Results from the MiniBooNE Experiment

Geoffrey Mills Los Alamos National Laboratory For the MiniBooNE Collaboration

NeuTel2011 Venezia, Italia

- 1. Motivation
- 2. MiniBooNE Appearance Results
- 3. Comparison of LSND and MiniBooNE
- 4. Future Possibilities
- 5. Conclusions

Motivation....

Neutrino Oscillations

- The oscillation patterns between the 3 known active neutrino species have been demonstrated by a number of experiments over the last two decades:
 - SNO, Kamland
 - Super-K, K2K, MINOS
- Armed with that knowledge, measurements of neutrino behavior outside the standard 3 generations of active neutrinos indicate new physics:
 - LSND indicates that new physics may be operating
- Interpretations of such a non-standard result probe some deep theoretical issues, for example:
 - Light sterile neutrinos, neutrino decays, CP and/or CPT violation, Lorentz invariance, Extra dimensions

The investigation of neutrino oscillations at the <1% level is unique in its physics reach

Motivation....

Excess Events from LSND still remain:

KARMEN at a distance of 17 meters saw no evidence for oscillations $\rightarrow low \Delta m^2$

*3 active + ≥2 sterile vs needed to fit all appearance and disappearance

Motivation....

Cosmology Fits for the Number of Sterile Neutrinos (J. Hamann, et. al. arXiv:1006.5276)

4

MiniBooNE looks for an excess of electron neutrino events in a predominantly muon neutrino beam

Data stability

• Very stable throughout the run

 $v/POT \times 10^{-17}$

160

140

120

100

Meson production at the Proton Target Pions(+/-): Kaons:

- MiniBooNE members joined the HARP collaboration
 - 🕳 8 GeV proton beam
 - 🕳 5% Beryllium target
- Spline fits were used to parameterize the data.

- Kaon data taken on multiple targets in 10-24 GeV range
- Fit to world data using Feynman scaling
- 30% overall uncertainty assessed

Pattern of Cerenkov Light Gives Event Type

The main types of particles neutrino events produced:

Benchmark Reaction: Charged Current Quasi Elastic (CCQE)

Normalizes our (flux x cross section)

M. Martini, M. Ericson, G. Chanfray, and J. Marteau, PHYS. REV. C 80, 065501 (2009)

"We suggest that the proposed increase of the axial mass from the standard value to a larger one to account for the quasielastic data, reflects the presence of a polarization cloud, mostly due to tensor interaction, which surrounds a nucleon in the nuclear medium. It translates into a final state with ejection of two nucleons, which in the present stage of the experiments is indistinguishable from the quasielastic final state."

Scaled Quasi Elastic Cross Section in Electron Scattering

- Green's function Monte Carlo techniques
- Reproduces data and explains the source of the extra strength

Crucial for oscillation interpretation, provides neutrino energy!!

MiniBooNE Oscillation Searches

- Neutrino mode v_e appearance: $V_{\mu} \rightarrow V_{e}$
 - Seach for excess events above expected background
 - Pure sample of neutrinos

Antineutrino mode \overline{v}_{e} appearance: $\overline{V}_{\mu} \rightarrow \overline{V}_{e}$

- Search for excess \overline{v}_e events above expected background
- Contamination from large amount of neutrinos in antineutrino mode

MiniBooNE v_e and \overline{v}_e Data

v_e Background Uncertainties

Uncertainty (%)	200-475MeV	475-1100MeV
p ⁺	0.4	0.9
p	3	2.3
K ⁺	2.2	4.7
K-	0.5	1.2
K ⁰	1.7	5.4
Target and beam models	1.7	3
Cross sections	6.5	13
NC pi0 yield	1.5	1.3
Hadronic interactions	0.4	0.2
Dirt	1.6	0.7
Electronics & DAQ model	7	2
Optical Model	8	3.7
Total	13.4%	16.0%

- Unconstrained $\overline{\nu}_{e}$ background uncertainties
- Propagate input uncertainties from either MiniBooNE measurement or external data

(v_{μ} constrained error ~10%)

Recent Progress in the Appearance Analysis

- SciBooNE analysis of its v_{μ} CCQE data
 - Effectively a "near detector" although not identical to MiniBooNE and not sensitive to v_e component
 - Constraint on K⁺ component of the beam
- Have now collected > $8x10^{20}$ pot (published data: 5.66x10^{20})
 - Plan to release new data in May or June

Model Independent Views of Oscillations Why L/E?

• Neutrino oscillations usually appear as simple trigonometric functions of L/E

$$P(v_{\alpha} \rightarrow v_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j}^{N} \Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}(\Delta m_{ij}^{2}\frac{L}{E}) + 2\sum_{i>j}^{N} \Im\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin(2\Delta m_{ij}^{2}\frac{L}{E})$$

 $(\text{antineutrinos}: U \to U)$

• Experiments can be compared directly to each other in L/E to look for the interference of mass states and oscillations

•The next plots show P(osc) vs L/E:

 $P(\alpha \to \beta) \equiv \frac{\text{observed event excess}}{\text{number expected for full transmutation of } v_{\mu} \text{ or } \overline{v}_{\mu}}$

$$\left(\Delta m^2 \frac{L}{E_v}\right)$$
 is just the phase difference of the two states

Direct MiniBooNE-LSND Comparison of \overline{v} Data

Antineutrino mode MB results Full Energy Range

- Results for **5.66E20 POT**
- Maximum likelihood fit in simple 2 neutrino model
- Null excluded at 99.5% with respect to the two neutrino oscillation fit

Antineutrino mode MB results for E>475 MeV

(E>475 avoids question of low energy excess in nu-mode)

- Results for **5.66E20 POT**
- Maximum likelihood fit for simple two neutrino model
- Null excluded at 99.4% with respect to the two neutrino oscillation fit.
- Signal bins only:
 - $P_{\chi 2}(null) = 0.5\%$
 - $P_{\chi 2}$ (best fit)= ~10%

Analysis of All Short Baseline Data Karagiorgi et. al. (Laguna Meeting March 3-5 2011) Updated fits: (3+2)

Dataset	СР	χ² (ndf)	gof	∆m² ₄₁	∆m² ₅₁	U _{e4}	 U _{μ4}	$ \mathbf{U}_{e5} $	 U_{μ5} 	ф ₄₅
all SBL+ atm	СРС	186.1 (193)	62%	0.92	23.8	0.13	0.13	0.083	0.14	0
	СРУ	182.6 (192)	67%	0.92	26.6	014	0.14	0.077	0.15	Ι.7π

Overall χ^2 quite reasonable and compatibility of data sets is acceptable

NEW: includes updated MiniBooNE antineutril o a, pearance dataset, and new reactor flux predictions

Best fit parameters essentially unchanged. Small improvements in χ^2 .

Change in $\chi^2 \text{ OLD} \rightarrow \text{NEW}$	CPC:	5.4/0 dof	Compatibility among
	CPV:	6.7/0 dof	all SBI +atm: $7\% \rightarrow 6\%$
Change in $\chi^2 CPC \rightarrow CPV$	NEW:	3.5/1 dof	(decrease is due to
	OLD:	2.2/1 dof	` MiniBooNE(⊽))

(decrease is due to $MiniBooNE(\overline{v})$

Karagiorgi et. al. cont.

Updated fits: (3+1), antineutrino-only

CPT Violating!

Other data: KARMEN & LSND v_e Disappearance Limit

Not usually included in global fits

Conclusions

- Significant ν_e (~3 σ) and $\overline{\nu}_e$ (~2.8 σ) excesses above background are emerging in both neutrino mode and antineutrino mode in MiniBooNE
- MiniBooNE $\overline{\nu}_{e}$ data are consistent with an oscillation interpretation of the LSND appearance data
- Neutrino mode systematic errors dominate (near detector?)
- Antineutrino mode statistical errors dominate (more data?)
- MiniBooNE plans to accumulate data until the goal of 10²¹ protons on target is reached (0.8x10²¹so far)

Outlook

Additional experiments under consideration or design:

- Moving MiniBooNE to a near position following the $\,\overline{
 u}\,$ run
 - High statistics (1 year run)
- MicroBooNE
 - 70 ton Liquid Argon TPC
 - Good electron-gamma separation
 - Construct "Super"MicroBooNE (LAr1kT)
- ICARUS @PS
 - 600 ton Liquid Argon TPC running at Grand Sasso
 - Move to CERN PS beam and augment with small near detector (~<100 tons)
 - Good electron-photon separation
- Repeat LSND:
 - SNS (OscSNS) is running now at 1 MW (neutrinos are going to waste as we speak!!)

Workshop on Short Baseline Neutrinos

May 12-14 at Fermilab

- https://indico.fnal.gov/event/sbnw2011
- Agenda:
 - Experimental Short-Baseline Neutrino Data
 - Theoretical Interpretation of Short-Baseline Neutrino Data
 - Future Neutrino Facilities
 - Future Short-Baseline Experiments