Pierre Auger Observatory

studying the universe's highest energy particles

UHE Neutrino searches with the Pierre Auger Observatory and other UHECR experiments

Sergio Navas

Dpto. Física Teórica y del Cosmos & CAFPE, University of Granada, Spain

for the Pierre Auger Collaboration

Universidad de Granada

XIV International Workshop on "Neutrino Telescopes"

"Istituto Veneto di Scienze, Lettere ed Arti", Venice

March 15-18 2011

Primary objective of the Pierre Auger Observatory

"Measure the properties of Ultra High Energy Cosmic Rays ($E > 10^{18} \text{ eV}$)

with unprecedented statistics and accuracy"

Energy

• Cutoff at the highest energies? Ankle?

Direction

- Is the UHECR flux isotropic ?
- Which are the UHECRs sources?

Mass composition

Is the UHECR flux proton/iron-dominated?

Primary objective of the Pierre Auger Observatory

"Measure the properties of Ultra High Energy Cosmic Rays ($E > 10^{18} \text{ eV}$)

with unprecedented statistics and accuracy"

Energy

• Cutoff at the highest energies? Ankle?

Direction

- Is the UHECR flux isotropic ?
- Which are the UHECRs sources?

Mass composition

Is the UHECR flux proton/iron-dominated?

Phys. Lett. B 685 (2010) 239-246 Phys. Rev. Lett 101 (2008) 061101

Astropart. Phys. 34 (2010) 314-326

Astropart. Phys. 29 (2008) 188-204

Phys. Rev. Lett 104 (2010) 091101

Primary objective of the Pierre Auger Observatory

"Measure the properties of Ultra High Energy Cosmic Rays ($E > 10^{18} \text{ eV}$)

with unprecedented statistics and accuracy"

Energy

Cutoff at the highest energies? Ankle?

Direction

- Is the UHECR flux isotropic ?
- Which are the UHECRs sources?

Mass composition

Is the UHECR flux proton/iron-dominated?

Neutrino and photon detection (!)

 $\hfill\square$ As a bonus, the Observatory has the capability to detect UHE ν and γ

Phys. Lett. B 685 (2010) 239-246 Phys. Rev. Lett 101 (2008) 061101

Astropart. Phys. 34 (2010) 314-326

Astropart. Phys. 29 (2008) 188-204

Phys. Rev. Lett 104 (2010) 091101

Astropart. Phys. 31 (2009) 399-406 Phys. Rev. D 79 (2009) 102001

Expected sources of UHE neutrinos

Astrophysical Neutrinos

 Neutrinos are expected as a product of pion decays produced in hadronic interactions of cosmic rays with radiation or matter near the astrophysical sources (AGNs...)

"cosmogenic neutrinos"

$$\begin{array}{c} + \gamma_{\text{CMB}} \rightarrow \pi^{\pm} + X \\ \rightarrow \mu^{\pm} & + \nu_{\mu} \left(\overline{\nu_{\mu}} \right) \\ \rightarrow e^{\pm} & + \overline{\nu_{\mu}} \left(\nu_{\mu} \right) + \nu_{e} \left(\overline{\nu_{e}} \right) \end{array}$$

□ = GZK neutrinos: produced by high-energy cosmic rays with the microwave background.

Predicted in "top-down" scenarios

Decay of ultra massive objects (topological defaults, super heavy dark matter, Z burst...): harder spectrum & high γ and v fluxes predicted.

The Pierre Auger Observatory

Malargüe – Argentina

(Pampa Amarilla)

Detector completed in June 2008

70 institutions and 17 countries

Argentina, Australia, Bolivia, Brazil, Czech Republic, France, Germany, Italy, Mexico, Netherlands, Poland, Portugal, Slovenia, Spain, U.K., U.S.A., Vietnam

HYBRID detection technique

Example of "hybrid" event

Hybrid shower detection

(FD)

24 fluorescence telescopes

souped in units of 6 telescopes at 4 locations sield of view: $30^{\circ} \times 30^{\circ}$

1600 water Cherenkov tanks (SD)

- * 1.5 km spaced
- * \varnothing 3.6 m × h1.2 m

Surface Communication antenna GPS antenna

Electronics enclosure

40 MHz FADC, local triggers, 10 Wat

CONTRACT OF

Solar panels

Battery —

3 PMTs (9") for Cherenkov light detection Plastic tank with 12 ton of water

Surface Detector array (SD)

What is a neutrino?

What is a neutrino?

v = horizontal young (deep) shower

v = horizontal young (deep) shower

Two search channels: "down" and "up" going neutrinos ...

"down going" neutrinos

- \uparrow Sensitivity to ALL ν flavours
- \uparrow Sensitive to ALL interaction channels (CC & NC)
- ^{\uparrow} Large solid angle (75° \rightarrow 90°)
- \downarrow Dilute mass target (air)

"Earth skimming" tau neutrinos

- τ travels long distances in the Earth
 without losing too much E before decay
- \downarrow Sensitivity to v_{τ} CC channel
- ↓ Small solid angle (few degrees)
- ↑ Dense mass target (Earth crust)

Which is the neutrino

signature in the SD array ?

Main observable \Rightarrow AoP = Area / Peak

Search strategy : Blind analysis

Inclined shower selection:

Signal / Background discrimination

Very good separation between the two event categories.

The selection is now done on the basis of a single cut on the Fisher value.

Improved discrimination: split sample in sub-samples according to the number of selected stations

Fisher distribution (6< #stations <12)

Fisher cut

• "safe" cut on *Fisher* value such that expected background < 1 event / 20 years of Auger data

Down-going selection efficiency

□ Fraction of neutrino-induced showers triggering the SD and passing the identification criteria (quality, *Fisher*...)

Number of candidates...

After unblinding..

0

candidates for the search period

Down-going v: Nov 07toMay 10Up-going v: Jan 04toMarch 09

Exposure calculation

• The **Exposure** is computed through the **time integral of the Mass Aperture** × **the interaction cross section** (sum over the three neutrino flavors and interaction channels)

Differential flux limit

HiRes experiment

- HiRes is a fluorescence experiment :
 - Charged particles in cosmic ray air shower excite N₂ molecules.
 - Emit ~ 5 UV photons/mip/meter, 300-400 nm wavelength.
- Mono: wider energy range $(10^{17.2} < E < 10^{20.5} eV)$, best statistics.
- Stereo: best resolution, $10^{18.5} < E < 10^{20.5}$ eV, fewer events.
- Looks for UHE electron-neutrino-induced showers thanks to the large interaction cross section and the LPM effect which causes a significant decrease in the cross sections from bremsstrahlung and pair production, allowing CC V_e showers occurring deep in the Earth's crust to be detectable as they exit the Earth into the atmosphere.

HiRes I

21 mirrors, **1** ring, 5.1 m², 16×16 PMTs

- Complete azimuth, zenith 3° 17°
- Data: July 1997 April 2006

HiRes II

- 42 mirrors, 2 rings
- Complete azimuth, zenith 3° 31°
- Data: December 1999 April 2006

ANITA – II experiment

Phys. Rev. D 82 (2010) 022004 Astropart. Phys. 32 (2009) 10

Searches for **impulsive coherent radio Cherenkov emission** from **200 to 1200 MHz** arising from the **Askaryan** charge excess in ultrahigh energy neutrino-induced cascades within Antarctic ice.

Launched on Dec. 21, 2008 \Rightarrow **30 days** time aloft

- Altitude: 33 35 km above ice surface
- Volume: ~1.6 M km³ of ice
- ~21 M quality events

No expected particle physics background Ambient random thermal noise Anthropogenic background (HV discharges, Iridium phones, spark plugs, spark gaps...) Resolution: 0.3° in elevation and 0.5° – 1.1° in azimuth

0.2

0.1

V_{pol} 2 0.97±0.42 H_{pol} 3 0.67±0.24

Integrated flux limit

 $\mathbf{N}_{\rm exp} = \int f(\mathbf{E}_{\nu}) \cdot \mathbf{\mathcal{E}}(\mathbf{E}_{\nu}) \cdot d\mathbf{E}_{\nu}$

and assuming

$$f(\mathbf{E}_{\nu}) = k \cdot \mathbf{E}_{\nu}^{-2}$$

HiRes:

RICE06:

ANITA II:

AUGER:

Summary

- The Pierre Auger Observatory is sensitive to UHE neutrinos:
 - ✓ "down-going" neutrinos ($\theta \in [75^\circ 90^\circ]$): three flavours and CC&NC
 - ✓ "Earth-skimming" neutrinos (θ∈[90°-95°])
- > Main signature: "very inclined showers with significant electromagnetic content"
- > ZERO neutrino candidate events found in data \Rightarrow Competitive limits on UHE v flux
- Maximum sensitivity at the most relevant range for GZK neutrinos (~1 EeV)

> A number of different experiments (IceCube, ANITA, Auger ...) showing very good performances to UHE neutrino detection ... let's wait for the first UHE neutrinos in the next years ! Backup

transparencies

Systematic uncertainties

Transport equation	Interactions in Earth	±5%	MC Simulations	
Modeling UHE had. interac.	Extensive Air Shower	+20% , -5%		
Triggering/selection efficiency,	Acceptance	±2%	r Pierre Auger	
Andes, Pacific Ocean	Topography	±6%(↓) ±18%(↑)	Cobservatory	
Depends on PDFs	Cross section	±10%	Theory	
	Energy Losses (Breemstralhung, pair prod., DIS)	+25% , -10%	K	

Relative contribution of different channels (down-going analysis)

(%)	ν_{e}	ν_{μ}	ντ	Total
CC	33	13	39	85
NC	5	5	5	15
CC + NC	38	18	44	100

Expected number of events using current exposure of down going v measured by Auger for several models

	Reference		N expected
"cosmogenic"	GZK - Fermi	JCAP 10, 013 (2010)	0.12
	GZK – evolFRII	Astropart. Phys. 34 (2010) 106	0.30
"astrophysical"	MPR – max	Phys. Rev. D 63 (2001) 23003	2.08
	BBR	Astropart. Phys. 23 (2005) 355	0.89
"exotics"	TD – Necklaces Z – Bursts	Phys. Rev. D 66 (2002) 063004	0.84 8.16

Neutrino simulation technical details

- First interaction: HERWIG
- Tau decay: TAUOLA
- □ Shower development: AIRES 2.8.0 + QGSjetII.03
- Detector simulation: Auger Offline

 \square All flavours (v_e , v_{\mu} , v_{\tau}) and channels (NC & CC):

Parameters of simulations:

- Energy: E = 10¹⁶ eV 10²⁰ eV
- Zenith: $\theta_{down-going} = 75^{\circ} 89^{\circ}$ (6 bins in sec(θ))
- Depth of 1st interaction: $X_{ini} = 0 8000 \text{ g cm}^{-2}$ (slanted from ground)