

Daya Bay Experiment and its Future

Yifang Wang Institute of High Energy Physics

Daya Bay reactor neutrino experiment

- Second largest reactor complex: 5 reactor cores operational, 1 more this year, 17.4 GW_{th} in total
- Mountains near by, easy to construct a lab with enough overburden to shield cosmic-ray backgrounds
- Challenges: how to reach a precision less than 0.5 % ?
 Design + good conditions

The Experiment

- Near-far relative meas. to cancel correlated syst. errors
 - 2 near + 1 far
- Multiple neutrino detector modules at each site to cross check and reduce un-correlated syst. errors
 - Gd-loaded liquid scintillator as the target
 - Stainless steel tank+ 2 nested acrylic vessels + reflectors
- Multiple muon-veto to reduce bkgd-related syst. errors
 - 4-layer RPC + 2-layer water Cerenkov detector

Sensitivity to $Sin^2 2\theta_{13}$

 $\sigma_{\scriptscriptstyle B}^{\scriptscriptstyle 2}$)

$$\chi^{2} = \min_{\alpha's} \sum_{i=1}^{Nbin} \sum_{A=1,3} \frac{\left[M_{i}^{A} - T_{i}^{A} (1 + \alpha_{D} + \alpha_{c} + \alpha_{d}^{A} + c_{i} + \sum_{r} \frac{T_{i}^{rA}}{T_{i}^{A}} \alpha_{r}) - b^{A} B_{i}^{A} \right]^{2}}{T_{i}^{A} + T_{i}^{A2} \sigma_{b}^{2} + B_{i}^{A}} + \frac{\alpha_{D}^{2}}{\sigma_{D}^{2}} + \frac{\alpha_{c}^{2}}{\sigma_{c}^{2}} + \sum_{r} \frac{\alpha_{r}^{2}}{\sigma_{r}^{2}} + \sum_{i=1}^{Nbin} \frac{c_{i}^{2}}{\sigma_{shape}^{2}} + \sum_{A=1,3} \left(\frac{\alpha_{d}^{A2}}{\sigma_{d}^{2}} + \frac{b^{A2}}{\sigma_{B}^{2}} \right)$$

 $\sigma_{\scriptscriptstyle D}^{\scriptscriptstyle 2}$

Civil construction

- Hall 1, 4, 5 completed last year
- Hall 2 completed last month
- Hall 3 to be completed this summer

Anti-Neutrino detector(AD)

I. Target: 20 t, 1.6m
II. γ-catcher: 20t, 45cm
III. Buffer: 40t, 45cm
Total weight: ~100 t

192 8"PMT/module Reflectors at top and bottom → Photocathode coverage 5.6 % → 12%

- R &D successful
- Component production mostly finished
- Detector assembly underway, two ADs completed
- Dry-run test of completed AD shows that they are fully functional within spec.
- Remaining AD will be finished by next Spring

Prototype studies

- Motivation
 - Validate the design principle
 - Test technical details of tanks
 - Test Gd-LS
 - Test calibration and Pu-C source
- Achievements
 - Energy response & MC Comparison
 - Reconstruction algorithm
 - Neutron response & Pu-C source
 - Effects of reflectors
 - Gd-LS

Detector Component Production

Stainless steel vessel

Liquid Scintillator Production

- What we need:
 - 185t Gd-LS, ~180t LS, ~320t oil
- Equipment designed, manufactured and fully tested at IHEP and then re-installed onsite
- 4-ton Gd-LS test run successful: good quality and stability
- Gd-LS production completed and stored in Hall 5
- LS production almost finished
- AD Filling will start next month

AD assembly

Bottom reflector

Top reflector

Two completed ADs

AD Dry-run

- Complete test of assembled ADs with final electronics, trigger and DAQ
- **Results show that:**
 - Both ADs are fully functional
 - Their response to LED & cosmicrays agrees with MC expectations
 - Two ADs are identical
 - Electronics, trigger, DAQ and offline software are all tested

Muon veto detector

> 2.5 m water shielding

- Two active Cosmic-muon veto's to cross check each other and control systematic errors
 Water Cerenkov: Eff.>95%
 - ➢ RPC Muon tracker: Eff. > 90%
 - ➤ total ineff. = 10%*5% = 0.5%

RPCs

- bare chamber production almost completed
- Chamber assembly and testing mostly finished and shipped to Daya Bay
- Water Cerenkov detector
 - R&D successful
 - All PMTs & support structure are onsite
 - Installation for Hall 1 almost completed
 - Dry-run successful: PMT works as expected

RPC production & assembly

- Each module consists of 4 layers of bare chambers made of bakelite without linseed oil(BESIII-type)
- **RPC** bare chamber testing shows good performance
- Module assembly almost finished
- 2/3 modules shipped to Daya Bay

RPC installation

Water detector: R&D with a prototype

- Compatibility tests of materials in water
- MC modeling for light transport & light collection

Water Cerenkov detector installation

Muon Dry-run

- Test of all installed PMTs
 - All PMTs and LEDs functional
 - PMT performance within expectations
 - No grounding problems

Electronics, Trigger, and DAQ

- PMT readout electronics
 - Fully tested during dry run
 - Ready for Hall 1 AD & muon-veto
- **RPC readout electronics**
 - All components ready for Hall 1
 - Tested with trigger & DAQ, ready for Hall 1
- Trigger
 - Fully tested with FEE
- DAQ hardware and software
 - Successful integration test with FEEs and trigger
 - Successful Online/offline integration test
 - Ready for hall 1 data taking

Daya Bay collaboration

What we can do after Daya Bay ?

A possibility

Measuring Mass Hierarchy

- Long baseline accelerator neutrinos
 - Through Matter effects
 - Project-X/LBNE in Fermilab/BNL ?
- Atmospheric neutrinos
 - Very weak signal, need huge detector
- Reactor neutrinos
 - Method: distortion of energy spectrum
 - Enhance signature: Transform reactor neutrino L/E spectrum to frequency regime using Fourier formalism
 - need $Sin^2(2\theta_{13}) > 0.02$
 - Need to know ΔM^2_{23}

S.T. Petcov et al., PLB533(2002)94 S.Choubey et al., PRD68(2003)113006

> J. Learned, PRD 78(2008)071302

Fourier transformation of L/E spectrum

- Frequency regime is in fact the ΔM² regime → enhance the visible features in ΔM² regime
- Take ΔM^2_{32} as reference
 - $\ \ \mathbf{NH:} \ \Delta \mathbf{M^2}_{31} > \Delta \mathbf{M^2}_{32} \ , \ \Delta \mathbf{M^2}_{31} \$ peak at the right of $\Delta \mathbf{M^2}_{32}$
 - IH: $\Delta M^2_{31} < \Delta M^2_{32}$, ΔM^2_{31} peak at the left of ΔM^2_{32}

$$\begin{array}{rcl} \Delta m_{31}^2 &=& \Delta m_{32}^2 + \Delta m_{21}^2 \\ \mathrm{NH}: & |\Delta m_{31}^2| &=& |\Delta m_{32}^2| + |\Delta m_{21}^2| \\ \mathrm{IH}: & |\Delta m_{31}^2| &=& |\Delta m_{32}^2| - |\Delta m_{21}^2| \end{array}$$

$$F(L/E) = \phi(E)\sigma(E)P_{ee}(L/E)$$

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

$$\Delta_{ij} = 1.27 \Delta m_{ij}^2 L/E_z$$

Features of Mass Hierarchy

• A different Fourier formalism:

$$FST(\omega) = \int_{t_{min}}^{t_{max}} F(t) \sin(\omega t) dt$$
$$FCT(\omega) = \int_{t_{min}}^{t_{max}} F(t) \cos(\omega t) dt$$

- Clear distinctive features:
 - **FCT:**
 - NH: peak before valley
 - IH: valley before peak
 - **– FST:**
 - NH: prominent peak
 - IH: prominent valley
- Better than power spectrum
- No pre-condition of Δm^2_{23}

L. Zhan et al., PRD78(2008)111103

Quantify Features of FCT and FST

• To quantify the symmetry breaking, we define:

$$RL = \frac{RV - LV}{RV + LV}, \ PV = \frac{P - V}{P + V}$$

RV/LV: amplitude of the right/left valley in FCT

P/V: amplitude of the peak/valley in FST

- For asymmetric P_{ee}
 - NH: RL>0 and PV>0
 - IH: RL<0 and PV<0</p>

Two clusters of RL and PV values show the sensitivity of mass hierarchy determination

Baseline: 46-72 km Sin²($2\theta_{13}$): 0.005-0.05 Others from global fit

L. Zhan et al., PRD78:111103,2008

In reality

L. Zhan, et. al., Phys.Rev.D79:073007,2009

Requirement

- To determine mass hierarchy at > 90% CL:
 - Baseline: ~ 58 km, determined by θ_{12}
 - Reactor power > 24 GW_{th}
 - Flux and detector size: ~ (250-700) kt•year
 - Ideally, $\sin^2 2\theta_{13} > 0.02$ & energy resolution < 2%
 - IF $\sin^2 2\theta_{13}$ =0.01, energy resolution < 2% & 700 kt•year
 - For $\sin^2 2\theta_{13}$ =0.02, energy resolution < 3% & 700 kt•year
- Overburden > 1000 MWE
- A huge v_e detector with mass >20kt
 - currently the largest on is 1kt (KamLAND & LVD)

Scientific goal: a 10-50kt underground LS detector 60km from reactor

- **1.** Neutrino Mass hierarchy
- **Precision mixing para. measurement:** θ_{12} , ΔM^2_{12} , $\Delta M^2_{31} \rightarrow$ 2. Unitarity of the mixing matrix
- **3.** Supernova neutrinos == better than SuperK
- 4. Geo-neutrinos $==\rangle \times 10$ better than KamLAND
- **5.** Atmospheric neutrinos $==\rangle \approx \text{SuperK}$
- 6. Solar neutrinos
- 7. High energy neutrinos
 - 1. Point source: GRB, AGN, BH, ...
 - 2. Diffused neutrinos
- 8. High energy cosmic-muons
 - 1. Point source: GRB, AGN, BH, ...
 - 2. Dark matter
- 9. Exotics
 - **1.** Sterile neutrinos
 - Monopoles, Fractional charged particles, 2.

Precision measurement of mixing parameter

- Fundamental to the Standard Model and beyond
- Similarities point to a Grand unification of leptons and quarks
- Constrain all PMNS matrix elements to < 1% ! Probing Unitarity of U_{PMNS} to <1% level !

	Current BESIII	
V _{ub}	25%	5%
V _{cd}	7%	1%
V _{cs}	16%	1%
V _{cb}	5%	3%
V _{td}	36%	5%
V _{ts}	39%	5%

	Current	nt Daya Bay II	
Δm_{12}^2	5%	< 1%	
Δm_{23}^2	12%	< 1%	
$sin^2\theta_{12}$	10%	< 1%	
Sin ² θ_{23}	20%	-	
$sin^2\theta_{13}$	x	-	

If we can spend (0.1-0.5)B\$ for each B/C/superB factories to understand U_{CKM} (~ 1-2 elements for each factory), why not a super-reactor neutrino experiment(~ 3 elements) to understand U_{PMNS} ?

Supernova neutrinos

- Less than 20 events observed so far
- Assumptions:
 - Distance: 10 kpc (our Galaxy center)
 - Energy: 3×10⁵³ erg
 - L_v the same for all types
 - Tem. & energy

 $T(\underline{\nu}_e) = 3.5 \text{ MeV}, \langle E(\underline{\nu}_e) \rangle = 11 \text{ MeV}$ $T(\nu_e) = 5 \text{ MeV}, \quad \langle E(\nu_e) \rangle = 16 \text{ MeV}$ $T(\nu_x) = 8 \text{ MeV}, \quad \langle E(\nu_x) \rangle = 25 \text{ MeV}$

• Many types of events:

 $\Box \quad \overline{v_e} + p \rightarrow n + e^+, \sim 3000 \text{ correlated events}$

 $\Box \quad \overline{v_e} + {}^{12}C \rightarrow {}^{13}B^* + e^+, \sim 10\text{-}100 \text{ correlated events}$

 $\Box \quad v_e^{+12}C \rightarrow {}^{11}N^* + e^-, \sim 10\text{-}100 \text{ correlated events}$

 $\Box = v_x + {}^{12}C \rightarrow v_x + {}^{12}C^*, \sim 600 \text{ correlated events}$

 $\Box \quad v_{x} + p \rightarrow v_{x} + p, \text{ single events}$

$$\Box \quad v_e + e^- \rightarrow v_e + e^-, \text{ single events}$$

 $\Box \quad v_{x} + e^{-} \rightarrow v_{x} + e^{-}, \text{ single events}$

Energy spectra & fluxes of all types of neutrinos

SuperK can not see these correlated events

Detector concept

- Neutrino target: ~20kt LS, LAB based
 30m(D)×30m(H)
- Oil buffer: 6kt
- Water buffer: 10kt
- PMT: 15000 20"

A possible location

Technical challenges

- Requirements:
 - Large detector: >10 kt LS
 - Energy resolution: 2%/√E → 2500 p.e./MeV
- Ongoing R&D:
 - Low cost, high QE "PMT"
 - New type of PMT
 - Highly transparent LS: 15m → >25m
 - Understand better the scintillation mechanism
 - Find out traces which absorb light, remove it from the production

20" UBA/SBA photocathode PMT is also a possibility

Now: 1kt 250 p.e./MeV

A new type of PMT: high photon detection eff.

5" **MCP-PMT**

- Top: transmitted photocathode
- Bottom: reflective photocathode additional QE: ~ 80%*40%
- MCP to replace Dynodes → no blocking of photons
 - ~ ×2 improvement

LAB based liquid scintillator studies

- Composition of LAB: ~4.5% impurities
- How to remove light absorbers:
 - Measure all impurities up to ppm level
 - Use calculation techniques in solid state physics and quantum chemistry, identify structures which may absorb visible and UV light

Linear- Alkyl-Benzene (C₆H₅-R)

- Study element traces(S,N,O,...) and their origin
- Study removing method

Compound	λ (f)	Conc	Concentration in ppm and mol/L		
Compound		NJ12-4	Canada	1(reference sample)	
C14H19NOS	312nm(0.0011)	412, 0.0	01428	0	
C11H13NOS	313nm(0.0040)	491, 0.0	02047	143, 0.000596	
C19H17N3S	358nm(0.0308)	385, 0.0	01075	118, 0.000329	
C20H15CIN2O3	377nm(0.1351) 351nm(0.0023)	138, 0.0	00325	36, 0.000085	

Powerful reactor neutrinos

- A powerful man-made source
 - If not too far, more powerful than solar, atmospheric, and accelerator neutrinos
- A well understood source $(\sim 2\% \rightarrow \sim 0.1\%)$
 - Better than solar(~5-10%), atmospheric(~10%), and accelerator(~5-10% → 2-3% ??) neutrinos
- Adjustable baseline
 - Of course, accelerator can do it also, but
- Reactor is a free neutrino factory

Summary

- Knowing $Sin^2 2\theta_{13}$ to 1% level is crucial for the future of the neutrino physics, including the mass hierarchy and the leptonic CP violation
- The Daya Bay experiment, located at an ideal site, will reach a sensitivity of <0.01 for $sin^2 2\theta_{13}$
- The construction of the Daya Bay experiment is going on well, Daya Bay near site data taking will start by this summer, full data taking in 2012
- Daya bay experiment is only the start of neutrino physics programs in China