is that you can: FIRST choose the isotope THEN define the compound

¹³⁰Te :

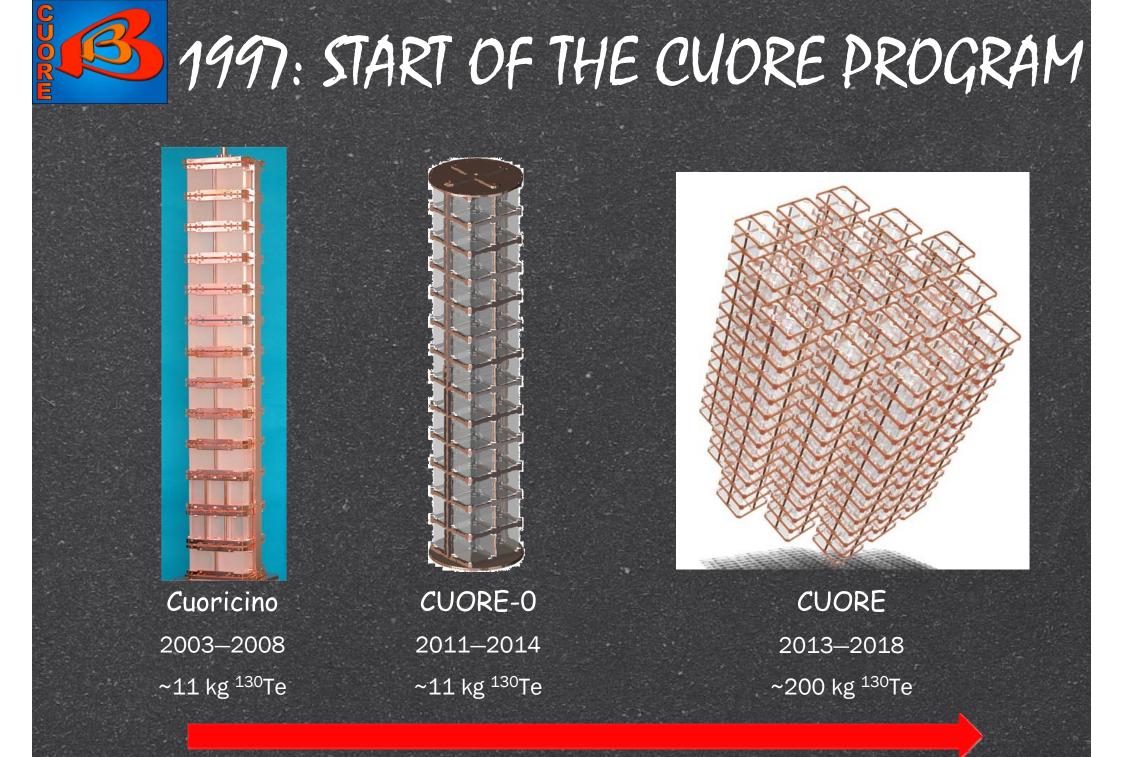
High isotopic abundance = 34%

High Q-value = 2527 keV

NO ENRICHEMENT

Good F_N : $\tau_{1/2}^{0v} = 1 \div 6 \ 10^{26} \ y$ when $m_{ee} = 50 \ meV$

TeO₂ bolometers: source=detector approach


Temperature sensor: $\Delta T \rightarrow \Delta V$

TeO₂

NTD thermistor $R = R_0 \exp(T/T_0)^{\gamma} \rightarrow high sensitivity$

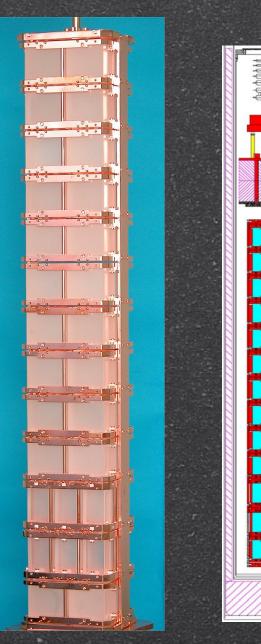
Absorber: $E \rightarrow \Delta T \sim E/C(T)$

TeO₂ crystals Low heat capacity High radio-purity Large size crystals available

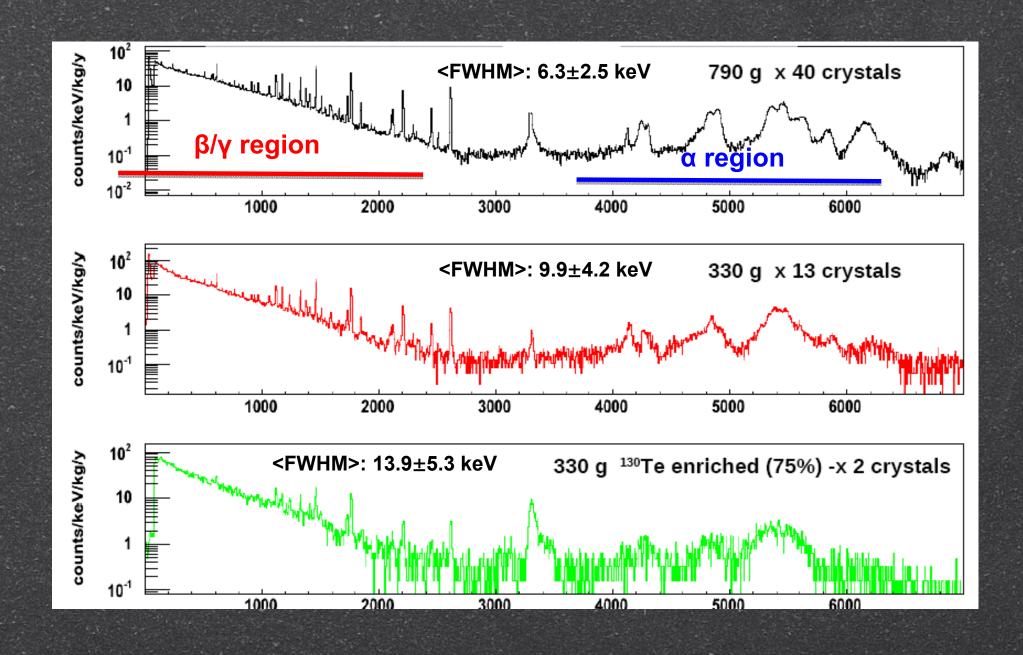


2003 - 2008: CUORICINO

Still the largest bolometric experiment ever realized

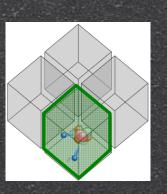

Total TeO₂ mass 40.7 kg Total ¹³⁰Te mass 11.2 kg

11 modules of 4 TeO₂ crystals $5x5x5 \text{ cm}^3 \rightarrow 790 \text{ g}$



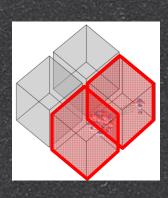
2 modules of 9 TeO₂ crystals 4 enriched (2x¹³⁰Te - 2x¹²⁸Te) 3x3x6 cm³ → 330 g

CUORICINO DATA



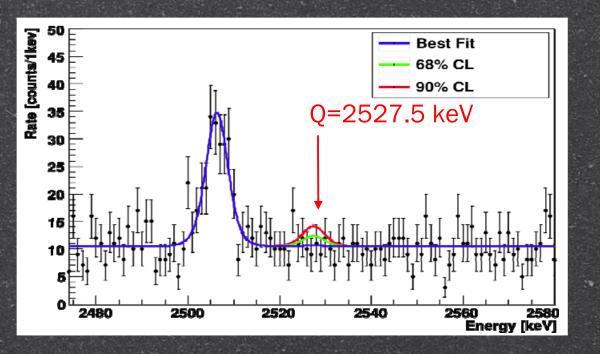
COINCIDENCE STUDIES

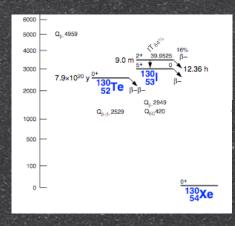
Background reduction (OvDBD)
Background study (source identification)
Study of complex processes (Physics)


Discarding multi-site events reduced background by 10-15% aprox. in the region of interest

 Surface contaminations on crystals are clearly visible

Single Crystal Event


Multiple Crystal Event

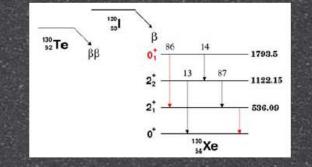


CUORICINO: OVDBD RESULT

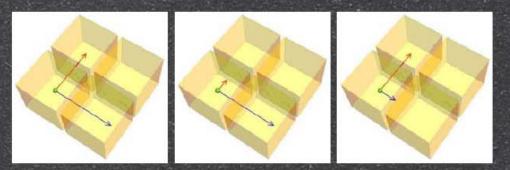
Astropart. Phys. (2011), doi:10.1016/j.astropartphys.2011.02.002

TOTAL: 19.6 kg \cdot yr ¹³⁰Te exposure collected in 2 runs (2003-2004, 2004-2008) (II Run, Big Crystals alone: 15.8 kg \cdot y)

NME bibliography:


1 Šimkovic et al., PRC 77 (2008) 045503 2 Civitarese et al., JoP:Conference series 173 (2009) 012012 3 Menéndez et al., NPA 818 (2009) 139 4 Barea and Iachello, PRC 79 (2009) 044301

Background Big Crystals, II run: Lower limit, half-life: Upper limit, Majorana mass:


0.153 ± 0.006 counts/keV/kg/y T_{1/2}^{0v} (¹³⁰Te) > 2.8 × 10²⁴ y (90% C.L.) $m_{v_e} < 0.3 - 0.7 \text{ eV}$

CUORICINO: BB ON EXC. STATES

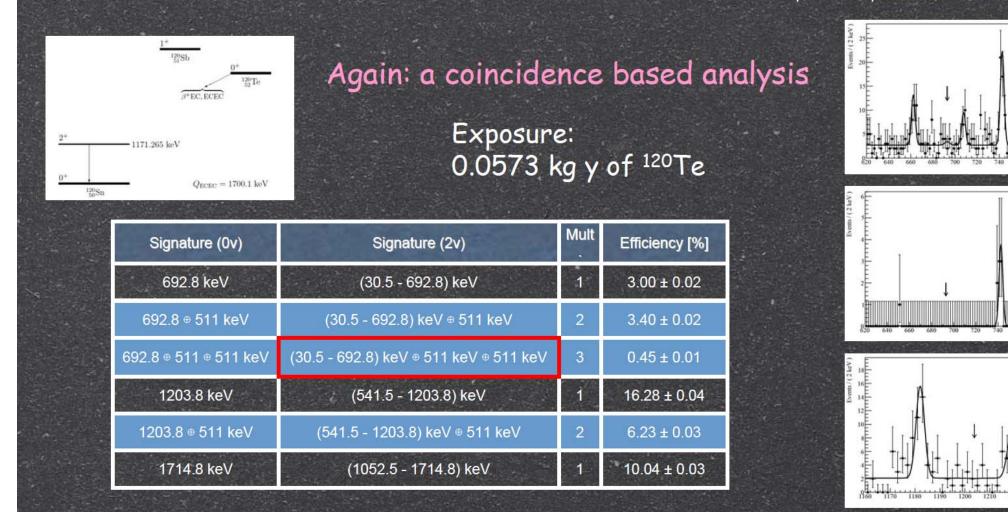
Coincidence based analysis: study of complex processes

	hit1 [keV]	hit2 [keV]	hit3 [keV]	
scenario1	0-734	1257	536	
scenario2	536-1270	1257	х	
scenario3	1257-1991	536	х	

CALCULATIONS AND PAST EXP.

Theor: $T_{1/2}(2\nu\beta\beta^*) = (5.1 - 14) \times 10^{22} \text{ y}$ Exp: $T_{1/2}(2\nu\beta\beta^*) > 2.3 \times 10^{21} \text{ y}, 90\% \text{ CL}$

Theor: $T_{1/2}(0\nu\beta\beta^*) = 1.4 \times 10^{26} \text{ y}$ Exp: $T_{1/2}(0\nu\beta\beta^*) > 2.5 \times 10^{22} \text{ y}, 90\% \text{ CL}$


 $T_{1/2}(0v) > 1.0 \times 10^{24} \text{ y} (2000 \text{ CL})$ $T_{1/2}(2v) > 1.4 \times 10^{28} \text{ pressure} CL)$

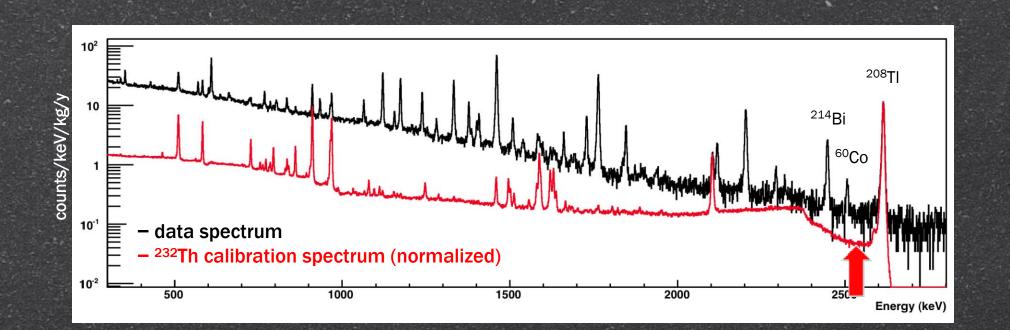
CUORICINO: B+/EC DECAY OF 120Te

Astroparticle Physics 34 (2011) 643-648

Energy (keV)

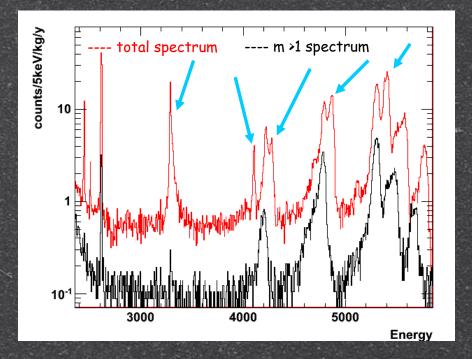
Ov mode: T_{1/2}(Ov) > 1.9 · 10²¹ y @ 90% C.L (4 orders of magnitude improvement)

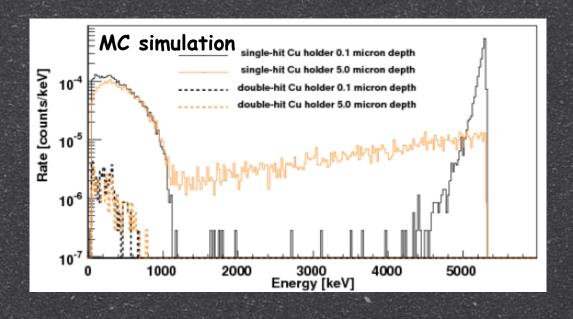
2v mode: T_{1/2}(2v) > 0.9 · 10²⁰ y @ 90% C.L (3 orders of magnitude improvement)



IDENTIFICATION OF POSSIBLE BACKGROUND SOURCES

There are three main sources of background in the region of interest (2474–2580 keV):

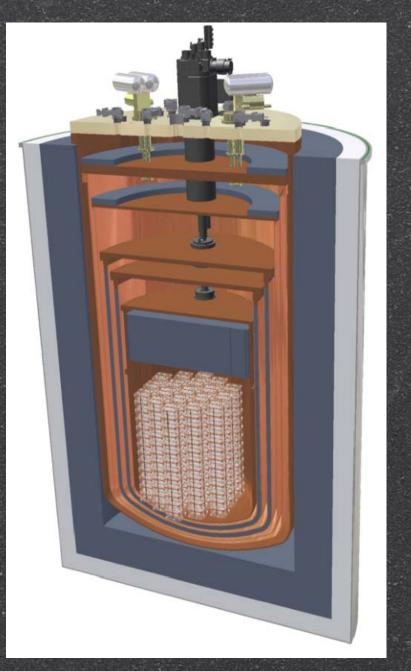

(~40%) Compton events from 2615 keV peak of ²⁰⁸TI, from ²³²Th cryostat contamination
(~50%) Degraded alphas from ²³⁸U and ²³²Th on copper surfaces
(~10%) Degraded alphas from ²³⁸U and ²³²Th on crystal surfaces


▶ The 2505 keV ⁶⁰Co peak is likely due to cosmic-ray activation of the copper

CUORICINO BKG: LET'S ZOOM- IN ...

THERE IS CLEARLY A FLAT BKG COMING FROM ALPHA REGION NOT DUE TO CRYSTAL BULK CONTAM. (sharp peaks, no continuum, E = Q)

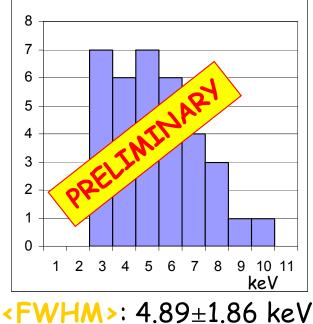
CAN COME FROM SURFACE CONTAMINATIONS


CRYSTALS: m>1 SPECTRUM (degraded peaks if partially implanted) SURROUNDING MATERIALS: a continuum with more or less structures

CUORE DETECTOR AND SET-UP

988 TeO₂ crystals arranged in 19 towers Mass 741 kg (~ 200 kg of ¹³⁰Te) Energy resolution 5 keV @ 2615 keV (FWHM) Background aim: 10⁻² c/keV/kg/years MAIN CONCEPTS:

~20 times the mass of CUORICINO stringent controls on radioactivity of materials and on the assembly protocol heavy shielding (36 cm Pb min.) tightly packed array with a high efficiency in background rejection thanks to the use of anticoincidence n bkg suppressed by ~30 μ bkg suppressed by ~ 20 (Astrop. Phys. 33 (2010) 169) crystal surface bgk suppressed by ~ 4


CUORE CRYSTALS VALIDATION

~1000 crystals ordered to SICCAS (China)

- * 560 crystals ordered by INFN (now in LNGS)
- * 500 crystal ordered by DoE will follow: 91 already in LNGS, end in sept 2012

for each production batch, 2 or more crystals are tested in hall C cryostat: Single cell similar to CUORE New electronics and DAQ as CUORE All material cleaned CUORE like

35 CUORE BOLOMETERS

PURPOSE OF THE TEST

check performances as bolometers

check bulk contaminations

check surface contaminations

bulk: <6 10⁻¹⁴ g/g in U, <8 10⁻¹⁴ g/g in The -----> $\beta\beta$ bkg < 5 10⁻⁵ c/keV/kg

surface: ~ nBq/cm² -----> ββ bkg <2 10⁻³ c/2/kg/y

CUDRE RADIOACTIVITY TEST

THE THREE TOWERS TEST

Measurement was done in Hall A cryostat: same as Cuoricino

Crystals were dismounted from Cuoricino detector and repolished on surfaces

Three different types of copper cleaning were tested to evaluate the surface contribution to background

T1

Chemical etching with polyethylene wrapping

T2 More complex chemical treatment

> T3 Legnaro T.E.C.M.

TTT BACKGROUND

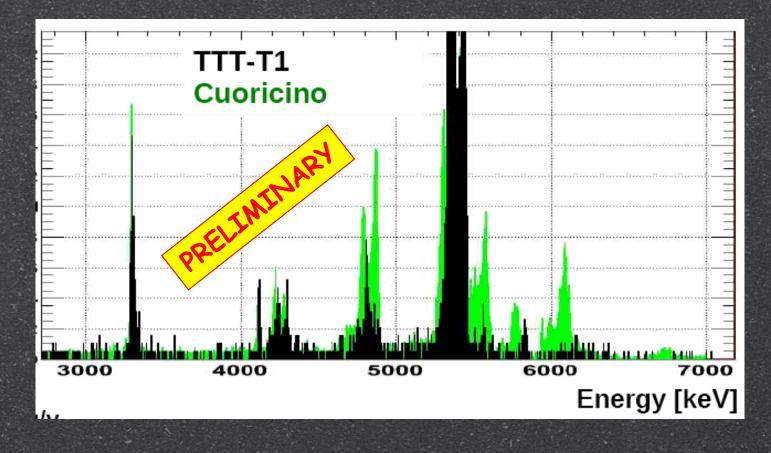
Without Efficiency correction

	Tower c/keV/kg/y	2700-3900 MeV (excluded Pt peak)	Error	4-5 MeV (U/Th)	Error (1σ)	5-6 MeV (Po/Pb)	Error (1σ)
	T1-Pirro	0.058	INLO	0.227	0.011	1.063	0.023
_	T2-Gorla	0.087 pp	0.008	0.260	0.014	1.334	0.032
	T3-LNL	0.061	0.006	0.218	0.013	1.531	0.034

To be compared with Cuoricino background in the same region:

0.122 ± 0.001 c/keV/kg/y

The flat component that contributed for ~60% to CUORICINO background (and that we consider the more important source limiting CUORE background) is reduced by a factor ~2 !



TTT CRYSTALS: RECONTAMINATION

TTT crystals are re-polished Cuoricino crystals

We improved much on the surface contamination...

...BUT clearly recontaminated them with ²¹⁰Pb

RECONTAMINATION RISKS

FIGHTING RECONTAMINATION: A NEVERENDING STORY

ALL MATERIALS, AFTER CLEANING, ARE PACKED UNDER VACUUM, STORED UNDERGROUND AND KEPT UNDER N₂ FOR YEARS...

THE TOWER ASSEMBLY LINE IS BASED ONLY ON NITROGEN FLUSHED GLOVE BOXES

THE NEAR FUTURE: CUORE-0

A single tower realized with the same procedure of CUORE crystals from the same production line same copper and PTFE CUORE-like copper surface cleaning same assembly line

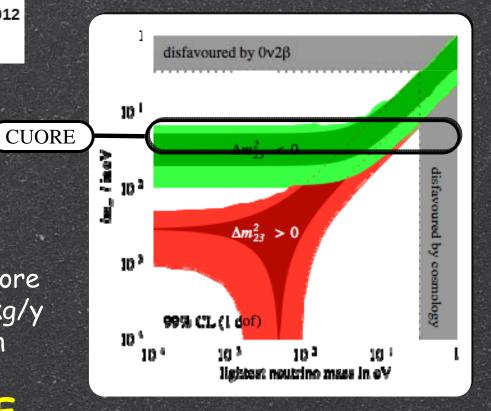
CUORE-0 will be installed in HallA cryostat same as Cuoricino

Many aspects will be analyzed with CUORE-0: detector performances with high statistics radioactive background (in Cuoricino cryostat)

CUORE-0 will be assembled in the next months and then put into operation before the end of the year

...STAY TUNED!!

CUORE: THE REAL CHALLENGE


Background [c/kev/kg/y]	FWHM [keV]	т _{1/2^{0v} [y] @ 68%С.L.}	<m<sub>ββ> [meV]</m<sub>			
			R(QRPA) ¹	pn(QRPA) ²	ISM ³	IBM-2 ⁴
0.01	5	2.1x10 ²⁶	35÷66	41÷67	65÷82	41
0.001	5	6.5x10 ²⁶	20÷38	23÷38	37÷47	23

1 Šimkovic et al., PRC 77 (2008) 045503 2 Civitarese et al., JoP:Conference series 173 (2009) 012012 3 Menéndez et al., NPA 818 (2009) 139 4 Barea and Iachello, PRC 79 (2009) 044301

Based on our studies and knowledge we foresee for CUORE a background of 0.01 c/keV/kg/y

But other CUORE-like detectors are being proposed and under study, therefore the possibility to reach a 0.001 c/keV/kg/y or even better in the future is still open

JUST WAIT AND WE'LL SEE ...

