Current Status of RENO Experiment

14th International Workshop on Neutrino Telescopes March 15-18, 2011, Venice, Italy

Outline

D Experimental Goal

- Systematic & Statistical Uncertainties
- Expected θ_{13} Sensitivity

Overview of the RENO Experiment

- Experimental Setup
- YongGwang Power Plant
- Schedule

□ RENO Construction (completed as of Feb. 2011)

- Tunnel
- Detector
- DAQ

Goal of RENO Experiment

- □ CHOOZ : $R_{osc} = 1.01 \pm 2.8\%$ (stat) ± 2.7% (syst) $sin^2(2\theta_{13}) < 0.17$ (90% C.L.)
- □ RENO : $sin^2(2\theta_{13}) > 0.02$ (for 90% C.L.) $sin^2(2\theta_{13}) > 0.035$ (for 3 σ discovery potential) statistical error : 2.8% → 0.3% systematic error : 2.7% → <0.5%
- □ Larger statistics
 - More powerful reactors (multi-core)
 - Larger detection volume
 - Longer exposure
- □ Smaller experimental errors
 - Identical multi detectors

 \rightarrow Obtain <1% precision !!!

- Lower background
 - Improved detector design
 - Increased overburden

RENO Proposal, hep-ex/1003.1391 (2010. 03)

Expected Number of Neutrino Events at RENO

- 2.73 GW per reactor × 6 reactors
- 1.21x10³⁰ free protons per targets (16 tons)

Near: 1,280/day, 468,000/year
Far: 114/day, 41,600/year

✓ 3 years of data taking with 70% efficiency

Near : $9.83 \times 10^5 \approx 10^6$ (0.1% error) Far : $8.74 \times 10^4 \approx 10^5$ (0.3% error)

Expected Systematic Uncertainty

Syst	ematic Source	CHOOZ (%)	RENO (%)
Reactor related	Reactor antineutrino flux and cross section	1.9	< 0.1
absolute normalization	Reactor power	0.7	0.2
	Energy released per fission	0.6	< 0.1
Number of protons in	H/C ratio	0.8	0.2
target	Target mass	0.3	< 0.1
	Positron energy	0.8	0.1
	Positron geode distance	0.1	0.0
Detector Efficiency	Neutron capture (H/Gd ratio)	1.0	< 0.1
Delector Eniciency	Capture energy containment	0.4	0.1
	Neutron geode distance	0.1	0.0
	Neutron delay	0.4	0.1
	Positron-neutron distance	0.3	0.0
	Neutron multiplicity	0.5	0.05
	combined	2.7	< 0.5

Expected Number of BG Events

Source	Near	Far
Gamma Single Rates due to Radioactivity (²³⁸ U, ²³² Th, ⁴⁰ K)	~30Hz (removable)	~30Hz (removable)
Cosmogenic Isotopes (⁸ He, ⁹ Li)	2.8 /day	0.7 /day
Correlated BG due to fast neutrons from cosmic muons	3.0 /day	1.0 /day
Total	~6 /day (<0.5%)	~2 /day (<2%)

RENO Expected Sensivity

Comparison of Reactor Neutrino Experiments

-		735					A CONTRACTOR OF
Experiments	Location	Thermal Power (GW)	Distances Near/Far (m)	Depth Near/Far (mwe)	Target Mass (tons)	sin²(2θ ₁₃) 90% C.L.	Start (yr)
Double-CHOOZ	France	8.7	410/1050	115/300	8/8	0.03	?
RENO	Korea	17.3	290/1380	120/450	16/16	0.02	2011
Daya Bay	China	17.4	360(500)/1985(1613)	260/910	40×2/80	0.01	?

RENO Collaboration

(13 institutions and 40 physicists) Chonnam National University Chonbuk National University Chung-Ang University Dongshin University Gyeongsang National University Kyungpook National University Pusan National University Sejong University Seokang Information University Seokyeong University Seoul National University Sungkyunkwan University California State University Dominguez Hills (USA)

RENO Experimental Setup

Google Satellite View of Experimental Site

Schematic View of Underground Facility

RENO Detector

• 354 10" Inner PMTs :

14% surface coverage

• 67 10" Outer PMTs

	Inner Diameter (cm)	Inner Height (cm)	Filled with	Mass (tons)
Target Vessel	280	320	Gd(0.1%) + LS	16.5
Gamma catcher	400	440	LS	30.0
Buffer tank	540	580	Mineral oil	64.4
Veto tank	840	880	water	352.6

Schedule

A				2	00)6						2	00)7		2008											2009												20	10)		2	201	1
Activities	3	(6		9		1	2	3		6		9		12		3	8		6		ç	9		12		3	3	(6		9		12		3		6		9		1	2		3
Detector Design & Specification																																													
Geological Survey & Tunnel Design																																													
Detector Construction																																													
Excavation & Underground Facility Construction	Y																																												
Detector Commissioning & Data Taking																																													

□ Tunnel facility, detector structure & buffer steel tanks completed

- □ June 2010 : Acrylic containers installed
- □ Jun. ~ Dec. 2010 : PMT test and Installation/ Veto tyvek installed
- □ Jan. 2011 : Detector closing/ Electronics hut & control room built
- □ Feb. 2011 : Installation of DAQ & HV/ Dry run
- □ Mar. 2011 : Installation of liquid production system
- □ May 2011 : Start data taking

Design of Tunnel

Tunnel Construction for Underground Facility

- □ Approval from government regulation ('08. 01/05)
- \Box Cleared local government regulations ('08. 01~'08. 06)
- Preparation for tunnel excavation ('08. 07)

Vertical detector halls & steel structure are ready (2008. 12~2009. 06)

Experimental Hall

Buffer steel tanks are installed

(2009.6~2009.11)

by NIVAK Co. Korea

Acrylic vessels are made and installed

Installation of Acrylic Vessels (2010. 6)

PMT Assembling (2010. 8~10)

PMT Installation (2010. 8 ~ 2011. 1)

1st & Bottom PMT Mounting (2010. 8. 17)

PMT Mounting (2010. 8~10)

Finishing PMT installation (2011.1)

Veto Tyvek and PMTs (2010. 10)

PMT Signal Check (2010. 10~12)

900 9501

900 9501000 050 100 150 20

Tyvek Installation (2011.1)

PMT Cable Outlet Tube & Cable Tray (2010. 11~2011.1)

Detector Closing (2011.1)

Detector Closing (2011.1)

Design of Electronics Hut & Control Room (2010. 11)

Electronics Hut & Control Room Installed (2011.1)

PMT Cable Connection to DAQ Electronics (2011. 2)

Glove Box and Source Driving System (2010. 10~12)

3D Calibration System (2010. 8 ~ 2011. 2)

Trailer Research Facility & Guest Room (2009. 11~2010. 2)

Gd loading into LAB

Liquid Production System (2010. 11~2011. 3)

RENO Event Display & Analysis Code

Detector Monitoring System (2010. 12~2011. 2)

	15171		6
나재널 온도 모	니너딩		
실험실 온도 모니터링			
2월(E) 수별(Q)			
- Channel Parameters		1014	
Physical Channel	Measurement	cDAG	11Mod1/si1
Minimum Value (deg C)	27.3-		
Jacon Maximum Value (dan C)			
3100.00			
Timing Parameters Rate (Hz)	oute		
10,00	10 27.2-		
RTD Parameters RTD Type			
() Pt3750 x0 (Ohma)			
J 100.00	77.1-		
Resistance Parameters Resistance Configuration	27 11:40:34	Time (s)	£21 11:40:39
Current Excitation Source			
Jinternal		ST	R.
0.00100			
			× 1

0

Monitoring

Summary

RENO is expected to measure θ₁₃ if sin²(2θ₁₃) > 0.02
 RENO construction is basically completed.
 LS production system is ready to fill the detectors.

□ Data –taking is expected to start in May 2011.

International collaborators are welcome to join this exciting journey!

Thank you!

서울대 김수봉 교수가 이끄는 RENO 실험팀. 30여년간 관측에 실패한 미지막 중성미자 변환상수를 밝히기 위해 프랑스 중국과 치열한 경주를 벌이고 있다